Skip to main content
Log in

Brown Adipose Tissue: an Update on Recent Findings

  • Metabolism (CJ Billington, Section Editor)
  • Published:
Current Obesity Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

New treatment approaches to weight loss and weight loss maintenance in humans are critical. Given its potential role in stimulating energy expenditure, brown adipose tissue (BAT) activation has become a trending topic as an anti-obesity treatment.

Recent Findings

Most studies on BAT stimulation have been conducted in rodents and used cold stimulation. To date, few human trials exist that tested the effect of cold exposure on BAT. Those studies show that BAT contributes a small amount to overall energy metabolism which is unlikely to cause weight loss. Nonetheless, improvements in glucose metabolism have been demonstrated in humans. While new pharmacological approaches demonstrate some contribution of BAT to overall energy expenditure, the potential cardiovascular risk (increased heart rate and blood pressure to sustain the extra energy expenditure) may preclude their use.

Summary

There is no convincing evidence yet to indicate that BAT may be a viable pharmaceutical target for body weight loss or even weight loss maintenance. More research is needed to confirm the relevance of BAT and beige tissue to whole-body energy metabolism in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Flegal KM, Kruszon-Moran D, Carroll MD, Fryar CD, Ogden CL. Trends in obesity among adults in the United States, 2005 to 2014. JAMA. 2016;315(21):2284–91. https://doi.org/10.1001/jama.2016.6458.

    Article  CAS  PubMed  Google Scholar 

  2. Cawley J, Meyerhoefer C. The medical care costs of obesity: an instrumental variables approach. J Health Econ. 2012;31(1):219–30. https://doi.org/10.1016/j.jhealeco.2011.10.003.

    Article  PubMed  Google Scholar 

  3. Ravussin E, Lillioja S, Anderson TE, Christin L, Bogardus C. Determinants of 24-hour energy expenditure in man. Methods and results using a respiratory chamber. J Clin Invest. 1986;78(6):1568–78. https://doi.org/10.1172/JCI112749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bogardus C, Lillioja S, Ravussin E, Abbott W, Zawadzki JK, Young A, et al. Familial dependence of the resting metabolic rate. N Engl J Med. 1986;315(2):96–100. https://doi.org/10.1056/NEJM198607103150205.

    Article  CAS  PubMed  Google Scholar 

  5. Tataranni PA, Ravussin E. Variability in metabolic rate: biological sites of regulation. Int J Obes Relat Metab Disord. 1995;19(Suppl 4):S102–6.

    PubMed  Google Scholar 

  6. Donahoo WT, Levine JA, Melanson EL. Variability in energy expenditure and its components. Curr Opin Clin Nutr Metab Care. 2004;7(6):599–605.

    Article  PubMed  Google Scholar 

  7. Tataranni PA, Larson DE, Snitker S, Ravussin E. Thermic effect of food in humans: methods and results from use of a respiratory chamber. Am J Clin Nutr. 1995;61(5):1013–9.

    CAS  PubMed  Google Scholar 

  8. Weststrate JA. Resting metabolic rate and diet-induced thermogenesis: a methodological reappraisal. Am J Clin Nutr. 1993;58(5):592–601.

    CAS  PubMed  Google Scholar 

  9. Doucet E, St-Pierre S, Almeras N, Despres JP, Bouchard C, Tremblay A. Evidence for the existence of adaptive thermogenesis during weight loss. Br J Nutr. 2001;85(6):715–23.

    Article  CAS  PubMed  Google Scholar 

  10. Rosenbaum M, Hirsch J, Gallagher DA, Leibel RL. Long-term persistence of adaptive thermogenesis in subjects who have maintained a reduced body weight. Am J Clin Nutr. 2008;88(4):906–12.

    CAS  PubMed  Google Scholar 

  11. Rosenbaum M, Leibel RL. Adaptive thermogenesis in humans. Int J Obes. 2010;34 Suppl 1:S47–55. https://doi.org/10.1038/ijo.2010.184.

    Article  CAS  Google Scholar 

  12. Aldhahi W, Hamdy O. Adipokines, inflammation, and the endothelium in diabetes. Curr Diab Rep. 2003;3(4):293–8.

    Article  PubMed  Google Scholar 

  13. Farmer SR. Transcriptional control of adipocyte formation. Cell Metab. 2006;4(4):263–73. https://doi.org/10.1016/j.cmet.2006.07.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ronti T, Lupattelli G, Mannarino E. The endocrine function of adipose tissue: an update. Clin Endocrinol. 2006;64(4):355–65. https://doi.org/10.1111/j.1365-2265.2006.02474.x.

    CAS  Google Scholar 

  15. Rosen ED, Spiegelman BM. Adipocytes as regulators of energy balance and glucose homeostasis. Nature. 2006;444(7121):847–53. https://doi.org/10.1038/nature05483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Heaton GM, Wagenvoord RJ, Kemp A Jr, Nicholls DG. Brown-adipose-tissue mitochondria: photoaffinity labelling of the regulatory site of energy dissipation. Eur J Biochem. 1978;82(2):515–21.

    Article  CAS  PubMed  Google Scholar 

  17. Ricquier D, Kader JC. Mitochondrial protein alteration in active brown fat: a sodium dodecyl sulfate-polyacrylamide gel electrophoretic study. Biochem Biophys Res Commun. 1976;73(3):577–83.

    Article  CAS  PubMed  Google Scholar 

  18. Tam CS, Lecoultre V, Ravussin E. Brown adipose tissue: mechanisms and potential therapeutic targets. Circulation. 2012;125(22):2782–91. https://doi.org/10.1161/CIRCULATIONAHA.111.042929.

    Article  PubMed  Google Scholar 

  19. Silva JE, Bianco SD. Thyroid-adrenergic interactions: physiological and clinical implications. Thyroid. 2008;18(2):157–65. https://doi.org/10.1089/thy.2007.0252.

    Article  CAS  PubMed  Google Scholar 

  20. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360(15):1509–17. https://doi.org/10.1056/NEJMoa0810780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nedergaard J, Bengtsson T, Cannon B. Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab. 2007;293(2):E444–52. https://doi.org/10.1152/ajpendo.00691.2006.

    Article  CAS  PubMed  Google Scholar 

  22. Saito M, Okamatsu-Ogura Y, Matsushita M, Watanabe K, Yoneshiro T, Nio-Kobayashi J, et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes. 2009;58(7):1526–31. https://doi.org/10.2337/db09-0530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, et al. Cold-activated brown adipose tissue in healthy men. N Engl J Med. 2009;360(15):1500–8. https://doi.org/10.1056/NEJMoa0808718.

    Article  PubMed  Google Scholar 

  24. Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, et al. Functional brown adipose tissue in healthy adults. N Engl J Med. 2009;360(15):1518–25. https://doi.org/10.1056/NEJMoa0808949.

    Article  CAS  PubMed  Google Scholar 

  25. Rothwell NJ, Stock MJA. Role for brown adipose tissue in diet-induced thermogenesis. Nature. 1979;281(5726):31–5.

    Article  CAS  PubMed  Google Scholar 

  26. • Peterson CM, Lecoultre V, Frost EA, Simmons J, Redman LM, Ravussin E. The thermogenic responses to overfeeding and cold are differentially regulated. Obesity (Silver Spring). 2016;24(1):96–101. https://doi.org/10.1002/oby.21233. This study reported that BAT activity seems to mediate cold-induced thermogenesis but not dietary-induced thermogenesis.

    Article  Google Scholar 

  27. Peterson CM, Orooji M, Johnson DN, Naraghi-Pour M, Ravussin E. Brown adipose tissue does not seem to mediate metabolic adaptation to overfeeding in men. Obesity (Silver Spring). 2017;25(3):502–5. https://doi.org/10.1002/oby.21721.

    Article  Google Scholar 

  28. Kozak LP. Brown fat and the myth of diet-induced thermogenesis. Cell Metab. 2010;11(4):263–7. https://doi.org/10.1016/j.cmet.2010.03.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Barbatelli G, Murano I, Madsen L, Hao Q, Jimenez M, Kristiansen K, et al. The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am J Physiol Endocrinol Metab. 2010;298(6):E1244–53. https://doi.org/10.1152/ajpendo.00600.2009.

    Article  CAS  PubMed  Google Scholar 

  30. Cao L, Choi EY, Liu X, Martin A, Wang C, Xu X, et al. White to brown fat phenotypic switch induced by genetic and environmental activation of a hypothalamic-adipocyte axis. Cell Metab. 2011;14(3):324–38. https://doi.org/10.1016/j.cmet.2011.06.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kiefer FW. Browning and thermogenic programing of adipose tissue. Best Pract Res Clin Endocrinol Metab. 2016;30(4):479–85. https://doi.org/10.1016/j.beem.2016.09.003.

    Article  CAS  PubMed  Google Scholar 

  32. Barquissau V, Beuzelin D, Pisani DF, Beranger GE, Mairal A, Montagner A, et al. White-to-brite conversion in human adipocytes promotes metabolic reprogramming towards fatty acid anabolic and catabolic pathways. Mol Metab. 2016;5(5):352–65. https://doi.org/10.1016/j.molmet.2016.03.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bartelt A, Heeren J. Adipose tissue browning and metabolic health. Nat Rev Endocrinol. 2014;10(1):24–36. https://doi.org/10.1038/nrendo.2013.204.

    Article  CAS  PubMed  Google Scholar 

  34. Harms M, Seale P. Brown and beige fat: development, function and therapeutic potential. Nat Med. 2013;19(10):1252–63. https://doi.org/10.1038/nm.3361.

    Article  CAS  PubMed  Google Scholar 

  35. Kajimura S, Seale P, Spiegelman BM. Transcriptional control of brown fat development. Cell Metab. 2010;11(4):257–62. https://doi.org/10.1016/j.cmet.2010.03.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Petrovic N, Walden TB, Shabalina IG, Timmons JA, Cannon B, Nedergaard J. Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem. 2010;285(10):7153–64. https://doi.org/10.1074/jbc.M109.053942.

    Article  CAS  PubMed  Google Scholar 

  37. Seale P, Conroe HM, Estall J, Kajimura S, Frontini A, Ishibashi J, et al. Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J Clin Invest. 2011;121(1):96–105. https://doi.org/10.1172/JCI44271.

    Article  CAS  PubMed  Google Scholar 

  38. Ishibashi J, Medicine SP. Beige can be slimming. Science. 2010;328(5982):1113–4. https://doi.org/10.1126/science.1190816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kim SH, Plutzky J. Brown fat and browning for the treatment of obesity and related metabolic disorders. Diabetes Metab J. 2016;40(1):12–21. https://doi.org/10.4093/dmj.2016.40.1.12.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sanchez-Gurmaches J, Hung CM, Guertin DA. Emerging complexities in adipocyte origins and identity. Trends Cell Biol. 2016;26(5):313–26. https://doi.org/10.1016/j.tcb.2016.01.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wu J, Bostrom P, Sparks LM, Ye L, Choi JH, Giang AH, et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell. 2012;150(2):366–76. https://doi.org/10.1016/j.cell.2012.05.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schulz TJ, Huang P, Huang TL, Xue R, McDougall LE, Townsend KL, et al. Brown-fat paucity due to impaired BMP signalling induces compensatory browning of white fat. Nature. 2013;495(7441):379–83. https://doi.org/10.1038/nature11943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bostrom P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, et al. A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481(7382):463–8. https://doi.org/10.1038/nature10777.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Stanford KI, Middelbeek RJ, Goodyear LJ. Exercise effects on white adipose tissue: beiging and metabolic adaptations. Diabetes. 2015;64(7):2361–8. https://doi.org/10.2337/db15-0227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sidossis LS, Porter C, Saraf MK, Borsheim E, Radhakrishnan RS, Chao T, et al. Browning of subcutaneous white adipose tissue in humans after severe adrenergic stress. Cell Metab. 2015;22(2):219–27. https://doi.org/10.1016/j.cmet.2015.06.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kir S, White JP, Kleiner S, Kazak L, Cohen P, Baracos VE, et al. Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia. Nature. 2014;513(7516):100–4. https://doi.org/10.1038/nature13528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Petruzzelli M, Schweiger M, Schreiber R, Campos-Olivas R, Tsoli M, Allen J, et al. A switch from white to brown fat increases energy expenditure in cancer-associated cachexia. Cell Metab. 2014;20(3):433–47. https://doi.org/10.1016/j.cmet.2014.06.011.

    Article  CAS  PubMed  Google Scholar 

  48. Bartelt A, Bruns OT, Reimer R, Hohenberg H, Ittrich H, Peldschus K, et al. Brown adipose tissue activity controls triglyceride clearance. Nat Med. 2011;17(2):200–5. https://doi.org/10.1038/nm.2297.

    Article  CAS  PubMed  Google Scholar 

  49. Laurila PP, Soronen J, Kooijman S, Forsstrom S, Boon MR, Surakka I, et al. USF1 deficiency activates brown adipose tissue and improves cardiometabolic health. Sci Transl Med. 2016;8(323):323ra13. https://doi.org/10.1126/scitranslmed.aad0015.

    Article  PubMed  Google Scholar 

  50. Schlein C, Talukdar S, Heine M, Fischer AW, Krott LM, Nilsson SK, et al. FGF21 lowers plasma triglycerides by accelerating lipoprotein catabolism in white and brown adipose tissues. Cell Metab. 2016;23(3):441–53. https://doi.org/10.1016/j.cmet.2016.01.006.

    Article  CAS  PubMed  Google Scholar 

  51. Berbee JF, Boon MR, Khedoe PP, Bartelt A, Schlein C, Worthmann A, et al. Brown fat activation reduces hypercholesterolaemia and protects from atherosclerosis development. Nat Commun. 2015;6:6356. https://doi.org/10.1038/ncomms7356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hoeke G, Kooijman S, Boon MR, Rensen PC, Berbee JF. Role of brown fat in lipoprotein metabolism and atherosclerosis. Circ Res. 2016;118(1):173–82. https://doi.org/10.1161/CIRCRESAHA.115.306647.

    Article  CAS  PubMed  Google Scholar 

  53. Dong M, Yang X, Lim S, Cao Z, Honek J, Lu H, et al. Cold exposure promotes atherosclerotic plaque growth and instability via UCP1-dependent lipolysis. Cell Metab. 2013;18(1):118–29. https://doi.org/10.1016/j.cmet.2013.06.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Blondin DP, Labbe SM, Noll C, Kunach M, Phoenix S, Guerin B, et al. Selective impairment of glucose but not fatty acid or oxidative metabolism in brown adipose tissue of subjects with type 2 diabetes. Diabetes. 2015;64(7):2388–97. https://doi.org/10.2337/db14-1651.

    Article  CAS  PubMed  Google Scholar 

  55. Zingaretti MC, Crosta F, Vitali A, Guerrieri M, Frontini A, Cannon B, et al. The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. FASEB J. 2009;23(9):3113–20. https://doi.org/10.1096/fj.09-133546.

    Article  CAS  PubMed  Google Scholar 

  56. • Chondronikola M, Volpi E, Borsheim E, Porter C, Annamalai P, Enerback S, et al. Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans. Diabetes. 2014;63(12):4089–99. https://doi.org/10.2337/db14-0746. This study in healthy humans utilized indirect calorimetry and stable isotopes and reported that cold exposure increased resting metabolism by 14% in subjects who had detectable BAT levels, and was fueled primarily by plasma-derived glucose (30%) and free fatty acid oxidation (70%).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. • Hanssen MJ, Hoeks J, Brans B, van der Lans AA, Schaart G, van den Driessche JJ, et al. Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus. Nat Med. 2015;21(8):863–5. https://doi.org/10.1038/nm.3891. A short-term cold acclimation protocol for 10 days in humans significantly enhanced BAT activity and improved whole-body insulin sensitivity by 43% in overweight men with type 2 diabetes, primarily due to increased insulin-stimulated glucose disposal.

    Article  CAS  PubMed  Google Scholar 

  58. Matsushita M, Yoneshiro T, Aita S, Kameya T, Sugie H, Saito M. Impact of brown adipose tissue on body fatness and glucose metabolism in healthy humans. Int J Obes. 2014;38(6):812–7. https://doi.org/10.1038/ijo.2013.206.

    Article  CAS  Google Scholar 

  59. Orava J, Nuutila P, Lidell ME, Oikonen V, Noponen T, Viljanen T, et al. Different metabolic responses of human brown adipose tissue to activation by cold and insulin. Cell Metab. 2011;14(2):272–9. https://doi.org/10.1016/j.cmet.2011.06.012.

    Article  CAS  PubMed  Google Scholar 

  60. Ouellet V, Labbe SM, Blondin DP, Phoenix S, Guerin B, Haman F, et al. Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J Clin Invest. 2012;122(2):545–52. https://doi.org/10.1172/JCI60433.

    Article  PubMed  PubMed Central  Google Scholar 

  61. van der Lans AA, Hoeks J, Brans B, Vijgen GH, Visser MG, Vosselman MJ, et al. Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. J Clin Invest. 2013;123(8):3395–403. https://doi.org/10.1172/JCI68993.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Vijgen GH, Bouvy ND, Teule GJ, Brans B, Schrauwen P, van Marken Lichtenbelt WD. Brown adipose tissue in morbidly obese subjects. PLoS One. 2011;6(2):e17247. https://doi.org/10.1371/journal.pone.0017247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yoneshiro T, Aita S, Matsushita M, Kayahara T, Kameya T, Kawai Y, et al. Recruited brown adipose tissue as an antiobesity agent in humans. J Clin Invest. 2013;123(8):3404–8. https://doi.org/10.1172/JCI67803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. • Hanssen MJ, van der Lans AA, Brans B, Hoeks J, Jardon KM, Schaart G, et al. Short-term cold acclimation recruits brown adipose tissue in obese humans. Diabetes. 2016;65(5):1179–89. https://doi.org/10.2337/db15-1372. Short-term cold exposure for up to 6 h per day for 10 days elicited recruitment of active BAT in obese individuals. No increase in energy expenditure was observed, however, potentially due to smaller amounts of BAT activation.

    Article  CAS  PubMed  Google Scholar 

  65. • Lee P, Smith S, Linderman J, Courville AB, Brychta RJ, Dieckmann W, et al. Temperature-acclimated brown adipose tissue modulates insulin sensitivity in humans. Diabetes. 2014;63(11):3686–98. https://doi.org/10.2337/db14-0513. This study reported BAT acclimation via sleeping in a cold (19 °C) room with light clothing for a month did not alter cold-induced thermogenesis but was accompanied an enhancement in postprandial insulin sensitivity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Stanford KI, Middelbeek RJ, Townsend KL, An D, Nygaard EB, Hitchcox KM, et al. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J Clin Invest. 2013;123(1):215–23. https://doi.org/10.1172/JCI62308.

    Article  CAS  PubMed  Google Scholar 

  67. Orava J, Nuutila P, Noponen T, Parkkola R, Viljanen T, Enerback S, et al. Blunted metabolic responses to cold and insulin stimulation in brown adipose tissue of obese humans. Obesity (Silver Spring). 2013;21(11):2279–87. https://doi.org/10.1002/oby.20456.

    Article  CAS  Google Scholar 

  68. Vijgen GH, Bouvy ND, Teule GJ, Brans B, Hoeks J, Schrauwen P, et al. Increase in brown adipose tissue activity after weight loss in morbidly obese subjects. J Clin Endocrinol Metab. 2012;97(7):E1229–33. https://doi.org/10.1210/jc.2012-1289.

    Article  CAS  PubMed  Google Scholar 

  69. Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004;84(1):277–359. https://doi.org/10.1152/physrev.00015.2003.

    Article  CAS  PubMed  Google Scholar 

  70. Cao W, Medvedev AV, Daniel KW, Collins S. Beta-adrenergic activation of p38 MAP kinase in adipocytes: cAMP induction of the uncoupling protein 1 (UCP1) gene requires p38 MAP kinase. J Biol Chem. 2001;276(29):27077–82. https://doi.org/10.1074/jbc.M101049200.

    Article  CAS  PubMed  Google Scholar 

  71. Collins S, Daniel KW, Petro AE, Surwit RS. Strain-specific response to beta 3-adrenergic receptor agonist treatment of diet-induced obesity in mice. Endocrinology. 1997;138(1):405–13. https://doi.org/10.1210/endo.138.1.4829.

    Article  CAS  PubMed  Google Scholar 

  72. Geloen A, Collet AJ, Guay G, Bukowiecki LJ. Beta-adrenergic stimulation of brown adipocyte proliferation. Am J Phys. 1988;254(1 Pt 1):C175–82.

    CAS  Google Scholar 

  73. Mirbolooki MR, Constantinescu CC, Pan ML, Mukherjee J. Quantitative assessment of brown adipose tissue metabolic activity and volume using 18F-FDG PET/CT and β3-adrenergic receptor activation. EJNMMI Res. 2011;1(1):30. https://doi.org/10.1186/2191-219X-1-30.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Mirbolooki MR, Schade KN, Constantinescu CC, Pan ML, Mukherjee J. Enhancement of 18F-fluorodeoxyglucose metabolism in rat brain frontal cortex using a beta3 adrenoceptor agonist. Synapse. 2015;69(2):96–8. https://doi.org/10.1002/syn.21789.

    Article  CAS  PubMed  Google Scholar 

  75. Mirbolooki MR, Upadhyay SK, Constantinescu CC, Pan ML, Mukherjee J. Adrenergic pathway activation enhances brown adipose tissue metabolism: a [(1)(8)F]FDG PET/CT study in mice. Nucl Med Biol. 2014;41(1):10–6. https://doi.org/10.1016/j.nucmedbio.2013.08.009.

    Article  CAS  PubMed  Google Scholar 

  76. Arch JR. Challenges in beta(3)-adrenoceptor agonist drug development. Ther Adv Endocrinol Metab. 2011;2(2):59–64. https://doi.org/10.1177/2042018811398517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Cypess AM, Chen YC, Sze C, Wang K, English J, Chan O, et al. Cold but not sympathomimetics activates human brown adipose tissue in vivo. Proc Natl Acad Sci U S A. 2012;109(25):10001–5. https://doi.org/10.1073/pnas.1207911109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. • Cypess AM, Weiner LS, Roberts-Toler C, Franquet Elia E, Kessler SH, Kahn PA, et al. Activation of human brown adipose tissue by a beta3-adrenergic receptor agonist. Cell Metab. 2015;21(1):33–8. https://doi.org/10.1016/j.cmet.2014.12.009. This study demonstrated that 200 mg mirabegron, a selective β3-adrenoreceptor agonist, elicited BAT activation in healthy male subjects and increased resting metabolic rate (+ 203 kcal/day or + 13%), albeit an increase in heart rate and systolic blood pressure was observed thus lending to potentially increase cardiovascular risk.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hall KD, Sacks G, Chandramohan D, Chow CC, Wang YC, Gortmaker SL, et al. Quantification of the effect of energy imbalance on bodyweight. Lancet. 2011;378(9793):826–37. https://doi.org/10.1016/S0140-6736(11)60812-X.

    Article  PubMed  Google Scholar 

  80. Baskaran P, Krishnan V, Ren J, Thyagarajan B. Capsaicin induces browning of white adipose tissue and counters obesity by activating TRPV1 channel-dependent mechanisms. Br J Pharmacol. 2016;173(15):2369–89. https://doi.org/10.1111/bph.13514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Saito M, Yoneshiro T. Capsinoids and related food ingredients activating brown fat thermogenesis and reducing body fat in humans. Curr Opin Lipidol. 2013;24(1):71–7. https://doi.org/10.1097/MOL.0b013e32835a4f40.

    Article  CAS  PubMed  Google Scholar 

  82. Whiting S, Derbyshire E, Tiwari BK. Capsaicinoids and capsinoids. A potential role for weight management? A systematic review of the evidence. Appetite. 2012;59(2):341–8. https://doi.org/10.1016/j.appet.2012.05.015.

    Article  CAS  PubMed  Google Scholar 

  83. Yoneshiro T, Aita S, Kawai Y, Iwanaga T, Saito M. Nonpungent capsaicin analogs (capsinoids) increase energy expenditure through the activation of brown adipose tissue in humans. Am J Clin Nutr. 2012;95(4):845–50. https://doi.org/10.3945/ajcn.111.018606.

    Article  CAS  PubMed  Google Scholar 

  84. Galgani JE, Ryan DH, Ravussin E. Effect of capsinoids on energy metabolism in human subjects. Br J Nutr. 2010;103(1):38–42. https://doi.org/10.1017/S0007114509991358.

    Article  CAS  PubMed  Google Scholar 

  85. Beiroa D, Imbernon M, Gallego R, Senra A, Herranz D, Villarroya F, et al. GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK. Diabetes. 2014;63(10):3346–58. https://doi.org/10.2337/db14-0302.

    Article  CAS  PubMed  Google Scholar 

  86. Broeders EP, Nascimento EB, Havekes B, Brans B, Roumans KH, Tailleux A, et al. The bile acid chenodeoxycholic acid increases human brown adipose tissue activity. Cell Metab. 2015;22(3):418–26. https://doi.org/10.1016/j.cmet.2015.07.002.

    Article  CAS  PubMed  Google Scholar 

  87. Teodoro JS, Zouhar P, Flachs P, Bardova K, Janovska P, Gomes AP, et al. Enhancement of brown fat thermogenesis using chenodeoxycholic acid in mice. Int J Obes. 2014;38(8):1027–34. https://doi.org/10.1038/ijo.2013.230.

    Article  CAS  Google Scholar 

  88. Modica S, Wolfrum C. Bone morphogenic proteins signaling in adipogenesis and energy homeostasis. Biochim Biophys Acta. 2013;1831(5):915–23. https://doi.org/10.1016/j.bbalip.2013.01.010.

    Article  CAS  PubMed  Google Scholar 

  89. Tseng YH, Kokkotou E, Schulz TJ, Huang TL, Winnay JN, Taniguchi CM, et al. New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature. 2008;454(7207):1000–4. https://doi.org/10.1038/nature07221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Whittle AJ, Carobbio S, Martins L, Slawik M, Hondares E, Vazquez MJ, et al. BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell. 2012;149(4):871–85. https://doi.org/10.1016/j.cell.2012.02.066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jensen MD. Brown adipose tissue—not as hot as we thought. J Physiol. 2015;593(3):489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Carey AL, Formosa MF, Van Every B, Bertovic D, Eikelis N, Lambert GW, et al. Ephedrine activates brown adipose tissue in lean but not obese humans. Diabetologia. 2013;56(1):147–55. https://doi.org/10.1007/s00125-012-2748-1.

    Article  CAS  PubMed  Google Scholar 

  93. Ravussin Y, Xiao C, Gavrilova O, Reitman ML. Effect of intermittent cold exposure on brown fat activation, obesity, and energy homeostasis in mice. PLoS One. 2014;9(1):e85876. https://doi.org/10.1371/journal.pone.0085876.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Carey AL, Kingwell BA. Brown adipose tissue in humans: therapeutic potential to combat obesity. Pharmacol Ther. 2013;140(1):26–33. https://doi.org/10.1016/j.pharmthera.2013.05.009.

    Article  CAS  PubMed  Google Scholar 

  95. Muzik O, Mangner TJ, Leonard WR, Kumar A, Janisse J, Granneman JG. 15O PET measurement of blood flow and oxygen consumption in cold-activated human brown fat. J Nucl Med. 2013;54(4):523–31. https://doi.org/10.2967/jnumed.112.111336.

    Article  CAS  PubMed  Google Scholar 

  96. Porter C, Chondronikola M, Sidossis LS. The therapeutic potential of brown adipocytes in humans. Front Endocrinol (Lausanne). 2015;6:156. https://doi.org/10.3389/fendo.2015.00156.

    Google Scholar 

  97. van Marken Lichtenbelt WD, Schrauwen P. Implications of nonshivering thermogenesis for energy balance regulation in humans. Am J Physiol Regul Integr Comp Physiol. 2011;301(2):R285–96. https://doi.org/10.1152/ajpregu.00652.2010.

    Article  PubMed  Google Scholar 

  98. Rothwell NJ, Stock MJ. Luxuskonsumption, diet-induced thermogenesis and brown fat: the case in favour. Clin Sci (Lond). 1983;64(1):19–23.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Ravussin.

Ethics declarations

Conflict of Interest

Kara L. Marlatt and Eric Ravussin declare they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Metabolism

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marlatt, K.L., Ravussin, E. Brown Adipose Tissue: an Update on Recent Findings. Curr Obes Rep 6, 389–396 (2017). https://doi.org/10.1007/s13679-017-0283-6

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s13679-017-0283-6

Keywords