Skip to main content
Log in

Targeting Two Antigens Associated with B-ALL with CD19-CD123 Compound Car T Cell Therapy

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The recent FDA approval of the first CAR immunotherapy marks a watershed moment in the advancement toward a cure for cancer. CD19 CAR treatment for B cell acute lymphocytic leukemia has achieved unprecedented remission rates. However, despite success in treating previously relapsed and refractory patients, CD19 CAR faces similar challenges as traditional chemotherapy, in that malignancy can adapt and overcome treatment. The emergence of both antigen positive and negative blasts after CAR treatment represents a need to bolster current CAR approaches. Here, we report on the anti-tumor activity of a CAR T cell possessing 2 discrete scFv domains against the leukemic antigens CD19 and CD123. We determined that the resulting compound CAR (cCAR) T cell possesses consistent, potent, and directed cytotoxicity against each target antigen population both in vitro and in vivo. Our findings indicate that targeting CD19 and CD123 on B-ALL cells may be an effective strategy for augmenting the response against leukemic blasts and reducing rates of relapse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cobaleda, C., & Sánchez-García, I. (2009). B-cell acute lymphoblastic leukaemia: Towards understanding its cellular origin. BioEssays., 31(6), 600–609.

    Article  Google Scholar 

  2. Typical Treatment of Acute Lymphocytic Leukemia: American Cancer Society; 2016 [Available from: https://www.cancer.org/cancer/acute-lymphocytic-leukemia/treating/typical-treatment.html.

  3. Gaynon, P. S., Angiolillo, A. L., Carroll, W. L., Nachman, J. B., Trigg, M. E., Sather, H. N., et al. (2010). Long term results of the Children’s Cancer group studies for childhood acute lymphoblastic leukemia 1983–2002: a Children’s oncology group report. Leukemia., 24(2), 285–297.

    Article  CAS  Google Scholar 

  4. Oriol, A., Vives, S., Hernández-Rivas, J.-M., Tormo, M., Heras, I., Rivas, C., Bethencourt, C., Moscardó, F., Bueno, J., Grande, C., del Potro, E., Guardia, R., Brunet, S., Bergua, J., Bernal, T., Moreno, M. J., Calvo, C., Bastida, P., Feliu, E., Ribera, J. M., & Programa Español de Tratamiento en Hematologia Group. (2010). Outcome after relapse of acute lymphoblastic leukemia in adult patients included in four consecutive risk-adapted trials by the PETHEMA study group. Haematologica., 95(4), 589–596.

    Article  Google Scholar 

  5. Maude, S. L., Frey, N., Shaw, P. A., Aplenc, R., Barrett, D. M., Bunin, N. J., et al. (2014). Chimeric antigen receptor T cells for sustained remissions in leukemia. The New England Journal of Medicine, 371(16), 1507–1517.

    Article  Google Scholar 

  6. Ruella, M., & Kenderian, S. S. (2017). Next-generation chimeric antigen receptor T cell therapy: going off the shelf. BioDrugs., 31(6), 473–481.

    Article  CAS  Google Scholar 

  7. Gardner, R. A., Finney, O., Annesley, C., Brakke, H., Summers, C., Leger, K., Bleakley, M., Brown, C., Mgebroff, S., Kelly-Spratt, K. S., Hoglund, V., Lindgren, C., Oron, A. P., Li, D., Riddell, S. R., Park, J. R., & Jensen, M. C. (2017). Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood., 129(25), 3322–3331.

    Article  CAS  Google Scholar 

  8. Ruella, M., & Maus, M. V. (2016). Catch me if you can: leukemia escape after CD19-directed T cell immunotherapies. Computational and Structural Biotechnology Journal, 14, 357–362.

    Article  CAS  Google Scholar 

  9. Hassanein, N. M., Alcancia, F., Perkinson, K. R., Buckley, P. J., & Lagoo, A. S. (2009). Distinct expression patterns of CD123 and CD34 on normal bone marrow B-cell precursors (“hematogones”) and B lymphoblastic leukemia blasts. American Journal of Clinical Pathology, 132(4), 573–580.

    Article  Google Scholar 

  10. Testa, U., Pelosi, E., & Frankel, A. (2014). CD 123 is a membrane biomarker and a therapeutic target in hematologic malignancies. Biomarker Research, 2(1), 4.

    Article  Google Scholar 

  11. Ruella, M., Barrett, D. M., Kenderian, S. S., Shestova, O., Hofmann, T. J., Perazzelli, J., Klichinsky, M., Aikawa, V., Nazimuddin, F., Kozlowski, M., Scholler, J., Lacey, S. F., Melenhorst, J. J., Morrissette, J. J., Christian, D. A., Hunter, C. A., Kalos, M., Porter, D. L., June, C. H., Grupp, S. A., & Gill, S. (2016). Dual CD19 and CD123 targeting prevents antigen-loss relapses after CD19-directed immunotherapies. The Journal of Clinical Investigation, 126(10), 3814–3826.

    Article  Google Scholar 

  12. Pinz, K., Liu, H., Golightly, M., Jares, A., Lan, F., Zieve, G., et al. (2015). Preclinical targeting of human T cell malignancies using CD4-specific chimeric antigen receptor (CAR)-engineered T cells. Leukemia.

  13. Chen, K. H., Wada, M., Pinz, K. G., Liu, H., Shuai, X., Chen, X., Yan, L. E., Petrov, J. C., Salman, H., Senzel, L., Leung, E. L. H., Jiang, X., & Ma, Y. (2018). A compound chimeric antigen receptor strategy for targeting multiple myeloma. Leukemia., 32(2), 402–412. https://doi.org/10.1038/leu.2017.302.

    Article  CAS  PubMed  Google Scholar 

  14. Jacoby, E., Nguyen, S. M., Fountaine, T. J., Welp, K., Gryder, B., Qin, H., et al. (2016). CD19 CAR immune pressure induces B-precursor acute lymphoblastic leukaemia lineage switch exposing inherent leukaemic plasticity. Nature Communications, 7, 12320.

    Article  CAS  Google Scholar 

  15. Zoghbi, A., zur Stadt, U., Winkler, B., Müller, I., & Escherich, G. (2017). Lineage switch under blinatumomab treatment of relapsed common acute lymphoblastic leukemia without MLL rearrangement. Pediatric Blood & Cancer, e26594.

  16. Naddafi, F., & Davami, F. (2015). Anti-CD19 monoclonal antibodies: a new approach to lymphoma therapy. International Journal of Molecular and Cellular Medicine, 4(3), 143–151.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Mamonkin, M., da Silva, D. G., Mukherjee, M., Sharma, S., Srinivasan, M., Orange, J. S., et al. (2016). Tonic 4-1BB signaling from chimeric antigen receptors (CARs) impairs expansion of T cells due to Fas-mediated apoptosis. The Journal of Immunology, 196(1 Supplement), 143.7.

    Google Scholar 

  18. Zah, E., Lin, M.-Y., Silva-Benedict, A., Jensen, M. C., & Chen, Y. Y. (2016). T cells expressing CD19/CD20 bi-specific chimeric antigen receptors prevent antigen escape by malignant B cells. Cancer Immunology Research., 4(6), 498–508.

    Article  CAS  Google Scholar 

  19. Tasian, S. K., Kenderian, S. S., Shen, F., Ruella, M., Shestova, O., Kozlowski, M., Li, Y., Schrank-Hacker, A., Morrissette, J. J. D., Carroll, M., June, C. H., Grupp, S. A., & Gill, S. (2017). Optimized depletion of chimeric antigen receptor T cells in murine xenograft models of human acute myeloid leukemia. Blood., 129(17), 2395–2407.

    Article  CAS  Google Scholar 

  20. Beldjord, K., Chevret, S., Asnafi, V., Huguet, F., Boulland, M. L., Leguay, T., et al. (2014). Oncogenetics and minimal residual disease are independent outcome predictors in adult patients with acute lymphoblastic leukemia. Blood., 123(24), 3739–3749.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongyu Zhang, Yupo Ma or William Tse.

Ethics declarations

Conflict of Interest

KGP, MW and YM are co-inventors of this technology and hold the patents related to the contents of this manuscript. YM is founder and Chairman of iCell Gene Therapeutics.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 16694 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, L.E., Zhang, H., Wada, M. et al. Targeting Two Antigens Associated with B-ALL with CD19-CD123 Compound Car T Cell Therapy. Stem Cell Rev and Rep 16, 385–396 (2020). https://doi.org/10.1007/s12015-019-09948-6

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s12015-019-09948-6

Keywords