Skip to main content

Advertisement

Springer Nature Link
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Protein & Cell
  3. Article

Horizontal transfer of microRNAs: molecular mechanisms and clinical applications

  • Review
  • Published: 09 February 2012
  • Volume 3, pages 28–37, (2012)
  • Cite this article
Download PDF
Protein & Cell
Horizontal transfer of microRNAs: molecular mechanisms and clinical applications
Download PDF
  • Xi Chen1,
  • Hongwei Liang1,
  • Junfeng Zhang1,
  • Ke Zen1 &
  • …
  • Chen-Yu Zhang1 
  • 1893 Accesses

  • 3 Altmetric

  • Explore all metrics

Abstract

See More

A new class of RNA regulatory genes known as microRNAs (miRNAs) has been found to introduce a whole new layer of gene regulation in eukaryotes. The intensive studies of the past several years have demonstrated that miRNAs are not only found intracellularly, but are also detectable outside cells, including in various body fluids (e.g. serum, plasma, saliva, urine and milk). This phenomenon raises questions about the biological function of such extracellular miRNAs. Substantial amounts of extracellular miRNAs are enclosed in small membranous vesicles (e.g. exosomes, shedding vesicles and apoptotic bodies) or packaged with RNA-binding proteins (e.g. high-density lipoprotein, Argonaute 2 and nucleophosmin 1). These miRNAs may function as secreted signaling molecules to influence the recipient cell phenotypes. Furthermore, secreted extracellular miRNAs may reflect molecular changes in the cells from which they are derived and can therefore potentially serve as diagnostic indicators of disease. Several studies also point to the potential application of siRNA/miRNA delivery as a new therapeutic strategy for treating diseases. In this review, we summarize what is known about the mechanism of miRNA secretion. In addition, we describe the pathophysiological roles of secreted miRNAs and their clinical potential as diagnostic biomarkers and therapeutic drugs. We believe that miRNA transfer between cells will have a significant impact on biological research in the coming years.

Article PDF

Download to read the full article text

Similar content being viewed by others

Biogenesis and function of extracellular miRNAs

Article Open access 26 April 2019

MiRNA Biogenesis and Regulation of Diseases: An Overview

Chapter © 2017

miRNA Biogenesis and Regulation of Diseases: An Updated Overview

Chapter © 2023

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Bacterial secretion
  • Extracellular Signalling Molecules
  • miRNAs
  • siRNAs
  • Secretion
  • Small RNAs
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  • Ahmed, K.A., and Xiang, J. (2011). Mechanisms of cellular communication through intercellular protein transfer. J Cell Mol Med 15, 1458–1473.

    Article  Google Scholar 

  • Alvarez-Erviti, L., Seow, Y., Yin, H., Betts, C., Lakhal, S., and Wood, M.J. (2011). Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29, 341–345.

    Article  Google Scholar 

  • Ambros, V. (2004). The functions of animal microRNAs. Nature 431, 350–355.

    Article  Google Scholar 

  • Arroyo, J.D., Chevillet, J.R., Kroh, E.M., Ruf, I.K., Pritchard, C.C., Gibson, D.F., Mitchell, P.S., Bennett, C.F., Pogosova-Agadjanyan, E.L., Stirewalt, D.L., et al. (2011). Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A 108, 5003–5008.

    Article  Google Scholar 

  • Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297.

    Article  Google Scholar 

  • Belting, M., and Wittrup, A. (2008). Nanotubes, exosomes, and nucleic acid-binding peptides provide novel mechanisms of intercellular communication in eukaryotic cells: implications in health and disease. J Cell Biol 183, 1187–1191.

    Article  Google Scholar 

  • Bergsmedh, A., Szeles, A., Henriksson, M., Bratt, A., Folkman, M.J., Spetz, A.L., and Holmgren, L. (2001). Horizontal transfer of oncogenes by uptake of apoptotic bodies. Proc Natl Acad Sci U S A 98, 6407–6411.

    Article  Google Scholar 

  • Calin, G.A., and Croce, C.M. (2006). MicroRNA signatures in human cancers. Nat Rev Cancer 6, 857–866.

    Article  Google Scholar 

  • Chen, X., Ba, Y., Ma, L., Cai, X., Yin, Y., Wang, K., Guo, J., Zhang, Y., Chen, J., Guo, X., et al. (2008). Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18, 997–1006.

    Article  Google Scholar 

  • Chen, X., Gao, C., Li, H., Huang, L., Sun, Q., Dong, Y., Tian, C., Gao, S., Dong, H., Guan, D., et al. (2010). Identification and characterization of microRNAs in raw milk during different periods of lactation, commercial fluid, and powdered milk products. Cell Res 20, 1128–1137.

    Article  Google Scholar 

  • Cocucci, E., Racchetti, G., and Meldolesi, J. (2009). Shedding microvesicles: artefacts no more. Trends Cell Biol 19, 43–51.

    Article  Google Scholar 

  • Collino, F., Deregibus, M.C., Bruno, S., Sterpone, L., Aghemo, G., Viltono, L., Tetta, C., and Camussi, G. (2010). Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs. PLoS One 5, e11803.

    Article  Google Scholar 

  • Davis, D.M. (2007). Intercellular transfer of cell-surface proteins is common and can affect many stages of an immune response. Nat Rev Immunol 7, 238–243.

    Article  Google Scholar 

  • Deregibus, M.C., Cantaluppi, V., Calogero, R., Lo Iacono, M., Tetta, C., Biancone, L., Bruno, S., Bussolati, B., and Camussi, G. (2007). Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood 110, 2440–2448.

    Article  Google Scholar 

  • Dunning Hotopp, J.C. (2011). Horizontal gene transfer between bacteria and animals. Trends Genet 27, 157–163.

    Article  Google Scholar 

  • Esquela-Kerscher, A., and Slack, F.J. (2006). Oncomirs — microRNAs with a role in cancer. Nat Rev Cancer 6, 259–269.

    Article  Google Scholar 

  • Gourzones, C., Gelin, A., Bombik, I., Klibi, J., Vérillaud, B., Guigay, J., Lang, P., Témam, S., Schneider, V., Amiel, C., et al. (2010). Extracellular release and blood diffusion of BART viral micro-RNAs produced by EBV-infected nasopharyngeal carcinoma cells. Virol J 7, 271.

    Article  Google Scholar 

  • Hanke, M., Hoefig, K., Merz, H., Feller, A.C., Kausch, I., Jocham, D., Warnecke, J.M., and Sczakiel, G. (2010). A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol Oncol 28, 655–661.

    Article  Google Scholar 

  • Hata, T., Murakami, K., Nakatani, H., Yamamoto, Y., Matsuda, T., and Aoki, N. (2010). Isolation of bovine milk-derived microvesicles carrying mRNAs and microRNAs. Biochem Biophys Res Commun 396, 528–533.

    Article  Google Scholar 

  • He, L., and Hannon, G.J. (2004). MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5, 522–531.

    Article  Google Scholar 

  • Holmgren, L. (2010). Horizontal gene transfer: you are what you eat. Biochem Biophys Res Commun 396, 147–151.

    Article  Google Scholar 

  • Holmgren, L., Szeles, A., Rajnavölgyi, E., Folkman, J., Klein, G., Ernberg, I., and Falk, K.I. (1999). Horizontal transfer of DNA by the uptake of apoptotic bodies. Blood 93, 3956–3963.

    Google Scholar 

  • Hunter, M.P., Ismail, N., Zhang, X.L., Aguda, B.D., Lee, E.J., Yu, L.B., Xiao, T., Schafer, J., Lee, M.L.T., Schmittgen, T.D., et al. (2008). Detection of microRNA expression in human peripheral blood microvesicles. PLoS One 3, e3694.

    Article  Google Scholar 

  • Hutvágner, G., McLachlan, J., Pasquinelli, A.E., Bálint, E., Tuschl, T., and Zamore, P.D. (2001). A cellular function for the RNAinterference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834–838.

    Article  Google Scholar 

  • Ji, X., Takahashi, R., Hiura, Y., Hirokawa, G., Fukushima, Y., and Iwai, N. (2009). Plasma miR-208 as a biomarker of myocardial injury. Clin Chem 55, 1944–1949.

    Article  Google Scholar 

  • Keeling, P.J., and Palmer, J.D. (2008). Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet 9, 605–618.

    Article  Google Scholar 

  • Khvorova, A., Reynolds, A., and Jayasena, S.D. (2003). Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209–216.

    Article  Google Scholar 

  • Kosaka, N., Iguchi, H., Yoshioka, Y., Takeshita, F., Matsuki, Y., and Ochiya, T. (2010a). Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 285, 17442–17452.

    Article  Google Scholar 

  • Kosaka, N., Izumi, H., Sekine, K., and Ochiya, T. (2010b). microRNA as a new immune-regulatory agent in breast milk. Silence 1, 7

    Article  Google Scholar 

  • Laterza, O.F., Lim, L., Garrett-Engele, P.W., Vlasakova, K., Muniappa, N., Tanaka, W.K., Johnson, J.M., Sina, J.F., Fare, T.L., Sistare, F. D., et al. (2009). Plasma MicroRNAs as sensitive and specific biomarkers of tissue injury. Clin Chem 55, 1977–1983.

    Article  Google Scholar 

  • Lawrie, C.H., Gal, S., Dunlop, H.M., Pushkaran, B., Liggins, A.P., Pulford, K., Banham, A.H., Pezzella, F., Boultwood, J., Wainscoat, J.S., et al. (2008). Detection of elevated levels of tumourassociated microRNAs in serum of patients with diffuse large Bcell lymphoma. Br J Haematol 141, 672–675.

    Article  Google Scholar 

  • Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Rådmark, O., Kim, S., et al. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419.

    Article  Google Scholar 

  • Lee, Y., Kim, M., Han, J., Yeom, K.H., Lee, S., Baek, S.H., and Kim, V. N. (2004). MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23, 4051–4060.

    Article  Google Scholar 

  • Lund, E., Güttinger, S., Calado, A., Dahlberg, J.E., and Kutay, U. (2004). Nuclear export of microRNA precursors. Science 303, 95–98.

    Article  Google Scholar 

  • Luo, S.S., Ishibashi, O., Ishikawa, G., Ishikawa, T., Katayama, A., Mishima, T., Takizawa, T., Shigihara, T., Goto, T., Izumi, A., et al. (2009). Human villous trophoblasts express and secrete placentaspecific microRNAs into maternal circulation via exosomes. Biol Reprod 81, 717–729.

    Article  Google Scholar 

  • Meckes, D.G. Jr, Shair, K.H.Y., Marquitz, A.R., Kung, C.P., Edwards, R.H., and Raab-Traub, N. (2010). Human tumor virus utilizes exosomes for intercellular communication. Proc Natl Acad Sci U S A 107, 20370–20375.

    Article  Google Scholar 

  • Mitchell, P.S., Parkin, R.K., Kroh, E.M., Fritz, B.R., Wyman, S.K., Pogosova-Agadjanyan, E.L., Peterson, A., Noteboom, J., O’Briant, K.C., Allen, A., et al. (2008). Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105, 10513–10518.

    Article  Google Scholar 

  • Mittelbrunn, M., Gutiérrez-Vázquez, C., Villarroya-Beltri, C., González, S., Sánchez-Cabo, F., González, M.A., Bernad, A., and Sánchez-Madrid, F. (2011). Unidirectional transfer of microRNAloaded exosomes from T cells to antigen-presenting cells. Nat Commun 2, 282.

    Article  Google Scholar 

  • Müller, G., Schneider, M., Biemer-Daub, G., and Wied, S. (2011). Microvesicles released from rat adipocytes and harboring glycosylphosphatidylinositol-anchored proteins transfer RNA stimulating lipid synthesis. Cell Signal 23, 1207–1223.

    Article  Google Scholar 

  • Muralidharan-Chari, V., Clancy, J.W., Sedgwick, A., and D’souza-Schorey, C. (2010). Microvesicles: mediators of extracellular communication during cancer progression. J Cell Sci 123, 1603–1611.

    Article  Google Scholar 

  • Ogawa, R., Tanaka, C., Sato, M., Nagasaki, H., Sugimura, K., Okumura, K., Nakagawa, Y., and Aoki, N. (2010). Adipocytederived microvesicles contain RNA that is transported into macrophages and might be secreted into blood circulation. Biochem Biophys Res Commun 398, 723–729.

    Article  Google Scholar 

  • Ohshima, K., Inoue, K., Fujiwara, A., Hatakeyama, K., Kanto, K., Watanabe, Y., Muramatsu, K., Fukuda, Y., Ogura, S., Yamaguchi, K., et al. (2010). Let-7 microRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line. PLoS One 5, e13247.

    Article  Google Scholar 

  • Park, N.J., Zhou, H., Elashoff, D., Henson, B.S., Kastratovic, D.A., Abemayor, E., and Wong, D.T. (2009). Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection. Clin Cancer Res 15, 5473–5477.

    Article  Google Scholar 

  • Pegtel, D.M., Cosmopoulos, K., Thorley-Lawson, D.A., van Eijndhoven, M.A.J., Hopmans, E.S., Lindenberg, J.L., de Gruijl, T.D., Würdinger, T., and Middeldorp, J.M. (2010). Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci U S A 107, 6328–6333.

    Article  Google Scholar 

  • Pfeffer, S., Zavolan, M., Grässer, F.A., Chien, M.C., Russo, J.J., Ju, J. Y., John, B., Enright, A.J., Marks, D., Sander, C., et al. (2004). Identification of virus-encoded microRNAs. Science 304, 734–736.

    Article  Google Scholar 

  • Rabinowits, G., Gerçel-Taylor, C., Day, J.M., Taylor, D.D., and Kloecker, G.H. (2009). Exosomal microRNA: a diagnostic marker for lung cancer. Clin Lung Cancer 10, 42–46.

    Article  Google Scholar 

  • Ratajczak, J., Miekus, K., Kucia, M., Zhang, J., Reca, R., Dvorak, P., and Ratajczak, M.Z. (2006). Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 20, 847–856.

    Article  Google Scholar 

  • Rechavi, O., Goldstein, I., and Kloog, Y. (2009). Intercellular exchange of proteins: the immune cell habit of sharing. FEBS Lett 583, 1792–1799.

    Article  Google Scholar 

  • Ryther, R.C., Flynt, A.S., Phillips, J.A. 3rd, and Patton, J.G. (2005). siRNA therapeutics: big potential from small RNAs. Gene Ther 12, 5–11.

    Article  Google Scholar 

  • Schwarz, D.S., Hutvágner, G., Du, T., Xu, Z., Aronin, N., and Zamore, P.D. (2003). Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199–208.

    Article  Google Scholar 

  • Simons, M., and Raposo, G. (2009). Exosomes-vesicular carriers for intercellular communication. Curr Opin Cell Biol 21, 575–581.

    Article  Google Scholar 

  • Skog, J., Würdinger, T., van Rijn, S., Meijer, D.H., Gainche, L., Sena-Esteves, M., Curry, W.T. Jr, Carter, B.S., Krichevsky, A.M., and Breakefield, X.O. (2008). Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10, 1470–1476.

    Article  Google Scholar 

  • Taylor, D.D., and Gercel-Taylor, C. (2008). MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 110, 13–21.

    Article  Google Scholar 

  • Théry, C., Zitvogel, L., and Amigorena, S. (2002). Exosomes: composition, biogenesis and function. Nat Rev Immunol 2, 569–579.

    Google Scholar 

  • Turchinovich, A., Weiz, L., Langheinz, A., and Burwinkel, B. (2011). Characterization of extracellular circulating microRNA. Nucleic Acids Res 39, 7223–7233.

    Article  Google Scholar 

  • Valadi, H., Ekström, K., Bossios, A., Sjöstrand, M., Lee, J.J., and Lötvall, J.O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9, 654–659.

    Article  Google Scholar 

  • van Rooij, E., and Olson, E.N. (2007). MicroRNAs: powerful new regulators of heart disease and provocative therapeutic targets. J Clin Invest 117, 2369–2376.

    Article  Google Scholar 

  • Vickers, K.C., Palmisano, B.T., Shoucri, B.M., Shamburek, R.D., and Remaley, A.T. (2011). MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 13, 423–433.

    Article  Google Scholar 

  • Wang, K., Zhang, S., Marzolf, B., Troisch, P., Brightman, A., Hu, Z., Hood, L.E., and Galas, D.J. (2009). Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc Natl Acad Sci U S A 106, 4402–4407.

    Article  Google Scholar 

  • Wang, K., Zhang, S.L., Weber, J., Baxter, D., and Galas, D.J. (2010). Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res 38, 7248–7259.

    Article  Google Scholar 

  • Weiler, J., Hunziker, J., and Hall, J. (2006). Anti-miRNA oligonucleotides (AMOs): ammunition to target miRNAs implicated in human disease? Gene Ther 13, 496–502.

    Article  Google Scholar 

  • Yuan, A., Farber, E.L., Rapoport, A.L., Tejada, D., Deniskin, R., Akhmedov, N.B., and Farber, D.B. (2009). Transfer of microRNAs by embryonic stem cell microvesicles. PLoS One 4, e4722.

    Article  Google Scholar 

  • Zernecke, A., Bidzhekov, K., Noels, H., Shagdarsuren, E., Gan, L., Denecke, B., Hristov, M., Köppel, T., Jahantigh, M.N., Lutgens, E. et al. (2009). Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal 2, ra81.

    Article  Google Scholar 

  • Zhang, Y.J., Liu, D.Q., Chen, X., Li, J., Li, L.M., Bian, Z., Sun, F., Lu, J. W., Yin, Y.A., Cai, X., et al. (2010). Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 39, 133–144.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China

    Xi Chen, Hongwei Liang, Junfeng Zhang, Ke Zen & Chen-Yu Zhang

Authors
  1. Xi Chen
    View author publications

    Search author on:PubMed Google Scholar

  2. Hongwei Liang
    View author publications

    Search author on:PubMed Google Scholar

  3. Junfeng Zhang
    View author publications

    Search author on:PubMed Google Scholar

  4. Ke Zen
    View author publications

    Search author on:PubMed Google Scholar

  5. Chen-Yu Zhang
    View author publications

    Search author on:PubMed Google Scholar

Corresponding authors

Correspondence to Junfeng Zhang, Ke Zen or Chen-Yu Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Liang, H., Zhang, J. et al. Horizontal transfer of microRNAs: molecular mechanisms and clinical applications. Protein Cell 3, 28–37 (2012). https://doi.org/10.1007/s13238-012-2003-z

Download citation

  • Received: 09 December 2011

  • Accepted: 30 December 2011

  • Published: 09 February 2012

  • Issue date: January 2012

  • DOI: https://doi.org/10.1007/s13238-012-2003-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • microRNA
  • extracellular microRNA
  • microRNA secretion
  • horizontal transfer
  • microvesicle
  • exosome
  • apoptotic body
  • high-density lipoprotein
  • Argonaute 2
  • nucleophosmin 1
  • diagnosis
  • therapy
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

104.245.107.215

Not affiliated

Springer Nature

© 2025 Springer Nature