Skip to main content
Log in

Changes in miR-221/222 Levels in Invasive and In Situ Carcinomas of the Breast: Differences in Association with Estrogen Receptor and TIMP3 Expression Levels

  • Original Research Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Background

Breast cancer (BC) is a heterogeneous group of diseases that still represents a major cause of death in the female population. MicroRNAs (miRNAs, miRs), such as miR-221 and miR-222, have been shown to be involved in BC pathology by acting via its target genes such as tissue inhibitor of metalloproteinase 3 (TIMP3).

Objectives

The main goals of this study were to find differences in miR-221/222 levels of expression in BC groups based on invasiveness, and to investigate the association with estrogen receptor (ER), TIMP3 messenger RNA (mRNA) levels, and clinicopathological characteristics of patients and tumors.

Methods

In this study, we measured levels of miR-221/222 in 63 breast tissue samples by quantitative reverse transcription–polymerase chain reaction (qRT-PCR) using TaqMan® technology and immunohistochemistry.

Results

miR-221/222 levels varied significantly across groups based on invasiveness (P < 0.001). In in situ tumors, miR-221 and miR-222 were negatively associated with ER (P = 0.001, r = −0.714, and P = 0.013, r = −0.585, respectively). In invasive breast carcinomas associated with non-invasive tumors, miR-222 was inversely associated with ER (P = 0.039, r = −0.620). Pure invasive BCs showed a positive correlation of miR-221 and miR-222 with TIMP3 mRNA levels (P = 0.008, r = 0.508, and P = 0.010, r = 0.497, respectively).

Conclusion

An increase in miR-221/222 might be an important event for in situ carcinoma formation, and miR-221/222 may be important molecules that highlight potential differences between invasive breast carcinomas associated with non-invasive and pure invasive BCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dimri G, Band H, Band V. Mammary epithelial cell transformation: insights from cell culture and mouse models. Breast Cancer Res. 2005;7(4):1–9.

    Article  CAS  Google Scholar 

  2. Hannemann J, Velds A, Halfwerk JBG, Kreike B, Peterse JL, van de Vijver MJ. Classification of ductal carcinoma in situ by gene expression profiling. Breast Cancer Res. 2006;8(5):R61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wong H, Lau S, Yau T, Cheung P, Epstein RJ. Presence of an in situ component is associated with reduced biological aggressiveness of size-matched invasive breast cancer. Br J Cancer. 2010;102(9):1391–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fedele P, Calvani N, Marino A, Orlando L, Schiavone P, Quaranta A, et al. Targeted agents to reverse resistance to endocrine therapy in metastatic breast cancer: where are we now and where are we going? Crit Rev Oncol Hematol. 2012;84(2):243–51.

    Article  PubMed  Google Scholar 

  5. Garofalo M, Quintavalle C, Romano G, Croce CM, Condorelli G. miR221/222 in cancer: their role in tumor progression and response to therapy. Curr Mol Med. 2012;12(1):27–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of tissue-specific microRNAs from mouse. Curr Biol. 2002;12(9):735–9.

    Article  CAS  PubMed  Google Scholar 

  7. Bertoli G, Cava C, Castiglioni I. MicroRNAs: new biomarkers for diagnosis, prognosis, therapy prediction and therapeutic tools for breast cancer. Theranostics. 2015;5(10):1122–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Di Leva G, Gasparini P, Piovan C, Ngankeu A, Garofalo M, Taccioli C, et al. MicroRNA cluster 221-222 and estrogen receptor alpha interactions in breast cancer. J Natl Cancer Inst. 2010;102(10):706–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dentelli P, Traversa M, Rosso A, Togliatto G, Olgasi C, Marchiò C, et al. miR-221/222 control luminal breast cancer tumor progression by regulating different targets. Cell Cycle. 2014;13(11):1811–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stinson S, Lackner MR, Adai AT, Yu N, Kim H-J, O’Brien C, et al. TRPS1 targeting by miR-221/222 promotes the epithelial-to-mesenchymal transition in breast cancer. Sci Signal. 2011;4(177):ra41.

    Article  CAS  PubMed  Google Scholar 

  11. Miller TE, Ghoshal K, Ramaswamy B, Roy S, Datta J, Shapiro CL, et al. MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J Biol Chem. 2008;283(44):29897–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Garofalo M, Di Leva G, Romano G, Nuovo G, Suh S-S, Ngankeu A, et al. miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell. 2009;16(6):498–509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Qi JH, Ebrahem Q, Moore N, Murphy G, Claesson-Welsh L, Bond M, et al. A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nat Med. 2003;9(4):407–15.

    Article  CAS  PubMed  Google Scholar 

  14. Qi JH, Anand-Apte B. Tissue inhibitor of metalloproteinase-3 (TIMP3) promotes endothelial apoptosis via a caspase-independent mechanism. Apoptosis. 2015;20(4):523–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Celebiler A, Kilic Y, Saydam S, Canda T, Başkan Z, Sevinc AI, et al. Predicting invasive phenotype with CDH1, CDH13, CD44, and TIMP3 gene expression in primary breast cancer. Cancer Sci. 2009;100(12):2341–5.

    Article  CAS  Google Scholar 

  16. Gan R, Yang Y, Yang X, Zhao L, Lu J, Meng QH. Downregulation of miR-221/222 enhances sensitivity of breast cancer cells to tamoxifen through upregulation of TIMP3. Cancer Gene Ther. 2014;21(7):290–6.

    Article  CAS  PubMed  Google Scholar 

  17. Song B, Wang C, Liu J, Wang X, Lv L, Wei L, et al. MicroRNA-21 regulates breast cancer invasion partly by targeting tissue inhibitor of metalloproteinase 3 expression. J Exp Clin Canc Res. 2010;29(1):29.

    Article  CAS  Google Scholar 

  18. Harrell JC, Dye WW, Harvell DM, Pinto M, Jedlicka P, Sartorius CA, et al. Estrogen insensitivity in a model of estrogen receptor positive breast cancer lymph node metastasis. Cancer Res. 2007;67(21):10582–91.

    Article  CAS  PubMed  Google Scholar 

  19. Travis RC, Key TJ. Oestrogen exposure and breast cancer risk. Breast Cancer Res. 2003;5(5):239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhao J-J, Lin J, Yang H, Kong W, He L, Ma X, et al. MicroRNA-221/222 Negatively regulates estrogen receptorα and is associated with tamoxifen resistance in breast cancer. J Biol Chem. 2008;283(45):31079–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wei Y, Lai X, Yu S, Chen S, Ma Y, Zhang Y, et al. Exosomal miR-221/222 enhances tamoxifen resistance in recipient ER-positive breast cancer cells. Breast Cancer Res Treat. 2014;147(2):423–31.

    Article  CAS  PubMed  Google Scholar 

  22. Shah M, Calin G. MicroRNAs miR-221 and miR-222: a new level of regulation in aggressive breast cancer. Genome Med. 2011;3(8):56.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Li Y, Liang C, Ma H, Zhao Q, Lu Y, Xiang Z, et al. miR-221/222 promotes S-phase entry and cellular migration in control of basal-like breast cancer. Molecules. 2014;19(6):7122–37.

    Article  CAS  PubMed  Google Scholar 

  24. Petrovic N, Mandusic V, Stanojevic B, Lukic S, Todorovic L, Roganovic J, et al. The difference in miR-21 expression levels between invasive and non-invasive breast cancers emphasizes its role in breast cancer invasion. Med Oncol. 2014;31(3):867.

    Article  CAS  PubMed  Google Scholar 

  25. Petrovic N, Kolakovic A, Stankovic A, Lukic S, Sami A, Zivkovic M, et al. miR-155 expression level changes might be associated with initial phases of breast cancer pathogenesis and lymph-node metastasis. Cancer Biomark. 2016;16(3):385–94.

    Article  CAS  PubMed  Google Scholar 

  26. Iorio MV, Ferracin M, Liu C-G, Veronese A, Spizzo R, Sabbioni S, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005;65(16):7065–70.

    Article  CAS  PubMed  Google Scholar 

  27. Tavazoie SF, Alarcon C, Oskarsson T, Padua D, Wang Q, Bos PD, et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature. 2008;451(7175):147–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Petrovic N. miR-21 might be involved in breast cancer promotion and invasion rather than in initial events of breast cancer development. Mol Diagn Ther. 2016;20(2):97–110.

    Article  CAS  PubMed  Google Scholar 

  29. Yang X, Wang X, Shen H, Deng R, Xue K. Combination of miR-21 with circulating tumor cells markers improve diagnostic specificity of metastatic breast cancer. Cell Biochem Biophys. 2015;73(1):87–91.

    Article  CAS  PubMed  Google Scholar 

  30. Ergün S, Öztuzcu S. MiR-221: a critical player in apoptosis as a target of caspase-3. Cancer Cell Microenviron. 2014;1(3):e313.

    Google Scholar 

  31. Roscigno G, Quintavalle C, Donnarumma E, Puoti I, Diaz-Lagares A, Iaboni M, et al. MiR-221 promotes stemness of breast cancer cells by targeting DNMT3b. Oncotarget. 2016;7(1):580–92.

    PubMed  Google Scholar 

  32. Falkenberg N, Anastasov N, Rappl K, Braselmann H, Auer G, Walch A, et al. MiR-221/-222 differentiate prognostic groups in advanced breast cancers and influence cell invasion. Br J Cancer. 2013;109(10):2714–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mercatelli N, Coppola V, Bonci D, Miele F, Costantini A, Guadagnoli M, et al. The inhibition of the highly expressed Mir-221 and Mir-222 impairs the growth of prostate carcinoma xenografts in mice. PLoS One. 2008;3(12):e4029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Howe EN, Cochrane DR, Richer JK. The miR-200 and miR-221/222 microRNA families: opposing effects on epithelial identity. J Mammary Gland Biol Neoplasia. 2012;17(1):65–77.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Nassirpour R, Mehta PP, Baxi SM, Yin M-J. miR-221 promotes tumorigenesis in human triple negative breast cancer cells. PLoS One. 2013;8(4):e62170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lui EL, Loo WT, Zhu L, Cheung MN, Chow LW. DNA hypermethylation of TIMP3 gene in invasive breast ductal carcinoma. Biomed Pharmacother. 2005;59(Suppl 2):S363–5.

    Article  CAS  PubMed  Google Scholar 

  37. Chan SP, Slack FJ. microRNA-mediated silencing inside P-bodies. RNA Biol. 2006;3(3):97–100.

    Article  CAS  PubMed  Google Scholar 

  38. Lu Y, Roy S, Nuovo G, Ramaswamy B, Miller T, Shapiro C, et al. Anti-microRNA-222 (Anti-miR-222) and -181B suppress growth of tamoxifen-resistant xenografts in mouse by targeting TIMP3 protein and modulating mitogenic signal. J Biol Chem. 2011;286(49):42292–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Petrovic.

Ethics declarations

Conflicts of interest

All of the authors (NP, RD, SJ-C, MK, SL, MP, JR) declare that they have no conflicts of interest.

Funding

This work was supported by the Ministry of Education and Science, Republic of Serbia (Grant Numbers ON173049 and 175021).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrovic, N., Davidovic, R., Jovanovic-Cupic, S. et al. Changes in miR-221/222 Levels in Invasive and In Situ Carcinomas of the Breast: Differences in Association with Estrogen Receptor and TIMP3 Expression Levels. Mol Diagn Ther 20, 603–615 (2016). https://doi.org/10.1007/s40291-016-0230-3

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s40291-016-0230-3

Keywords