Skip to main content
Log in

Kaempferol induces apoptosis through the MAPK pathway and regulates JNK-mediated autophagy in MC-3 cells

  • Original Article
  • Published:
Toxicological Research Aims and scope Submit manuscript

Abstract

This study sought to determine the anticancer effect of kaempferol, a glycone-type flavonoid glycoside with various pharmacological benefits, on human oral cancer MC-3 cells. In vitro studies comprised a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, annexin V and propidium iodide staining, western blotting analysis, and acridine orange staining, while the in vivo studies entailed a xenograft model, hematoxylin and eosin staining, and TdT-mediated dUTP-biotin nick end labelling. In vitro, kaempferol reduced the rate of survival of MC-3 cells, mediated intrinsic apoptosis, increased the number of acidic vesicular organelles, and altered the expression of autophagy-related proteins. Further, treatment with the autophagy inhibitors revealed that the induced autophagy had a cytoprotective effect on apoptosis in kaempferol-treated MC-3 cells. Kaempferol also decreased the expression of phosphorylated extracellular signal-regulated kinase and increased that of phosphorylated c-Jun N-terminal kinase (p-JNK) and phosphorylated p38 kinase in MC-3 cells, suggesting the occurrence of mitogen-activated protein kinase-mediated apoptosis and JNK-mediated autophagy. In vivo, kaempferol reduced tumor growth inducing apoptosis and autophagy. These results showed that kaempferol has the potential use as an adjunctive agent in treating oral cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Zhang L, Li L, Wang Y, Liu Y, Li C (2014) MC3 mucoepidermoid carcinoma cell line enriched cancer stem-like cells following chemotherapy. Oncol Lett 7:1569–1575. https://doi.org/10.3892/ol.2014.1902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jang BS, Lim SA (2020) Anticancer effect of methanol extract of Erigeron bonariensis on oral cancer cells. J Korean Soc Dent Hyg 20:763–771. https://doi.org/10.13065/jksdh.20200070

    Article  Google Scholar 

  3. Marur S, Forastiere AA (2016) Head, neck squamous cell carcinoma: update on epidemiology, diagnosis, and treatment. Mayo Clin Proc 91:386–396. https://doi.org/10.1016/j.mayocp.2015.12.017

    Article  PubMed  Google Scholar 

  4. Shen J, Huang C, Jiang L, Gao F, Wang Z, Zhang Y, Bai J, Zhou H, Chen Q (2007) Enhancement of cisplatin induced apoptosis by suberoylanilide hydroxamic acid in human oral squamous cell carcinoma cell lines. Bio chem Pharmacol 73:1901–1909. https://doi.org/10.1016/j.bcp.2007.03.009

    Article  CAS  Google Scholar 

  5. Choi ES, Oh S, Jang B, Yu HJ, Shin JA, Cho NP, Yang IH, Won DH, Kwon HJ, Hong SD, Cho SD (2017) Silymarin and its active component silibinin act as novel therapeutic alternatives for salivary gland cancer by targeting the ERK1/2-Bim signaling cascade. Cell Oncol (Dordr) 40:235–246. https://doi.org/10.1007/s13402-017-0318-8

    Article  CAS  PubMed  Google Scholar 

  6. Lee HE, Shin JA, Jeong JH, Jeon JG, Lee MH, Cho SD (2016) Anticancer activity of Ashwagandha against human head and neck cancer cell lines. J Oral Pathol Med 5:193–201. https://doi.org/10.1111/jop.12353

    Article  Google Scholar 

  7. Shin JA, Shim JH, Jeon JG, Choi KH, Choi ES, Cho NP, Cho SD (2011) Apoptotic effect of Polygonum cuspidatum in oral cancer cells through the regulation of specificity protein 1. Oral Dis 17:162–170. https://doi.org/10.1111/j.1601-0825.2010.01710.x

    Article  PubMed  Google Scholar 

  8. Imran M, Salehi B, Sharifi-Rad J, Aslam Gondal T, Saeed F, Imran A, Shahbaz M, Tsouh Fokou PV, Umair Arshad M, Khan H, Guerreiro SG, Martins N, Estevinho LM (2019) Kaempferol: a key emphasis to its anticancer potential. Molecules 24:2277. https://doi.org/10.3390/molecules24122277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Panche A, Diwan A, Chandra S (2016) Flavonoids: an overview. J Nutr Sci 5:e47. https://doi.org/10.1017/jns.2016.41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. uerrero C, Lopez-Lazaro MA (2011) Review on the dietary flavonoid kaempferol. Mini Rev Med Chem 11:298–344. https://doi.org/10.2174/138955711795305335

    Article  Google Scholar 

  11. Pei J, Chen A, Zhao L, Cao F, Ding G, Xiao W (2017) One-Pot synthesis of hyperoside by a three-enzyme cascade using a UDP-Galactose regeneration system. J Agric Food Chem 65:6042–6048. https://doi.org/10.1021/acs.jafc.7b02320

    Article  CAS  PubMed  Google Scholar 

  12. Neuhouser ML (2004) Dietary flavonoids and cancer risk: evidence from human population studies. Nutr Cancer 50:1–7. https://doi.org/10.1207/s15327914nc5001_1

    Article  CAS  PubMed  Google Scholar 

  13. Goldar S, Khaniani MS, Derakhshan SM, Baradaran B (2015) Molecular mechanisms of apoptosis and roles in cancer development and treatment. Asian Pac J Cancer Prev 16:2129–2144. https://doi.org/10.7314/APJCP.2015.16.6.2129

    Article  PubMed  Google Scholar 

  14. Pistritto G, Trisciuoglio D, Ceci C, Garufi A, D’Orazi G (2016) Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging 8:603. https://doi.org/10.18632/aging.100934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Martinou JC, Youle RJ (2011) Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev Cell 21:92–101. https://doi.org/10.1016/j.devcel.2011.06.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mizushima N (2007) Autophagy: process function. Genes Dev 21:2861–2873. https://doi.org/10.1101/gad.1599207

    Article  CAS  PubMed  Google Scholar 

  17. Jung CH, Ro SH, Cao J, Otto NM, Kim DH (2010) mTOR regulation of autophagy. FEBS Lett 584:1287–1295. https://doi.org/10.1016/j.febslet.2010.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bjørkøy G, Lamark T, Pankiv S, Overvatn A, Brech A, Johansen T (2009) Monitoring autophagic degradation of p62/SQSTM1. Methods Enzymol 452:181–197. https://doi.org/10.1016/S0076-6879(08)03612-4

    Article  CAS  PubMed  Google Scholar 

  19. Mathew R, Karantza-Wadsworth V, White E (2007) Role of autophagy in cancer. Nat Rev Cancer 7:961–967. https://doi.org/10.1038/nrc2254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yue J, López JM (2020) Understanding MAPK signaling pathways in apoptosis. Int J Mol Sci 21:2346. https://doi.org/10.3390/ijms21072346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhou G, Yang J, Song P (2019) Correlation of ERK/MAPK signaling pathway with proliferation and apoptosis of colon cancer cells. Oncol Lett 17:2266–2270. https://doi.org/10.3892/ol.2018.9857

    Article  CAS  PubMed  Google Scholar 

  22. Zhou YY, Li Y, Jiang WQ, Zhou LF (2015) MAPK/JNK signalling: a potential autophagy regulation pathway. Biosci Rep 35:e00199. https://doi.org/10.1042/BSR20140141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mariño G, Niso-Santano M, Baehrecke EH, Kroemer G (2014) Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 15:81–94. https://doi.org/10.1038/nrm3735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang GH, Jarvis BB, Chung YJ, Pestka JJ (2000) Apoptosis induction by the satratoxins and other trichothecene mycotoxins: relationship to ERK, p38 MAPK, and SAPK/JNK activation. Toxicol Appl Pharmacol 164:149–160. https://doi.org/10.1006/taap.1999.8888

    Article  CAS  PubMed  Google Scholar 

  25. Song H, Bao J, Wei Y, Chen Y, Mao X, Li J, Yang Z, Xue Y (2015) Kaempferol inhibits gastric cancer tumor growth: an in vitro and in vivo study. Oncol Rep 33:868–874. https://doi.org/10.3892/or.2014.3662

    Article  CAS  PubMed  Google Scholar 

  26. Li Q, Wei L, Lin S, Chen Y, Lin J, Peng J (2019) Synergistic effect of kaempferol and 5–fluorouracil on the growth of colorectal cancer cells by regulating the PI3K/Akt signaling pathway. Mol Med Rep 20:728–734. https://doi.org/10.3892/mmr.2019.10296

    Article  CAS  PubMed  Google Scholar 

  27. Xu X, Lai Y, Hua ZC (2019) Apoptosis and apoptotic body: disease message and therapeutic target potentials. Biosci Rep 39:BSR20180992. https://doi.org/10.1042/BSR20180992

    Article  PubMed  PubMed Central  Google Scholar 

  28. Shlomovitz I, Speir M, Gerlic M (2019) Flipping the dogma - phosphatidylserine in non-apoptotic cell death. Cell Commun Signal 17:139. https://doi.org/10.1186/s12964-019-0437-0

    Article  PubMed  PubMed Central  Google Scholar 

  29. Perlman H, Zhang X, Chen MW, Walsh K, Buttyan R (1999) An elevated bax/bcl-2 ratio corresponds with the onset of prostate epithelial cell apoptosis. Cell Death Differ 6:48–54. https://doi.org/10.1038/sj.cdd.4400453

    Article  CAS  PubMed  Google Scholar 

  30. Wang ZQ, Stingl L, Morrison C, Jantsch M, Los M, Schulze-Osthoff K, Wagner EF (1997) PARP is important for genomic stability but dispensable in apoptosis. Genes Dev 11:18:2347–2358. https://doi.org/10.1101/gad.11.18.2347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Marfe G, Tafani M, Indelicato M, Sinibaldi-Salimei P, Reali V, Pucci B, Fini M, Russo MA (2009) Kaempferol induces apoptosis in two different cell lines via akt inactivation, bax and SIRT3 activation, and mitochondrial dysfunction. J Cell Biol chem 106:643–650. https://doi.org/10.1002/jcb.22044

    Article  CAS  Google Scholar 

  32. Tanida I, Waguri S, Clifton NJ (2010) Measurement of autophagy in cells and tissues. Method Mol Biol 648:193–214. https://doi.org/10.1007/978-1-60761-756-3_13

    Article  CAS  Google Scholar 

  33. Chen Y, Azad MB, Gibson SB (2010) Methods for detecting autophagy and determining autophagy-induced cell death. Can J Physiol Pharmacol 88:85–295. https://doi.org/10.1139/Y10-010

    Article  CAS  Google Scholar 

  34. 1, Jung CH, Ro SH, Cao J, Otto NM, Kim DH (2014) mTOR regulation of autophagy. FEBS Lett 584:1287–1295. https://doi.org/10.1016/j.febslet.2010.01.017

    Article  CAS  Google Scholar 

  35. Liu T, Zhang J, Li K, Deng L, Wang H (2020) Combination of an autophagy inducer and an autophagy inhibitor a smarter strategy emerging in cancer therapy. Front Pharmacol 11:408. https://doi.org/10.3389/fphar.2020.00408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim TW, Lee SY, Kim M, Cheon C, Ko SG (2018) Kaempferol induces autophagic cell death via IRE1-JNK-CHOP pathway and inhibition of G9a in gastric cancer cells. Cell Death Dis 9:875. https://doi.org/10.1038/s41419-018-0930-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dhanasekaran DN, Reddy EP (2017) JNK-signaling: a multiplexing hub in programmed cell death. Genes Cancer 8:682–694. https://doi.org/10.18632/genesandcancer.155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu H, Zhou M (2017) Antitumor effect of quercetin on Y79 retinoblastoma cells via activation of JNK and p38 MAPK pathways. BMC Complement Altern Med 17:53. https://doi.org/10.1186/s12906-017-2023-6

    Article  CAS  Google Scholar 

  39. Nam TW, Yoo CI, Kim HT, Kwon CH, Park JY, Kim YK (2008) The flavonoid quercetin induces apoptosis and inhibits migration through a MAPK-dependent mechanism in osteoblasts. J Bone Miner Metab 26:551–560. https://doi.org/10.1007/s00774-008-0864-2

    Article  CAS  PubMed  Google Scholar 

  40. Huang WW, Chiu YJ, Fan MJ, Lu HF, Yeh HF, Li KH, Chen PY, Chung JG, Yang JS (2010) Kaempferol induced apoptosis via endoplasmic reticulum stress and mitochondria-dependent pathway in human osteosarcoma U-2 OS cells. Mol Nutr Food Res 54:1585–1595. https://doi.org/10.1002/mnfr.201000005

    Article  CAS  PubMed  Google Scholar 

  41. Song H, Bao J, Wei Y, Chen Y, Mao X, Li J, Yang Z, Xue Y (2015) Kaempferol inhibits gastric cancer tumor growth: an in vitro and in vivo study. Oncol Rep 33:868–874. https://doi.org/10.3892/or.2014.3662

    Article  CAS  PubMed  Google Scholar 

  42. Qin Y, Cui W, Yang X, Tong B (2016) Kaempferol inhibits the growth and metastasis of cholangiocarcinoma in vitro and in vivo. Acta Biochim Biophys Sin 48:238–245. https://doi.org/10.1093/abbs/gmv133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2021R1A2C1010912).

Author information

Authors and Affiliations

Authors

Contributions

SJJ and JHL designed the study and contributed the experiments. JSW, SHH and EYC contributed to data analysis. SJJ and GHJ contributed material preparation. EJH, JSW and SHJ contributed supervision present study. SJJ, GHJ contributed original manuscript writing. JYJ contributed to the manuscript review and editing, Funding acquisition, product administration. All authors approved the publication of this version of the manuscript and agreed to be accountable for all aspects of the work.

Corresponding author

Correspondence to Ji-Youn Jung.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This study was approved by the Institutional Animal Care and Use Committee of Kongju University (KNI_2021-06, Chungcheongnam-do, Korea) and was conducted in compliance with committee guidelines.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, SJ., Jung, GH., Choi, EY. et al. Kaempferol induces apoptosis through the MAPK pathway and regulates JNK-mediated autophagy in MC-3 cells. Toxicol Res. 40, 45–55 (2024). https://doi.org/10.1007/s43188-023-00206-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1007/s43188-023-00206-z

Keywords