Skip to main content
Log in

ΔNp63α attenuates tumor aggressiveness by suppressing miR-205/ZEB1-mediated epithelial–mesenchymal transition in cervical squamous cell carcinoma

  • Original Article
  • Published:
Tumor Biology

Abstract

Cervical cancer is one of the most common female cancers worldwide. Although the therapeutic outcomes of patients with early-stage cervical cancer have been significantly improved in the past decades, tumor metastasis and recurrence remain the major causes of cervical cancer-related deaths. In cervical squamous cell carcinoma (SCC), the aberrant activation of epithelial–mesenchymal transition (EMT), a crucial process in invasion and metastasis of epithelial cancer, could promote lymph nodal metastasis and recurrence, and predicts poor prognosis. In this study, we show that the expression levels of EMT markers, β-catenin and Vimentin, are associated with the p63 isoform ΔNp63α in SCC by using immunohistochemistry staining and analysis. Compared to the control SiHa cells (SiHa-NC), the expression of E-cadherin and β-catenin are upregulated, while Vimentin and ZEB1 are downregulated in the constructed SiHa cell line with stable ΔNp63α overexpression (SiHa-ΔNp63α). Besides, the migration and invasion abilities are also suppressed in SiHa-ΔNp63α cells with a typical epithelial morphology with cobblestone-like shape, suggesting that ΔNp63α is a vital EMT repressor in SCC cells. In addition, the involvement of miR-205/ZEB1 axis in the inhibition effect of ΔNp63α on EMT program is revealed by a miRNA array and confirmed by the subsequent transfection of the miR-205 mimic and antagomir. Moreover, SCC patients with low ΔNp63α expression and high EMT level show more frequent metastasis and recurrence as well as reduced overall survival. Therefore, EMT program and its vital repressor ΔNp63α could be used as biomarkers for tumor metastasis and recurrence in cervical cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Steward BW, Wild CP (Eds): World Cancer Report 2014. Lyon, France: International Agency for Research on Cancer; 2014.

  2. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.

    Article  PubMed  Google Scholar 

  3. Lee MY, Shen MR. Epithelial-mesenchymal transitions in cervical carcinoma. Am J Transl Res. 2012;4(1):1–13.

    PubMed  PubMed Central  Google Scholar 

  4. Qureshi R, Arora H, Rizvi MA. EMT in cervical cancer: its role in tumour progression and response to therapy. Cancer Lett. 2015;356(2 Pt B):321–31.

    Article  CAS  PubMed  Google Scholar 

  5. Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2(6):442–54.

    Article  CAS  PubMed  Google Scholar 

  6. Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions. J Clin Invest. 2009;119(6):1429–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tania M, Khan MA, Fu J. Epithelial to mesenchymal transition inducing transcription factors and metastatic cancer. Tumor Biol. 2014;35(8):7335–42.

    Article  CAS  Google Scholar 

  8. Zhao W, Zhou Y, Xu H, Cheng Y, Kong B. Snail family proteins in cervical squamous carcinoma: expression and significance. Clin Invest Med. 2013;36(4):E223–33.

    CAS  PubMed  Google Scholar 

  9. Cheng Y, Zhou Y, Jiang W, Yang X, Zhu J, Feng D, et al. Significance of E-cadherin, β-catenin, and vimentin expression as postoperative prognosis indicators in cervical squamous cell carcinoma. Hum Pathol. 2012;43(8):1213–20.

    Article  CAS  PubMed  Google Scholar 

  10. Su X, Chakravarti D, Flores ER. p63 steps into the limelight: crucial roles in the suppression of tumorigenesis and metastasis. Nat Rev Cancer. 2013;13(2):136–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yoh K, Prywes R. Pathway regulation of p63, a director of epithelial cell fate. Front Endocrinol (Lausanne). 2015;6:51.

    PubMed Central  Google Scholar 

  12. Engelmann D, Pützer BM. Emerging from the shade of p53 mutants: N-terminally truncated variants of the p53 family in EMT signaling and cancer progression. Sci Signal. 2014;7(345):re9.

    Article  PubMed  Google Scholar 

  13. Vanbokhoven H, Melino G, Candi E, Declercq W. p63, a story of mice and men. J Invest Dermatol. 2011;131(6):1196–207.

    Article  CAS  PubMed  Google Scholar 

  14. Zhou Y, Xu Q, Ling B, Xiao W, Liu P. Reduced expression of ΔNp63α in cervical squamous cell carcinoma. Clin Invest Med. 2011;34(3):e184–91.

    CAS  PubMed  Google Scholar 

  15. Tucci P, Agostini M, Grespi F, Markert EK, Terrinoni A, Vousden KH, et al. Loss of p63 and its microRNA-205 target results in enhanced cell migration and metastasis in prostate cancer. Proc Natl Acad Sci U S A. 2012;109(38):15312–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tran MN, Choi W, Wszolek MF, Navai N, Lee IL, Nitti G, et al. The p63 protein isoform ΔNp63α inhibits epithelial-mesenchymal transition in human bladder cancer cells: role of MIR-205. J Bio Chem. 2013;288(5):3275–88.

    Article  CAS  Google Scholar 

  17. Dang TT, Esparza MA, Maine EA, Westcott JM, Pearson GW. ΔNp63α promotes breast cancer cell motility through the selective activation components of the epithelial-to-mesenchymal transition program. Cancer Res. 2015;75(18):3925–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu LK, Jiang XY, Zhou XX, Wang DM, Song XL, Jiang HB. Upregulation of vimentin and aberrant expression of E-cadherin/beta-catenin complex in oral squamous cell carcinomas: correlation with the clinicopathological features and patient outcome. Mod Pathol. 2010;23(2):213–24.

    Article  PubMed  Google Scholar 

  19. Viganò MA, Lamartine J, Testoni B, Merico D, Alotto D, Castagnoli C, et al. New p63 targets in keratinocytes identified by a genome-wide approach. EMBO J. 2006;25(21):5105–16.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yang A, Zhu Z, Kapranov P, McKeon F, Church GM, Gingeras TR, et al. Relationships between p63 binding, DNA sequence, transcription activity, and biological function in human cells. Mol Cell. 2006;24(4):593–602.

    Article  CAS  PubMed  Google Scholar 

  21. Sethi I, Romano RA, Gluck C, Smalley K, Vojtesek B, Buck MJ, et al. A global analysis of the complex landscape of isoforms and regulatory networks of p63 in human cells and tissues. BMC Genomics. 2015;16:584.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Antonini D, Russo MT, De Rosa L, Gorrese M, Del Vecchio L, Missero C. Transcriptional repression of miR-34 family contributes to p63-mediated cell cycle progression in epidermal cells. J Invest Dermatol. 2010;130(5):1249–57.

    Article  CAS  PubMed  Google Scholar 

  23. Ratovitski EA. Tumor protein p63/microRNA network in epithelial cancer cells. Curr Genomics. 2013;14(7):441–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lin C, Li X, Zhang Y, Guo Y, Zhou J, Gao K, et al. The microRNA feedback regulation of p63 in cancer progression. Oncotarget. 2015;6(11):8434–53.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Shen Y, Zhou J, Li Y, Ye F, Wan X, Lu W, et al. miR-375 mediated acquired chemo-resistance in cervical cancer by facilitating EMT. PLoS ONE. 2014;9(10), e109299.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gregory PA, Bert AG, Parterson EL, Barry SC, Tsykin A, Farshid G, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008;10(5):593–601.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang P, Wang L, Rodriguez-Aguayo C, Yuan Y, Debeb BG, Chen D, et al. miR-205 acts as a tumour radiosensitizer by targeting ZEB1 and Ubc13. Nat Commun. 2014;5:5671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Niu K, Shen W, Zhang Y, Zhao Y, Lu Y. miR-205 promotes motility of ovarian cancer cells via targeting ZEB1. Gene. 2015;574(2):330–6.

    Article  CAS  PubMed  Google Scholar 

  29. Rodríguez-Sastre MA, González-Maya L, Delgado R, Lizano M, Tsubaki G, Mohar A, et al. Abnormal distribution of E-cadherin and beta-catenin in different histologic types of cancer of the uterine cervix. Gynecol Oncol. 2005;97(2):330–6.

    Article  PubMed  Google Scholar 

  30. Tian X, Liu Z, Niu B, Zhang J, Tan TK, Lee SR, et al. E-cadherin/β-catenin complex and the epithelial barrier. J Biomed Biotechnol. 2011;2011:567305.

    PubMed  PubMed Central  Google Scholar 

  31. Howard S, Deroo T, Fujita Y, Itasaki N. A positive role of cadherin in Wnt/β-catenin signaling during epithelial-mesenchymal transition. PLoS ONE. 2011;6(8), e23899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bhagat R, Premalata CS, Shilpa V, Pallavi VR, Ramesh G, Vijay CR, et al. Altered expression of β-catenin, E-cadherin, and E-cadherin promoter methylation in epithelial ovarian carcinoma. Tumor Biol. 2013;34(4):2459–68.

    Article  CAS  Google Scholar 

  33. Ran J, Lin DL, Wu RF, Chen QH, Huang HP, Qiu NX, et al. ZEB1 promotes epithelial-mesenchymal transition in cervical cancer metastasis. Fertil Steril. 2015;103(6):1606–14.e1-2.

    Article  CAS  PubMed  Google Scholar 

  34. Chen Z, Li S, Huang K, Zhang Q, Wang J, Li X, et al. The nuclear protein expression levels of SNAI1 and ZEB1 are involved in the progression and lymph node metastasis of cervical cancer via the epithelial-mesenchymal transition pathway. Hum Pathol. 2013;44(10):2097–105.

    Article  CAS  PubMed  Google Scholar 

  35. Gaya JM, López-Martínez JM, Karni-Schmidt O, Bonal DM, Algaba F, Palou J, et al. ΔNp63 expression is a protective factor of progression in clinical high grade T1 bladder cancer. J Urol. 2015;193(4):1144–50.

    Article  CAS  PubMed  Google Scholar 

  36. Koga F, Kawakami S, Fujii Y, Saito K, Ohtsuka Y, Iwai A, et al. Impaired p63 expression associates with poor prognosis and uroplakin III expression in invasive urothelial carcinoma of the bladder. Clin Cancer Res. 2003;9(15):5501–7.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Key Project of Anhui Provincial University Natural Science Research Foundation from Education Agency of Anhui Province, China (KJ2015A375).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Zhao.

Ethics declarations

Conflicts of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, W., Wang, H., Han, X. et al. ΔNp63α attenuates tumor aggressiveness by suppressing miR-205/ZEB1-mediated epithelial–mesenchymal transition in cervical squamous cell carcinoma. Tumor Biol. 37, 10621–10632 (2016). https://doi.org/10.1007/s13277-016-4921-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s13277-016-4921-5

Keywords