Skip to main content
Log in

Dual-targeted therapeutic strategy combining CSC–DC-based vaccine and cisplatin overcomes chemo-resistance in experimental mice model

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Background and purpose

Emerging evidence suggests that one of the main reasons of chemotherapy treatment failure is the development of multi-drug resistance (MDR) associated with cancer stem cells (CSCs). Our aim is to identify a therapeutic strategy based on MDR-reversing agents.

Materials and methods

CSC-enriched Ehrlich carcinoma (EC) cell cultures were prepared by drug-resistant selection method using different concentrations of cisplatin (CIS). Cell cultures following drug exposure were analyzed by flow cytometry for CSC surface markers CD44+/CD24. We isolated murine bone marrow-derived dendritic cells (DCs) and then used them to prepare CSC–DC vaccine by pulsation with CSC-enriched lysate. DCs were examined by flow cytometry for phenotypic markers. Solid Ehrlich carcinoma bearing mice were injected with the CSC–DC vaccine in conjunction with repeated low doses of CIS. Tumor growth inhibition was evaluated and tumor tissues were excised and analyzed by real-time PCR to determine the relative gene expression levels of MDR and Bcl-2. Histopathological features of tumor tissues excised were examined.

Results and conclusion

Co-treatment with CSC–DC and CIS resulted in a significant tumor growth inhibition. Furthermore, the greatest response of downregulation of MDR and Bcl-2 relative gene expression were achieved in the same group. In parallel, the histopathological observations demonstrated enhanced apoptosis and absence of mitotic figures in tumor tissues of the co-treatment group. Dual targeting of resistant cancer cells using CSC–DC vaccine along with cisplatin represents a promising therapeutic strategy that could suppress tumor growth, circumvent MDR, and increase the efficacy of conventional chemotherapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Phi LTH, Sari IN, Yang YG, Lee SH, Jun N, Kim KS, Lee YK, Kwon HY. Cancer stem cells (CSCs) in drug resistance and their therapeutic implications in cancer treatment. Stem Cells Int. 2018;28:5416923. https://doi.org/10.1155/2018/5416923.eCollection.

    Article  Google Scholar 

  2. Ayob AZ, Ramasamy TS. Cancer stem cells as key drivers of tumour progression. J Biomed Sci. 2018;25(1):20. https://doi.org/10.1186/s12929-018-0426-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444(7120):756–60.

    Article  CAS  PubMed  Google Scholar 

  4. Salem ML, El-Badawy AS, Li Z. Immunobiology and signaling pathways of cancer stem cells: implication for cancer therapy. Cytotechnology. 2015;67(5):749–59. https://doi.org/10.1007/s10616-014-9830-0.

    Article  CAS  PubMed  Google Scholar 

  5. Sastry KS, Al-Muftah MA, Li P, Al-Kowari MK, Wang E, Ismail Chouchane A, Kizhakayil D, Kulik G, Marincola FM, Haoudi A, Chouchane L. Targeting proapoptotic protein BAD inhibits survival and self-renewal of cancer stem cells. Cell Death Differ. 2014;21(12):1936–49. https://doi.org/10.1038/cdd.2014.140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Goltsev AN, Babenko NN, Gaevskaya YA, Chelombitko OV, Dubrava TG, Bondarovich NA, Ostankov MV, Klochkov VK, Kavok NS, Malyukin Y. Application of nanoparticles based on rare earth orthovanadates to inactivate ehrlich carcinoma growth. Biotechnologia Acta. 2015;8(4):113–21.

    Article  CAS  Google Scholar 

  7. Goltsev AN, Babenko NN, Gaevskaya YA, Bondarovich NA, Dubrava TG, Ostankov MV, Chelombitko OV, Malyukin YV, Klochkov VK, Kavok NS. Nanotechniques inactivate cancer stem cells. Nanoscale Res Lett. 2017;12(1):415. https://doi.org/10.1186/s11671-017-2175-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Roh JL, Kim EH, Park JY, Kim JW. Inhibition of glucosylceramide synthase sensitizes head and neck cancer to cisplatin. Mol Cancer Ther. 2015;14:1907–15.

    Article  CAS  PubMed  Google Scholar 

  9. Cataldo A, Cheung DG, Balsari A, Tagliabue E, Coppola V, Iorio MV, Palmieri D, Croce CM. miR-302b enhances breast cancer cell sensitivity to cisplatin by regulating E2F1 and the cellular DNA damage response. Oncotarget. 2016;7:786–97. https://doi.org/10.18632/oncotarget.

    Article  PubMed  Google Scholar 

  10. Tao K, Yin Y, Shen Q, Chen Y, Li R, Chang W, Bai J, Liu W, Shi L, Zhang P. Akt inhibitor MK-2206 enhances the effect of cisplatin in gastric cancer cells. Biomed Rep. 2016;4:365–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Florea AM, Büsselberg D. Cisplatin as an anti-tumor drug: cellular Mechanisms of activity, drug resistance and induced side effects. Cancers. 2011;3(1):1351–71. https://doi.org/10.3390/cancers3011351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xie Q, Wang S, Zhao Y, Zhang Z, Qin C, Yang X. MiR-519d impedes cisplatin-resistance in breast cancer stem cells by down-regulating the expression of MCL-1. Oncotarget. 2017;8(13):22003–13. https://doi.org/10.18632/oncotarget.15781.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Salem ML. The use of dendritic cells for peptide-based vaccination in cancer immunotherapy. Methods Mol Biol. 2014;1139:479–503. https://doi.org/10.1007/978-1-4939-0345-0_37.

    Article  CAS  PubMed  Google Scholar 

  14. El-Ashmawy NE, Khedr NF, El-Bahrawy HA, Abo Mansour HE. Metformin augments doxorubicin cytotoxicity in mammary carcinoma through activation of adenosine monophosphate protein kinase pathway. Tumor Biol. 2017;39(5):1010428317692235. https://doi.org/10.1177/1010428317692235.

    Article  CAS  Google Scholar 

  15. Salem ML, Abdel Salam SG, Nassef M, Hammad S, El Adl R. Immunoenhancing properties of the anti-tumor effects of adoptively transferred T cells with chemotherapeutic cyclophosphamide by co-administration of bone marrow cells. J Basic Appl Zool. 2015;72:96–103.

    Article  CAS  Google Scholar 

  16. Shahabuddin MS, Nambiar M, Moorthy BT, Naik PL, Choudhary B, Advirao GM, Raghavan SC. A novel structural derivative of natural alkaloid ellipticine, MDPSQ, induces necrosis in leukemic cells. Invest New Drugs. 2011;29(4):523–33. https://doi.org/10.1007/s10637-009-9379-5.

    Article  CAS  PubMed  Google Scholar 

  17. Xu K, Shen K, Liang X, Li Y, Nagao N, Li J, Liu J, Yin P. MiR-139-5p reverses CD44+/CD133+ associated multidrug resistance by downregulating NOTCH1in colorectal carcinoma cells. Oncotarget. 2016;7(46):75118–29. https://doi.org/10.18632/oncotarget.12611.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Salem ML, Eissa IR, Mohamed TM. Dendritic cells generated from naïve and tumor-bearing mice uniquely restores different leukocyte subpopulations in chemotherapy-treated tumor-bearing mice. Clin Cancer Investig J. 2016;5:1–10.

    Google Scholar 

  19. El-Ashmawy NE, El-Zamarany EA, Salem ML, Khedr EG, Ibrahim AO. A new strategy for enhancing antitumor immune response using dendritic cells loaded with chemo-resistant cancer stem-like cells in experimental mice model. Mol Immunol. 2019;111:106–17. https://doi.org/10.1016/j.molimm.2019.04.001(Epub 2019 Apr 30).

    Article  CAS  PubMed  Google Scholar 

  20. Li Q, Lu L, Tao H, Xue C, Teitz-Tennenbaum S, Owen JH, Moyer JS, Prince ME, Chang AE, Wicha MS. Generation of a novel dendritic-cell vaccine using melanoma and squamous cancer stem cells. J Vis Exp. 2014;83:e50561. https://doi.org/10.3791/50561.

    Article  CAS  Google Scholar 

  21. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using realtime quantitative PCR and the 2(-Delta Delta C(T)). Methods. 2001;25(4):402–8.

    Article  CAS  PubMed  Google Scholar 

  22. Agliano A, Calvo A, Box C. The challenge of targeting cancer stem cells to halt metastasis. Semin Cancer Biol. 2017;44:25–42. https://doi.org/10.1016/j.semcancer.2017.03.003.

    Article  CAS  PubMed  Google Scholar 

  23. Ji Q, Hao X, Zhang M, Tang W, Yang M, Li L, Xiang D, Desano JT, Bommer GT, Fan D, Fearon ER, Lawrence TS, Xu L. MicroRNA miR inhibits human pancreatic cancer tumor-initiating cells. PLoS ONE. 2009;4(8):6816. https://doi.org/10.1371/journal.pone.0006816.

    Article  CAS  Google Scholar 

  24. Calcagno AM, Salcido CD, Gillet JP, Wu CP, Fostel JM, Mumau MD, Gottesman MM, Varticovski L, Ambudkar SV. Prolonged drug selection of breast cancer cells and enrichment of cancer stem cell characteristics. J Natl Cancer Inst. 2010;102(21):1637–52. https://doi.org/10.1093/jnci/djq361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wan F, Zhang S, Xie R, Gao B, Campos B, Herold-Mende C, Lei T. The utility and limitations of neurosphere assay, CD133 immunophenotyping and side population assay in glioma stem cell research. Brain Pathol. 2010;20(5):877–89. https://doi.org/10.1111/j.1750-3639.2010.00379.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Levina V, Marrangoni AM, DeMarco R, Gorelik E, Lokshin AE. Drug-selected human lung cancer stem cells: cytokine network, tumorigenic and metastatic properties. PLoS ONE. 2008;3(8):e3077.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Goldman A, Majumder B, Dhawan A, Ravi S, Goldman D, Kohandel M, Majumder PK, Sengupta S. Temporally sequenced anticancer drugs overcome adaptive resistance by targeting a vulnerable chemotherapy induced phenotypic transition. Nat Commun. 2015;11:6139.

    Article  Google Scholar 

  28. Hu X, Ghisolfi L, Keates AC, Zhang J, Xiang S, Lee DK, Li CJ. Induction of cancer cell stemness by chemotherapy. Cell Cycle. 2012;11:2691–8.

    Article  CAS  PubMed  Google Scholar 

  29. Xu Q, Liu G, Yuan X, Xu M, Wang H, Ji J, Konda B, Black KL, Yu JS. Antigen-specific T-cell response from dendritic cell vaccination using cancer stem-like cell-associated antigens. Stem Cells. 2009;27(8):1734–40. https://doi.org/10.1002/stem.102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Alisi A, Cho WC, Locatelli F, Fruci D. Multi drug resistance and cancer stem cells in neuroblastoma and hepatoblastoma. Int J Mol Sci. 2013;14(12):24706–25. https://doi.org/10.3390/ijms141224706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Doherty MR, Smigiel JM, Junk DJ, Jackson MW. Cancer stem cell plasticity drives therapeutic resistance. Cancers (Basel). 2016;8(1):pii: E8. https://doi.org/10.3390/cancers8010008.

    Article  CAS  Google Scholar 

  32. Safa AR. Resistance to cell death and its modulation in cancer stem cells. Crit Rev Oncog. 2016;21(3–4):203–19. https://doi.org/10.1615/CritRevOncog.2016016976.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Salaroglio IC, Panada E, Moiso E, et al. PERK induces resistance to cell death elicited by endoplasmic reticulum stress and chemotherapy. Mol Cancer. 2017;16:91. https://doi.org/10.1186/s12943-017-0657-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shafiei-Irannejad V, Samadi N, Yousefi B, Salehi R, Velaei K, Zarghami N. Metformin enhances doxorubicin sensitivity via inhibition of doxorubicin efflux in P-gp-overexpressing MCF-7 cells. Chem Biol Drug Des. 2018;91(1):269–76. https://doi.org/10.1111/cbdd.13078.

    Article  CAS  PubMed  Google Scholar 

  35. Hu Y, Lu L, Xia Y, Chen X, Chang AE, Hollingsworth RE, Hurt E, Owen J, Moyer JS, Prince ME, Dai F, Bao Y, Wang Y, Whitfield J, Xia JC, Huang S, Wicha MS, Li Q. Therapeutic efficacy of cancer stem cell vaccines in the adjuvant setting. Cancer Res. 2016;76(16):4661–72. https://doi.org/10.1158/0008-5472.CAN-15-2664Epub 2016 Jun 20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gerl R, Vaux DL. Apoptosis in the development and treatment of cancer. Carcinogenesis. 2005;26(2):263–70.

    Article  CAS  PubMed  Google Scholar 

  37. Jiang T, Chen X, Zhou W, Fan G, Zhao P, Ren S, Zhou C, Zhang J. Immunotherapy with dendritic cells modified with tumor-associated antigen gene demonstrates enhanced antitumor effect against lung cancer. Transl Oncol. 2017;10(2):132–41. https://doi.org/10.1016/j.tranon.2016.12.002Epub 2017 Jan 25.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lu L, Tao H, Chang AE, Hu Y, Shu G, et al. Cancer stem cell vaccine inhibits metastases of primary tumors and induces humoral immune responses against cancer stem cells. Oncoimmunology. 2015;4:e990767.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Xie X, Teknos TN, Pan Q. Are all cancer stem cells created equal? Stem Cells Transl Med. 2014;3(10):1111–5. https://doi.org/10.5966/sctm.2014-0085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tagliamonte M, Petrizzo A, Napolitano M, Luciano A, Rea D, Barbieri A, Arra C, Maiolino P, Tornesello M, Ciliberto G, Buonaguro FM, Buonaguro L. A novel multidrug metronomic chemotherapy significantly delays tumor growth in mice. J Transl Med. 2016;14:58. https://doi.org/10.1186/s12967-016-0812-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ehrke MJ. Immunomodulation in cancer therapeutics. Int Immunopharmacol. 2003;3:1105–19.

    Article  CAS  PubMed  Google Scholar 

  42. Mihich E. Anticancer drug-induced immunomodulation and cancer therapeutics. Curr Cancer Ther Rev. 2007;3:174–93.

    Article  CAS  Google Scholar 

  43. Menard C, Martin F, Apetoh L, Bouyer F, Ghiringhelli F. Cancer chemotherapy: not only a direct cytotoxic effect, but also an adjuvant for antitumor immunity. Cancer Immunol Immunother. 2008;57:1579–87.

    Article  CAS  PubMed  Google Scholar 

  44. Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G. Immunological aspects of cancer chemotherapy. Nat Rev Immunol. 2008;8:59–73.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang T, Herlyn D. Combination of active specific immunotherapy or adoptive antibody or lymphocyte immunotherapy with chemotherapy in the treatment of cancer. Cancer Immunol Immunother CII. 2009;58(4):475–92. https://doi.org/10.1007/s00262-008-0598-y.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Noha El-Anwar, Lecturer of Pathology, Faculty of Medicine, Tanta University, Egypt for her assistance in the histopathological examination of the tumor sections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Ibrahim.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Informed consent

For this type of study, formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Ashmawy, N.E., Salem, M.L., Khedr, E.G. et al. Dual-targeted therapeutic strategy combining CSC–DC-based vaccine and cisplatin overcomes chemo-resistance in experimental mice model. Clin Transl Oncol 22, 1155–1165 (2020). https://doi.org/10.1007/s12094-019-02242-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s12094-019-02242-4

Keywords