Skip to main content
Springer Nature Link
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Protein & Cell
  3. Article

A study of miRNAs targets prediction and experimental validation

  • Review
  • Published: 10 December 2010
  • Volume 1, pages 979–986, (2010)
  • Cite this article
Download PDF
Protein & Cell
A study of miRNAs targets prediction and experimental validation
Download PDF
  • Yong Huang1,3,
  • Quan Zou2,
  • Haitai Song1,3,
  • Fei Song1,3,
  • Ligang Wang1,3,
  • Guozheng Zhang1,3 &
  • …
  • Xingjia Shen1,3 
  • 1908 Accesses

  • Explore all metrics

Abstract

See More

microRNAs (miRNAs) are 20–24 nucleotide (nt) RNAs that regulate eukaryotic gene expression post-transcriptionally by the degradation or translational inhibition of their target messenger RNAs (mRNAs). To identify miRNA target genes will help a lot by understanding their biological functions. Sophisticated computational approaches for miRNA target prediction, and effective biological techniques for validating these targets now play a central role in elucidating their functions. Owing to the imperfect complementarity of animal miRNAs with their targets, it is difficult to judge the accuracy of the prediction. Complexity of regulation by miRNA-mediated targets at protein and mRNAs levels has made it more challenging to identify the targets. To date, only a few miRNAs targets are confirmed. In this article, we review the methods of miRNA target prediction and the experimental validation for their corresponding mRNA targets in animals.

Article PDF

Download to read the full article text

Similar content being viewed by others

Experimental MicroRNA Targeting Validation

Chapter © 2022

Computational and Bioinformatics Methods for MicroRNA Gene Prediction

Chapter © 2022

Experimental MicroRNA Detection Methods

Chapter © 2022

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Molecular Target Validation
  • miRNAs
  • Molecular Target Identification
  • Non-coding RNAs
  • siRNAs
  • Small RNAs
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  • Aravin, A., and Tuschl, T. (2005). Identification and characterization of small RNAs involved in RNA silencing. FEBS Lett 579, 5830–5840.

    Article  Google Scholar 

  • Baek, D., Villén, J., Shin, C., Camargo, F.D., Gygi, S.P., and Bartel, D. P. (2008). The impact of microRNAs on protein output. Nature 455, 64–71.

    Article  Google Scholar 

  • Banerjee, S., Wang, Z., Mohammad, M., Sarkar, F.H., and Mohammad, R.M. (2008). Efficacy of selected natural products as therapeutic agents against cancer. J Nat Prod 71, 492–496.

    Article  Google Scholar 

  • Bartel, D.P. (2009). MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233.

    Article  Google Scholar 

  • Beitzinger, M., Peters, L., Zhu, J.Y., Kremmer, E., and Meister, G. (2007). Identification of human microRNA targets from isolated argonaute protein complexes. RNA Biol 4, 76–84.

    Article  Google Scholar 

  • Boissonneault, V., St-Gelais, N., Plante, I., and Provost, P. (2008). A polymerase chain reaction-based cloning strategy applicable to functional microRNA studies. Anal Biochem 381, 166–168.

    Article  Google Scholar 

  • Brennecke, J., Stark, A., Russell, R.B., and Cohen, S.M. (2005). Principles of microRNA-target recognition. PLoS Biol 3, e85.

    Article  Google Scholar 

  • Brodersen, P., and Voinnet, O. (2009). Revisiting the principles of microRNA target recognition and mode of action. Nat Rev Mol Cell Biol 10, 141–148.

    Article  Google Scholar 

  • Cai, X., Hagedorn, C.H., and Cullen, B.R. (2004). Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10, 1957–1966.

    Article  Google Scholar 

  • Chi, S.W., Zang, J.B., Mele, A., and Darnell, R.B. (2009). Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460, 479–486.

    Google Scholar 

  • Easow, G., Teleman, A.A., and Cohen, S.M. (2007). Isolation of microRNA targets by miRNP immunopurification. RNA 13, 1198–1204.

    Article  Google Scholar 

  • Elbashir, S.M., Lendeckel, W., and Tuschl, T. (2001). RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15, 188–200.

    Article  Google Scholar 

  • Engels, B.M., and Hutvagner, G. (2006). Principles and effects of microRNA-mediated post-transcriptional gene regulation. Oncogene 25, 6163–6169.

    Article  Google Scholar 

  • Enright, A.J., John, B., Gaul, U., Tuschl, T., Sander, C., and Marks, D. S. (2003). MicroRNA targets in Drosophila. Genome Biol 5, R1.

    Article  Google Scholar 

  • Flynt, A.S., and Lai, E.C. (2008). Biological principles of microRNAmediated regulation: shared themes amid diversity. Nat Rev Genet 9, 831–842.

    Article  Google Scholar 

  • Friedman, R.C., Farh, K.K., Burge, C.B., and Bartel, D.P. (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19, 92–105.

    Article  Google Scholar 

  • Gaidatzis, D., van Nimwegen, E., Hausser, J., and Zavolan, M. (2007). Inference of miRNA targets using evolutionary conservation and pathway analysis. BMC Bioinformatics 8, 69.

    Article  Google Scholar 

  • Hafner, M., Landthaler, M., Burger, L., Khorshid, M., Hausser, J., Berninger, P., Rothballer, A., Ascano, M. Jr, Jungkamp, A.C., Munschauer, M., et al. (2010). Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141, 129–141.

    Article  Google Scholar 

  • Hammell, M., Long, D., Zhang, L., Lee, A., Carmack, C.S., Han, M., Ding, Y., and Ambros, V. (2008). mirWIP: microRNA target prediction based on microRNA-containing ribonucleoproteinenriched transcripts. Nat Methods 5, 813–819.

    Article  Google Scholar 

  • Hassan, M.Q., Gordon, J.A., Lian, J.B., van Wijnen, A.J., Stein, J.L., and Stein, G.S. (2010). Ribonucleoprotein immunoprecipitation (RNP-IP): a direct in vivo analysis of microRNA-targets. J Cell Biochem 110, 817–822.

    Article  Google Scholar 

  • Huang, J.C., Babak, T., Corson, T.W., Chua, G., Khan, S., Gallie, B.L., Hughes, T.R., Blencowe, B.J., Frey, B.J., and Morris, Q.D. (2007). Using expression profiling data to identify human microRNA targets. Nat Methods 4, 1045–1049.

    Article  Google Scholar 

  • Hutvágner, G., and Zamore, P.D. (2002). A microRNA in a multipleturnover RNAi enzyme complex. Science 297, 2056–2060.

    Article  Google Scholar 

  • Hwang, H.W., and Mendell, J.T. (2007). MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer 96, R40–R44.

    Google Scholar 

  • Ivanovska, I., and Cleary, M.A. (2008). Combinatorial microRNAs: working together to make a difference. Cell Cycle 7, 3137–3142.

    Article  Google Scholar 

  • John, B., Enright, A.J., Aravin, A., Tuschl, T., Sander, C., and Marks, D.S. (2004). Human MicroRNA targets. PLoS Biol 2, e363.

    Article  Google Scholar 

  • Johnson, S.M., Grosshans, H., Shingara, J., Byrom, M., Jarvis, R., Cheng, A., Labourier, E., Reinert, K.L., Brown, D., and Slack, F.J. (2005). RAS is regulated by the let-7 microRNA family. Cell 120, 635–647.

    Article  Google Scholar 

  • Johnston, R.J. Jr, and Hobert, O. (2003). A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature 426, 845–849.

    Article  Google Scholar 

  • Kertesz, M., Iovino, N., Unnerstall, U., Gaul, U., and Segal, E. (2007). The role of site accessibility in microRNA target recognition. Nat Genet 39, 1278–1284.

    Article  Google Scholar 

  • Kim, S.K., Nam, J.W., Rhee, J.K., Lee, W.J., and Zhang, B.T. (2006). miTarget: microRNA target gene prediction using a support vector machine. BMC Bioinformatics 7, 411.

    Article  Google Scholar 

  • Kim, V.N. (2004). MicroRNA precursors in motion: exportin-5 mediates their nuclear export. Trends Cell Biol 14, 156–159.

    Article  Google Scholar 

  • Kiriakidou, M., Nelson, P.T., Kouranov, A., Fitziev, P., Bouyioukos, C., Mourelatos, Z., and Hatzigeorgiou, A. (2004). A combined computational-experimental approach predicts human microRNA targets. Genes Dev 18, 1165–1178.

    Article  Google Scholar 

  • Krek, A., Grün, D., Poy, M.N., Wolf, R., Rosenberg, L., Epstein, E.J., MacMenamin, P., da Piedade, I., Gunsalus, K.C., Stoffel, M., et al. (2005). Combinatorial microRNA target predictions. Nat Genet 37, 495–500.

    Article  Google Scholar 

  • Krüger, J., and Rehmsmeier, M. (2006). RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res 34, W451–454.

    Article  Google Scholar 

  • Lee, I., Ajay, S.S., Yook, J.I., Kim, H.S., Hong, S.H., Kim, N.H., Dhanasekaran, S.M., Chinnaiyan, A.M., and Athey, B.D. (2009). New class of microRNA targets containing simultaneous 5′-UTR and 3′-UTR interaction sites. Genome Res 19, 1175–1183.

    Article  Google Scholar 

  • Lee, J.Y., Kim, S., Hwang, W., Jeong, J.M., Chung, J.K., Lee, M.C., and Lee, D.S. (2008). Development of a dual-luciferase reporter system for in vivo visualization of MicroRNA biogenesis and posttranscriptional regulation. J Nucl Med 49, 285–294.

    Article  Google Scholar 

  • Lee, R.C., Feinbaum, R.L., and Ambros, V. (1993). The C. elegans heterochronic genelin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854.

    Article  Google Scholar 

  • Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Rådmark, O., Kim, S., et al. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419.

    Article  Google Scholar 

  • Lee, Y., Kim, M., Han, J., Yeom, K.H., Lee, S., Baek, S.H., and Kim, V. N. (2004). MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23, 4051–4060.

    Article  Google Scholar 

  • Lewis, B.P., Burge, C.B., and Bartel, D.P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20.

    Article  Google Scholar 

  • Lewis, B.P., Shih, I.H., Jones-Rhoades, M.W., Bartel, D.P., and Burge, C.B. (2003). Prediction of mammalian microRNA targets. Cell 115, 787–798.

    Article  Google Scholar 

  • Liu, Q., Fu, H., Sun, F., Zhang, H., Tie, Y., Zhu, J., Xing, R., Sun, Z., and Zheng, X. (2008). miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes. Nucleic Acids Res 36, 5391–5404.

    Article  Google Scholar 

  • Lund, E., Güttinger, S., Calado, A., Dahlberg, J.E., and Kutay, U. (2004). Nuclear export of microRNA precursors. Science 303, 95–98.

    Article  Google Scholar 

  • Ma, L., Teruya-Feldstein, J., and Weinberg, R.A. (2007). Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449, 682–688.

    Article  Google Scholar 

  • Maragkakis, M., Alexiou, P., Papadopoulos, G.L., Reczko, M., Dalamagas, T., Giannopoulos, G., Goumas, G., Koukis, E., Kourtis, K., Simossis, V.A., et al. (2009a). Accurate microRNA target prediction correlates with protein repression levels. BMC Bioinformatics 10, 295.

    Article  Google Scholar 

  • Maragkakis, M., Reczko, M., Simossis, V.A., Alexiou, P., Papadopoulos, G.L., Dalamagas, T., Giannopoulos, G., Goumas, G., Koukis, E., Kourtis, K., et al. (2009b). DIANA-microT web server: elucidating microRNA functions through target prediction. Nucleic Acids Res 37, W273–276.

    Article  Google Scholar 

  • Min, H., and Yoon, S. (2010). Got target? Computational methods for microRNA target prediction and their extension. Exp Mol Med 42, 233–244.

    Article  Google Scholar 

  • Miranda, K.C., Huynh, T., Tay, Y., Ang, Y.S., Tam, W.L., Thomson, A. M., Lim, B., and Rigoutsos, I. (2006). A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126, 1203–1217.

    Article  Google Scholar 

  • Nachmani, D., Stern-Ginossar, N., Sarid, R., and Mandelboim, O. (2009). Diverse herpesvirus microRNAs target the stress-induced immune ligand MICB to escape recognition by natural killer cells. Cell Host Microbe 5, 376–385.

    Article  Google Scholar 

  • Nonne, N., Ameyar-Zazoua, M., Souidi, M., and Harel-Bellan, A. (2010). Tandem affinity purification of miRNA target mRNAs (TAPTar). Nucleic Acids Res 38, e20.

    Article  Google Scholar 

  • O’Donnell, K.A., Wentzel, E.A., Zeller, K.I., Dang, C.V., and Mendell, J.T. (2005). c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435, 839–843.

    Article  Google Scholar 

  • Ørom, U.A., and Lund, A.H. (2010). Experimental identification of microRNA targets. Gene 451, 1–5.

    Article  Google Scholar 

  • Pillai, R.S. (2005). MicroRNA function: multiple mechanisms for a tiny RNA? RNA 11, 1753–1761.

    Article  Google Scholar 

  • Poy, M.N., Eliasson, L., Krutzfeldt, J., Kuwajima, S., Ma, X., Macdonald, P.E., Pfeffer, S., Tuschl, T., Rajewsky, N., Rorsman, P., et al. (2004). A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432, 226–230.

    Article  Google Scholar 

  • Rehmsmeier, M., Steffen, P., Hochsmann, M., and Giegerich, R. (2004). Fast and effective prediction of microRNA/target duplexes. RNA 10, 1507–1517.

    Article  Google Scholar 

  • Rusinov, V., Baev, V., Minkov, I.N., and Tabler, M. (2005). MicroInspector: a web tool for detection of miRNA binding sites in an RNA sequence. Nucleic Acids Res 33, W696–700.

    Article  Google Scholar 

  • Saetrom, O., Snøve, O. Jr, and Saetrom, P. (2005). Weighted sequence motifs as an improved seeding step in microRNA target prediction algorithms. RNA 11, 995–1003.

    Article  Google Scholar 

  • Sarnow, P., Jopling, C.L., Norman, K.L., Schütz, S., and Wehner, K.A. (2006). MicroRNAs: expression, avoidance and subversion by vertebrate viruses. Nat Rev Microbiol 4, 651–659.

    Article  Google Scholar 

  • Selbach, M., Schwanhäusser, B., Thierfelder, N., Fang, Z., Khanin, R., and Rajewsky, N. (2008). Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58–63.

    Article  Google Scholar 

  • Sethupathy, P., Megraw, M., and Hatzigeorgiou, A.G. (2006). A guide through present computational approaches for the identification of mammalian microRNA targets. Nat Methods 3, 881–886.

    Article  Google Scholar 

  • Stark, A., Brennecke, J., Bushati, N., Russell, R.B., and Cohen, S.M. (2005). Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution. Cell 123, 1133–1146.

    Article  Google Scholar 

  • Sturm, M., Hackenberg, M., Langenberger, D., and Frishman, D. (2010). TargetSpy: a supervised machine learning approach for microRNA target prediction. BMC Bioinformatics 11, 292.

    Article  Google Scholar 

  • Trujillo, R.D., Yue, S.B., Tang, Y., O’Gorman, W.E., and Chen, C.Z. (2010). The potential functions of primary microRNAs in target recognition and repression. EMBO J 29, 3272–3285.

    Article  Google Scholar 

  • Tsai, N.P., Lin, Y.L., and Wei, L.N. (2009). MicroRNA mir-346 targets the 5′-untranslated region of receptor-interacting protein 140 (RIP140) mRNA and up-regulates its protein expression. Biochem J 424, 411–418.

    Article  Google Scholar 

  • Vinther, J., Hedegaard, M.M., Gardner, P.P., Andersen, J.S., and Arctander, P. (2006). Identification of miRNA targets with stable isotope labeling by amino acids in cell culture. Nucleic Acids Res 34, e107.

    Article  Google Scholar 

  • Watanabe, Y., Tomita, M., and Kanai, A. (2007). Computational methods for microRNA target prediction. Methods Enzymol 427, 65–86.

    Article  Google Scholar 

  • Xiao, C., and Rajewsky, K. (2009). MicroRNA control in the immune system: basic principles. Cell 136, 26–36.

    Article  Google Scholar 

  • Zhang, L., Ding, L., Cheung, T.H., Dong, M.Q., Chen, J., Sewell, A.K., Liu, X., Yates, J.R. 3rd, and Han, M. (2007). Systematic identification of C. elegans miRISC proteins, miRNAs, and mRNA targets by their interactions with GW182 proteins AIN-1 and AIN-2. Mol Cell 28, 598–613.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Jiang Su University of Science and Technology, Zhenjiang, 212018, China

    Yong Huang, Haitai Song, Fei Song, Ligang Wang, Guozheng Zhang & Xingjia Shen

  2. School of information Science and Technology of Xiamen University, Xiamen, 361005, China

    Quan Zou

  3. The Key Laboratory of Silkworm and Mulberry genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhejiang, 212018, China

    Yong Huang, Haitai Song, Fei Song, Ligang Wang, Guozheng Zhang & Xingjia Shen

Authors
  1. Yong Huang
    View author publications

    Search author on:PubMed Google Scholar

  2. Quan Zou
    View author publications

    Search author on:PubMed Google Scholar

  3. Haitai Song
    View author publications

    Search author on:PubMed Google Scholar

  4. Fei Song
    View author publications

    Search author on:PubMed Google Scholar

  5. Ligang Wang
    View author publications

    Search author on:PubMed Google Scholar

  6. Guozheng Zhang
    View author publications

    Search author on:PubMed Google Scholar

  7. Xingjia Shen
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Xingjia Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y., Zou, Q., Song, H. et al. A study of miRNAs targets prediction and experimental validation. Protein Cell 1, 979–986 (2010). https://doi.org/10.1007/s13238-010-0129-4

Download citation

  • Received: 15 October 2010

  • Accepted: 24 October 2010

  • Published: 10 December 2010

  • Issue date: November 2010

  • DOI: https://doi.org/10.1007/s13238-010-0129-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • microRNA
  • computational prediction
  • target
  • experimental validation
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

104.245.107.215

Not affiliated

Springer Nature

© 2025 Springer Nature