Skip to main content
Springer Nature Link
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Nano Research
  3. Article

High performance in vivo near-IR (>1 μm) imaging and photothermal cancer therapy with carbon nanotubes

  • Research Article
  • Open access
  • Published: 12 October 2010
  • Volume 3, pages 779–793, (2010)
  • Cite this article

You have full access to this open access article

Download PDF
Nano Research Aims and scope
High performance in vivo near-IR (>1 μm) imaging and photothermal cancer therapy with carbon nanotubes
Download PDF
  • Joshua T. Robinson1,
  • Kevin Welsher1,
  • Scott M. Tabakman1,
  • Sarah P. Sherlock1,
  • Hailiang Wang1,
  • Richard Luong2 &
  • …
  • Hongjie Dai1 
  • 5649 Accesses

  • 3 Altmetric

  • Explore all metrics

Abstract

See More

Short single-walled carbon nanotubes (SWNTs) functionalized by PEGylated phospholipids are biologically non-toxic and long-circulating nanomaterials with intrinsic near infrared photoluminescence (NIR PL), characteristic Raman spectra, and strong optical absorbance in the near infrared (NIR). This work demonstrates the first dual application of intravenously injected SWNTs as photoluminescent agents for in vivo tumor imaging in the 1.0–1.4 μm emission region and as NIR absorbers and heaters at 808 nm for photothermal tumor elimination at the lowest injected dose (70 μg of SWNT/mouse, equivalent to 3.6 mg/kg) and laser irradiation power (0.6 W/cm2) reported to date. Ex vivo resonance Raman imaging revealed the SWNT distribution within tumors at a high spatial resolution. Complete tumor elimination was achieved for large numbers of photothermally treated mice without any toxic side effects after more than six months post-treatment. Further, side-by-side experiments were carried out to compare the performance of SWNTs and gold nanorods (AuNRs) at an injected dose of 700 μg of AuNR/mouse (equivalent to 35 mg/kg) in NIR photothermal ablation of tumors in vivo. Highly effective tumor elimination with SWNTs was achieved at 10 times lower injected doses and lower irradiation powers than for AuNRs. These results suggest there are significant benefits of utilizing the intrinsic properties of biocompatible SWNTs for combined cancer imaging and therapy.

Article PDF

Download to read the full article text

Similar content being viewed by others

Light-driven sextuple theranostics: nanomedicine involving second near-infrared AIE-active Ir(III) complex for prominent cancer treatment

Article 11 June 2024

Exo/endogenous factors co-activatable nanodevice for spatiotemporally controlled miRNA imaging and guided tumor ablation

Article 16 June 2021

In vivo theranostics with near-infrared-emitting carbon dots—highly efficient photothermal therapy based on passive targeting after intravenous administration

Article Open access 21 November 2018

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Cancer Nanotechnology
  • Cancer Imaging
  • Nanomaterial
  • Nanomedicine and Nanotoxicology
  • Nanoparticles
  • Carbon Nanotubes and Fullerenes
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Liu, Z.; Tabakman, S.; Welsher, K.; Dai, H. Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery. Nano Res. 2009, 2, 85–120.

    Article  CAS  PubMed  Google Scholar 

  2. Liu, Z.; Cai, W.; He, L.; Nakayama, N.; Chen, K.; Sun, X.; Chen, X.; Dai, H. In vivo biodistribution and highly efficient tumor targeting of carbon nanotubes in mice. Nat. Nanotechnol. 2007, 2, 47–52.

    Article  CAS  ADS  PubMed  Google Scholar 

  3. Liu, Z.; Chen, K.; Davis, C.; Sherlock, S.; Cao, Q.; Chen, X.; Dai, H. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res. 2008, 68, 6652–6660.

    Article  CAS  PubMed  Google Scholar 

  4. Liu, Z.; Fan, A. C.; Rakhra, K.; Sherlock, S.; Goodwin, A.; Chen, X.; Yang, Q.; Felsher, D. W.; Dai, H. Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy. Angew. Chem. Int. Edit. 2009, 48, 7668–7672.

    Article  CAS  Google Scholar 

  5. Kam, N. W.; O’Connell, M.; Wisdom, J. A.; Dai, H. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. USA 2005, 102, 11600–11605.

    Article  CAS  ADS  PubMed  Google Scholar 

  6. Moon, H. K.; Lee, S. H.; Choi, H. C. In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes. ACS Nano 2009, 3, 3707–3713.

    Article  CAS  PubMed  Google Scholar 

  7. Chen, Z.; Tabakman, S. M.; Goodwin, A. P.; Kattah, M. G.; Daranciang, D.; Wang, X.; Zhang, G.; Li, X.; Liu, Z.; Utz, P. J., et al. Protein microarrays with carbon nanotubes as multicolor raman labels. Nat. Biotechnol. 2008, 26, 1285–1292.

    Article  CAS  PubMed  Google Scholar 

  8. Cherukuri, P.; Bachilo, S. M.; Litovsky, S. H.; Weisman, R. B. Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J. Am. Chem. Soc. 2004, 126, 15638–15639.

    Article  CAS  PubMed  Google Scholar 

  9. Cherukuri, P.; Gannon, C. J.; Leeuw, T. K.; Schmidt, H. K.; Smalley, R. E.; Curley, S. A.; Weisman, R. B. Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence. Proc. Natl. Acad. Sci. USA 2006, 103, 18882–18886.

    Article  CAS  ADS  PubMed  Google Scholar 

  10. Leeuw, T. K.; Reith, R. M.; Simonette, R. A.; Harden, M. E.; Cherukuri, P.; Tsyboulski, D. A.; Beckingham, K. M.; Weisman, R. B. Single-walled carbon nanotubes in the intact organism: Near-ir imaging and biocompatibility studies in drosophila. Nano Lett. 2007, 7, 2650–2654.

    Article  CAS  ADS  PubMed  Google Scholar 

  11. Liu, Z.; Li, X.; Tabakman, S. M.; Jiang, K.; Fan, S.; Dai, H. Multiplexed multicolor raman imaging of live cells with isotopically modified single walled carbon nanotubes. J. Am. Chem. Soc. 2008, 130, 13540–13541.

    Article  CAS  PubMed  Google Scholar 

  12. Welsher, K.; Liu, Z.; Daranciang, D.; Dai, H. Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules. Nano Lett. 2008, 8, 586–590.

    Article  CAS  ADS  PubMed  Google Scholar 

  13. Keren, S.; Zavaleta, C.; Cheng, Z.; de la Zerda, A.; Gheysens, O.; Gambhir, S. S. Noninvasive molecular imaging of small living subjects using raman spectroscopy. Proc. Natl. Acad. Sci. USA 2008, 105, 5844–5849.

    Article  CAS  ADS  PubMed  Google Scholar 

  14. Smith, A. M.; Mancini, M. C.; Nie, S. Bioimaging: Second window for in vivo imaging. Nat. Nanotechnol. 2009, 4, 710–711.

    Article  CAS  ADS  PubMed  Google Scholar 

  15. Welsher, K.; Liu, Z.; Sherlock, S. P.; Robinson, J. T.; Chen, Z.; Daranciang, D.; Dai, H. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotechnol. 2009, 4, 773–780.

    Article  CAS  ADS  PubMed  Google Scholar 

  16. Perrault, S. D.; Walkey, C.; Jennings, T.; Fischer, H. C.; Chan, W. C. W. Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett. 2009, 9, 1909–1915.

    Article  CAS  ADS  PubMed  Google Scholar 

  17. Eghtedari, M.; Oraevsky, A.; Copland, J. A.; Kotov, N. A.; Conjusteau, A.; Motamedi, M. High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system. Nano Lett. 2007, 7, 1914–1918.

    Article  CAS  ADS  PubMed  Google Scholar 

  18. Kim, J. -W.; Galanzha, E. I.; Shashkov, E. V.; Moon, H. -M.; Zharov, V. P. Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents. Nat. Nanotechnol. 2009, 4, 688–694.

    Article  CAS  ADS  PubMed  Google Scholar 

  19. De La Zerda, A.; Zavaleta, C.; Keren, S.; Vaithilingam, S.; Bodapati, S.; Liu, Z.; Levi, J.; Smith, B. R.; Ma, T. -J.; Oralkan, O., et al. Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat. Nanotechnol. 2008, 3, 557–562.

    Article  PubMed  Google Scholar 

  20. Aubin, J. E. Autofluorescence of viable cultured mammalian cells. J. Histochem. Cytochem. 1979, 27, 36–43.

    CAS  PubMed  Google Scholar 

  21. O’Neal, D. P.; Hirsch, L. R.; Halas, N. J.; Payne, J. D.; West, J. L. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. 2004, 209, 171–176.

    Article  PubMed  Google Scholar 

  22. Sassaroli, E.; Li, K. C. P.; O’Neill, B. E. Numerical investigation of heating of a gold nanoparticle and the surrounding microenvironment by nanosecond laser pulses for nanomedicine applications. Phys. Med. Biol. 2009, 54, 5541–5560.

    Article  CAS  PubMed  Google Scholar 

  23. Stern, J. M.; Stanfield, J.; Kabbani, W.; Hsieh, J. -T.; Cadeddu, J. A. Selective prostate cancer thermal ablation with laser activated gold nanoshells. J. Urology 2008, 179, 748–753.

    Article  Google Scholar 

  24. Terentyuk, G. S.; Maslyakova, G. N.; Suleymanova, L. V.; Khlebtsov, N. G.; Khlebtsov, B. N.; Akchurin, G. G.; Maksimova, I. L.; Tuchin, V. V. Laser-induced tissue hyperthermia mediated by gold nanoparticles: Toward cancer phototherapy. J. Biomed. Opt. 2009, 14, 021016.

    Article  ADS  PubMed  Google Scholar 

  25. Huang, X.; Jain, P.; El-Sayed, I.; El-Sayed, M. Plasmonic photothermal therapy (pptt) using gold nanoparticles. Laser Med. Sci. 2008, 23, 217–228.

    Article  Google Scholar 

  26. von Maltzahn, G.; Park, J.-H.; Agrawal, A.; Bandaru, N. K.; Das, S. K.; Sailor, M. J.; Bhatia, S. N. Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res. 2009, 69, 3892–3900.

    Article  Google Scholar 

  27. Huff, T. B.; Tong, L.; Zhao, Y.; Hansen, M. N.; Cheng, J. -X.; Wei, A. Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine-UK 2007, 2, 125–132.

    Article  CAS  Google Scholar 

  28. Dickerson, E. B.; Dreaden, E. C.; Huang, X.; El-Sayed, I. H.; Chu, H.; Pushpanketh, S.; McDonald, J. F.; El-Sayed, M. A. Gold nanorod assisted near-infrared plasmonic photothermal therapy (pptt) of squamous cell carcinoma in mice. Cancer Lett. 2008, 269, 57–66.

    Article  CAS  PubMed  Google Scholar 

  29. Hasan, W.; Stender, C. L.; Lee, M. H.; Nehl, C. L.; Lee, J.; Odom, T. W. Tailoring the structure of nanopyramids for optimal heat generation. Nano Lett. 2009, 9, 1555–1558.

    Article  CAS  ADS  PubMed  Google Scholar 

  30. Ghosh, S.; Dutta, S.; Gomes, E.; Carroll, D.; D’Agostino, R.; Olson, J.; Guthold, M.; Gmeiner, W. H. Increased heating efficiency and selective thermal ablation of malignant tissue with DNA-encased multiwalled carbon nanotubes. ACS Nano 2009, 3, 2667–2673.

    Article  CAS  PubMed  Google Scholar 

  31. Gannon, C. J.; Cherukuri, P.; Yakobsen, B. I.; Cognet, L.; Kanzius, J. S.; Kittrell, C.; Weisman, R. B.; Pasquali, M.; Schmidt, H. K.; Smalley, R. E.; Curley, S. A. Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer 2007, 110, 2654–2665.

    Article  CAS  PubMed  Google Scholar 

  32. Xiao, Y.; Gao, X.; Taratula, O.; Treado, S.; Urbas, A.; Holbrook, R. D.; Cavicchi, R.; Avedisian, C. T.; Mitra, S.; Savla, R., et al. Anti-her2 igy antibody-functionalized singlewalled carbon nanotubes for detection and selective destruction of breast cancer cells. BMC Cancer 2009, 9, 351.

    Article  PubMed  Google Scholar 

  33. Zhou, F.; Xing, D.; Ou, Z.; Wu, B.; Resasco, D. E.; Chen, W. R. Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes. J. Biomed. Opt. 2009, 14, 021009.

    Article  ADS  PubMed  Google Scholar 

  34. Prencipe, G.; Tabakman, S. M.; Welsher, K.; Liu, Z.; Goodwin, A. P.; Zhang, L.; Henry, J.; Dai, H. PEG branched polymer for functionalization of nanomaterials with ultralong blood circulation. J. Am. Chem. Soc. 2009, 131, 4783–4787.

    Article  CAS  PubMed  Google Scholar 

  35. Liu, Z.; Tabakman, S. M.; Chen, Z.; Dai, H. Preparation of carbon nanotube bioconjugates for biomedical applications. Nat. Protoc. 2009, 4, 1372–1381.

    Article  CAS  PubMed  Google Scholar 

  36. O’Connell, M. J.; Bachilo, S. M.; Huffman, C. B.; Moore, V. C.; Strano, M. S.; Haroz, E. H.; Rialon, K. L.; Boul, P. J.; Noon, W. H.; Kittrell, C., et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science 2002, 297, 593–596.

    Article  ADS  PubMed  Google Scholar 

  37. Nikoobakht, B.; El-Sayed, M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 2003, 15, 1957–1962.

    Article  CAS  Google Scholar 

  38. Liu, Z.; Davis, C.; Cai, W.; He, L.; Chen, X.; Dai, H. Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by raman spectroscopy. Proc. Natl. Acad. Sci. USA 2008, 105, 1410–1415.

    Article  CAS  ADS  PubMed  Google Scholar 

  39. Lee, J. H.; Sherlock, S. P.; Masahiro, T.; Hisanori, K.; Suzuki, Y.; Goodwin, A.; Robinson, J.; Seo, W.S.; Liu, Z.; Luong, R., et al. High-contrast in vivo visualization of microvessels using novel feco/gc magnetic nanocrystals. Magn. Reson. Med. 2009, 62, 1497–1509.

    Article  PubMed  Google Scholar 

  40. Schwartz, J. A.; Shetty, A. M.; Price, R. E.; Stafford, R. J.; Wang, J. C.; Uthamanthil, R. K.; Pham, K.; McNichols, R. J.; Coleman, C. L.; Payne, J. D. Feasibility study of particle-assisted laser ablation of brain tumors in orthotopic canine model. Cancer Res. 2009, 69, 1659–1667.

    Article  CAS  PubMed  Google Scholar 

  41. Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. J. Phys. Chem. B 2006, 110, 7238–7248.

    Article  CAS  PubMed  Google Scholar 

  42. Schipper, M. L.; Nakayama-Ratchford, N.; Davis, C. R.; Kam, N. W. S.; Chu, P.; Liu, Z.; Sun, X.; Dai, H.; Gambhir, S. S. A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. Nat. Nanotechnol. 2008, 3, 216–221.

    Article  CAS  PubMed  Google Scholar 

  43. Day, E. S.; Morton, J. G.; West, J. L. Nanoparticles for thermal cancer therapy. J. Biomech. Eng. -T ASME 2009, 131, 074001.

    Article  Google Scholar 

  44. Wang, S.; Lu, W.; Tovmachenko, O.; Rai, U. S.; Yu, H.; Ray, P. C. Challenge in understanding size and shape dependent toxicity of gold nanomaterials in human skin keratinocytes. Chem. Phys. Lett. 2008, 463, 145–149.

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Chemistry, Stanford University, Stanford, CA, 94305, USA

    Joshua T. Robinson, Kevin Welsher, Scott M. Tabakman, Sarah P. Sherlock, Hailiang Wang & Hongjie Dai

  2. Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA

    Richard Luong

Authors
  1. Joshua T. Robinson
    View author publications

    Search author on:PubMed Google Scholar

  2. Kevin Welsher
    View author publications

    Search author on:PubMed Google Scholar

  3. Scott M. Tabakman
    View author publications

    Search author on:PubMed Google Scholar

  4. Sarah P. Sherlock
    View author publications

    Search author on:PubMed Google Scholar

  5. Hailiang Wang
    View author publications

    Search author on:PubMed Google Scholar

  6. Richard Luong
    View author publications

    Search author on:PubMed Google Scholar

  7. Hongjie Dai
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Hongjie Dai.

Additional information

This article is published with open access at Springerlink.com

Electronic supplementary material

Supplementary material, approximately 441 KB.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License ( https://creativecommons.org/licenses/by-nc/2.0 ), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Cite this article

Robinson, J.T., Welsher, K., Tabakman, S.M. et al. High performance in vivo near-IR (>1 μm) imaging and photothermal cancer therapy with carbon nanotubes. Nano Res. 3, 779–793 (2010). https://doi.org/10.1007/s12274-010-0045-1

Download citation

  • Received: 23 August 2010

  • Accepted: 13 September 2010

  • Published: 12 October 2010

  • Issue date: November 2010

  • DOI: https://doi.org/10.1007/s12274-010-0045-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Photothermal
  • cancer
  • SWNT
  • imaging
  • treatment
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

104.245.107.215

Not affiliated

Springer Nature

© 2025 Springer Nature