Skip to main content
Log in

mTOR-Rictor-EGFR axis in oncogenesis and diagnosis of glioblastoma multiforme

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Glioblastoma multiforme (GBM) is one of the aggressive brain cancers with patients having less survival period upto 12–15 months. Mammalian target of rapamycin (mTOR) is a serine/threonine kinase, belongs to the phosphatidylinositol 3-kinases (PI3K) pathway and is involved in various cellular processes of cancer cells. Cancer metabolism is regulated by mTOR and its components. mTOR forms two complexes as mTORC1 and mTORC2. Studies have identified the key component of the mTORC2 complex, Rapamycin-insensitive companion of mammalian target of rapamycin (Rictor) plays a prominent role in the regulation of cancer cell proliferation and metabolism. Apart, growth factor receptor signaling such as epidermal growth factor signaling mediated by epidermal growth factor receptor (EGFR) regulates cancer-related processes. In EGFR signaling various other signaling cascades such as phosphatidyl-inositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR pathway) and Ras/Raf/mitogen-activated protein kinase/ERK kinase (MEK)/extracellular-signal-regulated kinase (ERK) -dependent signaling cross-talk each other. From various studies about GBM, it is very well established that Rictor and EGFR mediated signaling pathways majorly playing a pivotal role in chemoresistance and tumor aggressiveness. Recent studies have shown that non-coding RNAs such as microRNAs (miRs) and long non-coding RNAs (lncRNAs) regulate the EGFR and Rictor and sensitize the cells towards chemotherapeutic agents. Thus, understanding of microRNA mediated regulation of EGFR and Rictor will help in cancer prevention and management as well as a future therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Masui K, Tanaka K, Ikegami S, Villa GR, Yang H et al (2015) Glucose-dependent acetylation of RICTOR promotes targeted cancer therapy resistance. Proc Natl Acad Sci 112(30):9406–9411

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Kim J, Guan KL (2019) mTOR as a central hub of nutrient signalling and cell growth. Nat Cell Biol 21:63–71

    CAS  PubMed  Google Scholar 

  3. Holmes B, Benavides-Serrato A, Freeman RS, Landon KA, Bashir T, Nishimura RN, Gera J (2018) mTORC2/AKT/HSF1/HuR constitute a feed-forward loop regulating Rictor expression and tumor growth in glioblastoma. Oncogene 37(6):732–743

    CAS  PubMed  Google Scholar 

  4. Laugier F, Finet-Benyair A, André J, Rachakonda PS, Kumar R, Bensussan A, Dumaz N (2015) RICTOR involvement in the PI3K/AKT pathway regulation in melanocytes and melanoma. Oncotarget 6(29):28120–28131

    PubMed  PubMed Central  Google Scholar 

  5. Chou SD, Murshid A, Eguchi T, Gong J, Calderwood SK (2015) HSF1 regulation of beta-catenin in mammary cancer cells through control of HuR/elavL1 expression. Oncogene 34:2178–2188

    CAS  PubMed  Google Scholar 

  6. Masri J, Bernath A, Martin J, Jo OD, Vartanian R, Funk A, Gera J (2007) mTORC2 activity is elevated in gliomas and promotes growth and cell motility via overexpression of rictor. Cancer Res 67(24):11712–11720

    CAS  PubMed  Google Scholar 

  7. Masui K, Tanaka K, Akhavan D, Babic I, Gini B, Matsutani T, Iwanami A, Liu F, Villa GR, Gu Y, Campos C (2013) mTOR complex 2 controls glycolytic metabolism in glioblastoma through FoxO acetylation and upregulation of c-Myc. Cell Metab 18(5):726–739

    CAS  PubMed  Google Scholar 

  8. Tanaka K, Babic I, Nathanson D, Akhavan D, Guo D, Gini B et al (2011) Oncogenic EGFR signaling activates an mTORC2–NF-κB pathway that promotes chemotherapy resistance. Cancer Disc 1(6):524–538

    CAS  Google Scholar 

  9. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149(2):274–293

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Guertin DA, Sabatini DM (2005) An expanding role for mTOR in cancer. Trends Mol Med 11:353–361

    CAS  PubMed  Google Scholar 

  11. Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14(14):1296–1302

    CAS  PubMed  Google Scholar 

  12. Easton JB, Houghton PJ (2004) Therapeutic potential of target of rapamycin inhibitors. Exp Opin Ther Targets 8:551–564

    CAS  Google Scholar 

  13. Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mo Cell Biol 12(1):21–35

    CAS  Google Scholar 

  14. Tatebe H, Murayama S, Yonekura T, Hatano T, Richter D, Furuya T et al (2017) Substrate specificity of TOR complex 2 is determined by a ubiquitin-fold domain of the Sin1 subunit. Elife 6:e19594

    PubMed  PubMed Central  Google Scholar 

  15. Cloughesy TF, Cavenee WK, Mischel PS (2014) Glioblastoma: from molecular pathology to targeted treatment. Ann Rev Pathol: Mechanisms of Disease 9:1–25

    CAS  Google Scholar 

  16. Kim E, Goraksha-Hicks P, Li L, Neufeld TP, Guan KL (2008) Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol 10(8):935–945

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Inoki K, Li Y, Zhu T, Wu J, Guan KL (2002) TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4(9):648–657

    CAS  PubMed  Google Scholar 

  18. Zinzalla V, Stracka D, Oppliger W, Hall MN (2011) Activation of mTORC2 by association with the ribosome. Cell 144(5):757–768

    CAS  PubMed  Google Scholar 

  19. Esen E, Chen J, Karner CM, Okunade AL, Patterson BW, Long F (2013) WNT-LRP5 signaling induces Warburg effect through mTORC2 activation during osteoblast differentiation. Cell Metab 17(5):745–755

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Julien LA, Carriere A, Moreau J, Roux PP (2010) mTORC1-activated S6K1 phosphorylates Rictor on threonine 1135 and regulates mTORC2 signaling. Mol Cell Biol 30(4):908–921

    CAS  PubMed  Google Scholar 

  21. Liu P, Gan W, Inuzuka H, Lazorchak AS, Gao D, Arojo O et al (2019) Sin1 phosphorylation impairs mTORC2 complex integrity and inhibits downstream Akt signalling to suppress tumorigenesis. Nat Cell Biol 21(5):662–663

    CAS  PubMed  Google Scholar 

  22. Huang M, Zhang D, Wu JY, Xing K, Yeo E, Li C et al (2020) Wnt-mediated endothelial transformation into mesenchymal stem cell–like cells induces chemoresistance in glioblastoma. Sci. Trans. Med. 12(532):eaay7522

    CAS  Google Scholar 

  23. Daniele S, Costa B, Zappelli E, Da Pozzo E et al (2015) Combined inhibition of AKT/mTOR and MDM2 enhances Glioblastoma multiforme cell apoptosis and differentiation of cancer stem cells. Sci Rep 5:9956

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu P, Cheng H, Roberts TM, Zhao JJ (2009) Targeting the phosphoinositide 3-kinase (PI3K) pathway in cancer. Nat Rev Drug Discov 8(8):627–644

    CAS  PubMed  PubMed Central  Google Scholar 

  25. El-Daly SM, Abba ML, Patil N, Allgayer H (2016) MiRs-134 and -370 function as tumor suppressors in colorectal cancer by independently suppressing EGFR and PI3K signalling. Sci Rep 6:24720

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ekstrand AJ, James CD, Cavenee WK, Seliger B, Pettersson RF, Collins VP (1991) Genes for epidermal growth factor receptor, transforming growth factor α, and epidermal growth factor and their expression in human gliomas in vivo. Cancer Res 51(8):2164–2172

    CAS  PubMed  Google Scholar 

  27. Libermann TA, Razon N, Bartal AD, Yarden Y, Schlessinger J, Soreq H (1984) Expression of epidermal growth factor receptors in human brain tumors. Cancer Res 44(2):753–760

    CAS  PubMed  Google Scholar 

  28. Ekstrand AJ, Sugawa N, James CD, Collins VP (1992) Amplified and rearranged epidermal growth factor receptor genes in human glioblastomas reveal deletions of sequences encoding portions of the N-and/or C-terminal tails. Proc Natl Acad Sci 89(10):4309–4313

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Malden LT, Novak U, Kaye AH, Burgess AW (1988) Selective amplification of the cytoplasmic domain of the epidermal growth factor receptor gene in glioblastoma multiforme. Cancer Res 48(10):711–2714

    Google Scholar 

  30. Yamazaki H, Fukui Y, Ueyama Y, Tamaoki N, Kawamoto T, Taniguchi S, Shibuya M (1988) Amplification of the structurally and functionally altered epidermal growth factor receptor gene (c-erbB) in human brain tumors. Mol Cell Biol 8(4):1816–1820

    CAS  PubMed  PubMed Central  Google Scholar 

  31. de Palazzo IEG, Adams GP, Sundareshan P, Wong AJ, Testa JR, Bigner DD, Weiner LM (1993) Expression of mutated epidermal growth factor receptor by non-small cell lung carcinomas. Cancer Res 53(14):3217–3220

    Google Scholar 

  32. Emrich JG, Brady LW, Quang TS, Class R, Miyamoto C, Black P et al (2002) Radioiodinated (I-125) monoclonal antibody 425 in the treatment of high-grade glioma patients: ten-year synopsis of a novel treatment. Am J Clin Oncol 25(6):541–546

    PubMed  Google Scholar 

  33. MoscatelloD K, Holgado-Madruga M, Godwin AK, Ramirez GA, Gunn G et al (1995) Frequent expression of a mutant epidermal growth factor receptor in multiple human tumors. Cancer Res 55(23):5536–5539

    Google Scholar 

  34. Wikstrand CJ, Hale LP, Batra SK, Hill ML et al (1995) Monoclonal antibodies against EGFRvIII are tumor specific and react with breast and lung carcinomas and malignant gliomas. Cancer Res 55(14):3140–3148

    CAS  PubMed  Google Scholar 

  35. Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM et al (2007) Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 21(21):2683–2710

    CAS  PubMed  Google Scholar 

  36. Furnari FB, Cloughesy TF, Cavenee WK, Mischel PS (2015) Heterogeneity of epidermal growth factor receptor signalling networks in glioblastoma. Nat Rev Cancer 15(5):302–310

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Brugger W, Thomas M (2011) EGFR-TKI resistant non-small cell lung cancer (NSCLC): new developments and implications for future treatment. Lung Cancer 77(1):2–8

    Google Scholar 

  38. Hrustanovic G, Lee BJ, Bivona TG (2013) Mechanism of resistance to EGFR targeted therapies. Cancer Biol ther 14(4):304–314

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Hamblett KJ, Kozlosky CJ, Siu S, Chang WS, Liu H et al (2015) AMG 595, an anti-EGFRvIII antibody-drug conjugate, induces potent antitumor activity against EGFRvIII-expressing glioblastoma. Mol Cancer Res 14(7):1614–1624

    CAS  Google Scholar 

  40. Schuster J, Lai RK, Recht LD, Reardon DA, Paleologos NA, Groves MD, Mrugala MM, Jensen R, Baehring JM, Sloan A, Archer GE (2015) A phase II, multicenter trial of rindopepimut (CDX-110) in newly diagnosed glioblastoma: the ACT III study. Neuro-oncol 17(6):54–861

    Google Scholar 

  41. Gedeon P, Choi BD, Sampson JH, Bigner DD (2013) Rindopepimut: anti-EGFRvIII peptide vaccine, oncolytic. Drugs Future 38(3):147–155

    PubMed  PubMed Central  Google Scholar 

  42. Vengoji R, Macha MA, Nimmakayala RK, Rachagani S et al (2019) Afatinib and temozolomide combination inhibits tumorigenesis by targeting EGFRvIII-cMet signaling in glioblastoma cells. J of Exp Clin Cancer Res 38(1):266

    CAS  Google Scholar 

  43. Jun HJ, Acquaviva J, Chi D, Lessard J, Zhu H et al (2012) Acquired MET expression confers resistance to EGFR inhibition in a mouse model of glioblastoma multiforme. Oncogene 31:3039–3050

    CAS  PubMed  Google Scholar 

  44. Day EK, Sosale NG, Xiao A, Zhong Q et al (2020) Glioblastoma cell resistance to EGFR and MET inhibition can be overcome via blockade of FGFR-SPRY2 by pass signaling. Cell Rep 30(10):3383–3396

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Voce DJ, Bernal GM, Wu L, Crawley CD, Zhang W, Mansour NM et al (2019) Temozolomide treatment induces lncRNA MALAT1 in an NF-kB and p53 co-dependent manner in Glioblastoma. Cancer Res 79(10):2536–2548

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang Z, Yin J, Lu C, Wei Y, Zeng A, You Y (2019) Exosomal transfer of long non-coding RNA SBF2-AS1 enhances chem-resistance to temozolomide in glioblastoma. J of Exp Clin Cancer Res 38:166

    Google Scholar 

  47. Pan H, Jiang T, Cheng N, Wang Q, Ren SX, Li X et al (2016) Long non-coding RNA BC087858 induces non-T790M mutation acquired resistance to EGFR-TKIs by activating PI3K/AKT and MEK/ERK pathways and EMT in non-small-cell lung cancer. Oncotarget 7(31):49948–49960

    PubMed  PubMed Central  Google Scholar 

  48. Han J, Zhao F, Zhang J, Zhu H, Ma H et al (2016) MiR-223 reverses the resistance of EGFR-TKIs through IGF1R/PI3K/Akt signaling pathway. Int J Oncol 48:1855–1867

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Migliore C, Morando E, Ghiso E, Anastasi S, Leoni VP et al (2016) MiR-205 mediates adaptive resistance to MET inhibition via ERRFI1 targeting and raised EGFR signaling. EMBO Mol Med e8746:1–12

    Google Scholar 

  50. Li B, Ren SX, Li X, Wang Y, Garfield D et al (2013) MiR-21 overexpression is associated with acquired resistance of EGFR-TKI in non-small cell lung cancer. Lung Cancer 83:146–153

    PubMed  Google Scholar 

  51. Sato H, Shien K, Tomida S, Okayasu K, Suzawa K et al (2017) Targeting the miR-200c/LIN28B axis in acquired EGFR-TKI resistance non-small cell lung cancer cells harboring EMT features. Sci Rep 7:40847

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang N, Li Y, Zheng Y, Zhang L, Pan Y, Yu J, Yang M (2018) MiR-608 and miR-4513 significantly contribute to the prognosis of lung adenocarcinoma treated with EGFR-TKIs. Lab Invest 99:568–576

    PubMed  Google Scholar 

  53. Tonouchi E, Gen Y, Muramatsu T, Hiramoto H, Tanimoto K, Inoue J, Inazawa J (2018) miR-3140 suppresses tumor cell growth by targeting BRD4 via its coding sequence and down-regulates the BRD4-NUT fusion oncoprotein. Sci Rep 8(1):4482

    PubMed  PubMed Central  Google Scholar 

  54. Chen X, Zhu L, Ma Z, Sun G, Luo X et al (2015) Oncogenic miR-9 is a target of erlotinib in NSCLCs. Sci Rep 5:17031

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Verrault M, Weppler SA, Stegeman A, Warburton C, Strutt D, Masin D, Bally MB (2013) Combined RNAi-mediated suppression of Rictor and EGFR resulted in complete tumor regression in an orthotopic glioblastoma tumor model. PLoS ONE 8(3):e59597

    Google Scholar 

  56. Cui Y, Zhao J, Yi L, Jiang Y (2016) microRNA-153 targets mTORC2 component rictor to inhibit glioma cells. PLoS ONE 11(6):e0156915

    PubMed  PubMed Central  Google Scholar 

  57. Rathod SS, Rani SB, Khan M, Muzumdar D, Shiras A (2014) Tumor suppressive miRNA-34a suppresses cell proliferation and tumor growth of glioma stem cells by targeting Akt and Wnt signaling pathways. FEBS Open 4:485–495

    CAS  Google Scholar 

  58. Guan B, Wu K, Zeng J, Xu S, Mu L, Gao Y et al (2016) Tumor-suppressive microRNA-218 inhibits tumor angiogenesis via targeting the mTOR component RICTOR in prostate cancer. Oncotarget Advanced Publication 8(5):8162–8172

    Google Scholar 

  59. Tang R, Yang C, Ma X, Wang Y, Luo D, Huang C, Xu Z, Liu P, Yang L (2016) MiR-let-7a inhibits cell proliferation, migration, and invasion by down-regulating PKM2 in gastric cancer”. Oncotarget 7(5):5972–5984

    PubMed  PubMed Central  Google Scholar 

  60. Fan H, Jiang M, Li B, He Y, Huang C, Luo D, Xu H, Yang L, Zhou J (2017) MicroRNA-let-7a regulates cell autophagy by targeting Rictor in gastric cancer cell lines MGC-803 and SGC-7901”. Oncol Rep 39:1207–1214

    Google Scholar 

  61. Yang X, Han H, De Carvalho DD, Lay FD, Jones PA, Liang G (2014) Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell 26:577–590

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Micevic G, Muthusamy V, Damsky W, Theodosakis N, Liu X, Meeth K, Wingrove E, Krishnan MS, Bosenberg M (2016) DNMT3b modulates melanoma growth by controlling levels of mTORC2 component RICTOR. Cell Rep 14(9):2180–2192

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Chen H, Huang WT, Yang LW, Lin CW (2015) The PTEN-AKT-mTOR/RICTOR pathway in Nasal Natural Killer Cell Lymphoma is activated by miR-494-3p via PTEN but Inhibited by miR-142-3p via RICTOR. The American J pathol 185(5):1487–1499

    CAS  Google Scholar 

  64. Bera A, Das F, Ghosh-Choudhury N, Kasinath BS, Abboud HE, Choudary GG (2014) MicroRNA-21-induced dissociation of PDCD4 from RICTOR contributes to Akt IKKβ-mTORC1 axis to regulate renal cancer cell invasion. Exp Cell Res 328:99–117

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Lv T, Liu Y, Li Z, Huang R, Zhang Z, Li J (2018) MiR-503 is down-regulated in osteosarcoma and suppressed MG63 proliferation and invasion by targeting VEGFA/RICTOR”. Cancer Biomark 23(3):315–322

    CAS  PubMed  Google Scholar 

  66. Zheng G, Jia X, Peng C, Deng Y, Yin J, Zhang Z et al (2015) The miR-491-3p/mTORC2/FOXO1 regulatory loop modulates chemo-sensitivity in human tongue cance. Oncotarget 6(9):6931–6943

    PubMed  PubMed Central  Google Scholar 

  67. Iwaya T, Yokobori T, Nishida N, Kogo R, Sudo T et al (2012) Downregulation of miR-144 is associated with colorectal cancer progression via activation of mTOR signaling pathway. Carcinogenesis 33(12):2391–2397

    CAS  PubMed  Google Scholar 

  68. Venkataraman S, Birks DK, Balakrishnan I, Alimova I, Harris PS, Patel PR et al (2013) MicroRNA 218 acts as a tumor suppressor by targeting multiple cancer phenotype-associated genes in medulloblastoma. J Biol Chem 288(3):1918–1928

    CAS  PubMed  Google Scholar 

  69. Bai T, Liu Y, Li B (2019) LncRNA LOXL1-AS1/miR-let-7a-5p/EGFR-related pathway regulates the doxorubicin resistance of prostate cancer DU-145 cells. IUBMB Life 71(10):1537–1551

    CAS  PubMed  Google Scholar 

  70. Zou L, Chen FR, Xia RP, Wang HW, Xie ZR, Xu Y et al (2020) Long noncoding RNA XIST regulates the EGF receptor to promote TGF-β1-induced epithelial–mesenchymal transition in pancreatic cancer. Biochem Cell Biol 98(2):267–276

    CAS  PubMed  Google Scholar 

  71. Zhang X, Niu W, Mu M, Hu S, Niu C (2020) Long non-coding RNA LPP-AS2 promotes glioma tumorigenesis via miR-7-5p/EGFR/PI3K/AKT/c-MYC feedback loop. J. of Exp. Clin Cancer Res. 39(1):1–20

    CAS  Google Scholar 

  72. Ma G, Zhu J, Liu F, Yang Y (2019) Long noncoding RNA LINC00460 promotes the gefitinib resistance of non-small cell lung cancer through epidermal growth factor receptor by sponging miR-769-5p. DNA Cell Biol 38(2):176–183

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Liu X, Lu X, Zhen F, Jin S, Yu T, Zhu Q et al (2019) LINC00665 induces acquired resistance to gefitinib through recruiting EZH2 and activating PI3K/AKT pathway in NSCLC. Mol Ther Nucleic Acids 16:155–161

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Ku GW, Kang Y, Yu SL, Park J, Park S, Jeong IB et al (2021) LncRNA LINC00240 suppresses invasion and migration in non-small cell lung cancer by sponging miR-7-5p. BMC Cancer 21(1):1–13

    Google Scholar 

  75. Chen Q, Cai J, Wang Q, Wang Y, Liu M, Yang J et al (2018) Long noncoding RNA NEAT1, regulated by the EGFR pathway, contributes to glioblastoma progression through the WNT/β-catenin pathway by scaffolding EZH2. Clin Cancer Res 24(3):684–695

    CAS  PubMed  Google Scholar 

  76. Dong ZQ, Guo ZY, Xie J (2019) The lncRNA EGFR-AS1 is linked to migration, invasion and apoptosis in glioma cells by targeting miR-133b/RACK1. Biomed. Pharmaco ther. 118:109292

    CAS  Google Scholar 

  77. Li JJ, Xie D (2015) RACK1, a versatile hub in cancer. Oncogene 34(15):1890–1898

    CAS  PubMed  Google Scholar 

  78. Hu J, Qian Y, Peng L, Ma L, Qiu T, Liu Y et al (2018) Long noncoding RNA EGFR-AS1 promotes cell proliferation by increasing EGFR mRNA stability in gastric cancer. Cell Physiol Biochem 49(1):322–334

    CAS  PubMed  Google Scholar 

  79. Ouyang T, Zhang Y, Tang S, Wang Y (2019) Long non-coding RNA LINC00052 regulates miR-608/EGFR axis to promote progression of head and neck squamous cell carcinoma. Exp Mol Pathol 111:1021

    Google Scholar 

  80. Lei S, He Z, Chen T, Guo X, Zeng Z, Shen Y et al (2019) Long noncoding RNA 00976 promotes pancreatic cancer progression through OTUD7B by sponging miR-137 involving EGFR/MAPK pathway. J Exp & Clin Cancer Res 38(1):1–15

    Google Scholar 

  81. Tang R, Chen J, Tang M, Liao Z, Zhou L, Jiang J et al (2019) LncRNA SLCO4A1-AS1 predicts poor prognosis and promotes proliferation and metastasis via the EGFR/MAPK pathway in colorectal cancer. Int J Biol Sci 15(13):2885

    PubMed  PubMed Central  Google Scholar 

  82. Cheng N, Cai W, Ren S, Li X, Wang Q, Pan H et al (2015) Long non-coding RNA UCA1 induces non-T790M acquired resistance to EGFR-TKIs by activating the AKT/mTOR pathway in EGFR-mutant non-small cell lung cancer. Oncotarget 6(27):23582

    PubMed  PubMed Central  Google Scholar 

  83. Shi X, Sun M, Liu H, Yao Y, Kong R, Chen F et al (2015) A critical role for the long non-coding RNA GAS5 in proliferation and apoptosis in non-small-cell lung cancer. Mol Carcinogenesis 54(S1):E1–E12

    CAS  Google Scholar 

  84. Dong S, Qu X, Li W, Zhong X, Li P, Yang S et al (2015) The long non-coding RNA, GAS5, enhances gefitinib-induced cell death in innate EGFR tyrosine kinase inhibitor-resistant lung adenocarcinoma cells with wide-type EGFR via downregulation of the IGF-1R expression. J Haematol Oncol 8(1):1–13

    Google Scholar 

  85. Tan DSW, Chong FT, Leong HS, Toh SY, Lau D, Kwang XL, Zhang X, Sundaram GM, Tan GS, Chang MM et al (2017) Long noncoding RNA EGFR-AS1 mediates epidermal growth factor receptor addiction and modulates treatment response in squamous cell carcinoma. Nature Med 23:1167–1175

  86. Sas-Chen A, Aure MR, Leibovich L, Carvalho S, Enuka Y, Körner C et al (2016) LIMT is a novel metastasis inhibiting lncRNA suppressed by EGF and downregulated in aggressive breast cancer. EMBO Mol Med 8(9):1052–1064

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhou J, Wu L, Li W, Xu X, Ju F, Yu S (2020) Long noncoding RNA LINC01485 promotes tumor growth and migration via inhibiting EGFR ubiquitination and activating EGFR/Akt signaling in gastric cancer. OncoTargets Ther 13:8413

    CAS  Google Scholar 

  88. Liu C, Zhang M, Zhao J, Zhu X, Zhu L, Yan M et al (2020) LncRNA FOXD3-AS1 mediates AKT pathway to promote growth and invasion in hepatocellular carcinoma through regulating RICTOR. Cancer Biother Radiopharmaceuticals 35(4):292–300

    CAS  Google Scholar 

  89. Fu Y, Yin Y, Peng S, Yang G, Yu Y, Guo C et al (2019) Small nucleolar RNA host gene 1 promotes development and progression of colorectal cancer through negative regulation of miR-137. Mol Carcinogenesis 58(11):2104–2117

    CAS  Google Scholar 

  90. Li Y, He ZC, Liu Q, Zhou K, Shi Y, Yao XH (2018) Large intergenic non-coding RNA-RoR inhibits aerobic glycolysis of glioblastoma cells via Akt pathway. J Cancer 9(5):880

    PubMed  PubMed Central  Google Scholar 

  91. Weiler M, Blaes J, Pusch S, Sahm F, Czabanka M, Luger S et al (2014) mTOR target NDRG1 confers MGMT-dependent resistance to alkylating chemotherapy. Proc Natl Acad Sci 111(1):409–414

    CAS  PubMed  Google Scholar 

  92. Glidden EJ, Gray LG, Vemuru S, Li D, Harris TE, Mayo MW (2012) Multiple site acetylation of Rictor stimulates mammalian target of rapamycin complex 2 (mTORC2)-dependent phosphorylation of Akt protein. J Biol Chem 287(1):581–588

    CAS  PubMed  Google Scholar 

  93. Comerford SA, Huang Z, Du X, Wang Y, Cai L (2014) Acetate dependence of tumors. Cell 159(7):1591–1602

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Narita T, Weinert BT, Choudhary C (2019) Functions and mechanisms of non-histone protein acetylation. Nat Rev Mol Cell Biol 20:156–174

    CAS  PubMed  Google Scholar 

  95. Goldberg RP, Brunengraber H (1980) Contributions of cytosolic and mitochondrial acetyl-COA synthesis to the activation of lipogenic acetate in rat liver. Adv Exp Med Biol 132:413–418

    CAS  PubMed  Google Scholar 

  96. Fujino T, Kondo J, Ishikawa M, Morikawa K, Yamamoto TT (2001) Acetyl-COA synthetase 2, a mitochondrial matrix enzyme involved in the oxidation of acetate. J Biol Chem 276:11420–11426

    CAS  PubMed  Google Scholar 

  97. Prokesch A, Pelzmann HJ, Pessentheiner AR, Huber K, Madreiter-Sokolowski CT et al (2016) N-acetylaspartate catabolism determines cytosolic acetyl-CoA levels and histone acetylation in brown adipocytes. Sci Rep 6:23723

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Roscoe RB, Elliott C, Zarros A, Baillie GS (2016) Non-genetic therapeutic approaches to Canavan disease. J of Neurol Sci 366:116–124

    CAS  Google Scholar 

  99. Downward J, Parker P, Waterfield MD (1984) Autophosphorylation sites on the epidermal growth factor receptor. Nature 311(5985):483–485

    CAS  PubMed  Google Scholar 

  100. Purvis J, Ilango V, Radhakrishnan R (2008) Role of network branching in eliciting differential short-term signaling responses in the hypersensitive epidermal growth factor receptor mutants implicated in lung cancer. Biotechnol Prog 24(3):540–553

    PubMed  PubMed Central  Google Scholar 

  101. Regad T (2015) Targeting RTK signaling pathways in cancer. Cancers 7(3):1758–1784

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Yarden Y (2001) The EGFR family and its ligands in human cancer: signalling mechanisms and therapeutic opportunities. Eur J Cancer 37:3–8

    Google Scholar 

  103. Chattopadhyay A, Vecchi M, Ji QS, Mernaugh R, Carpenter G (1999) The role of individual SH2 domains in mediating association of phospholipase C-γ1 with the activated EGF receptor. J Biol Chem 274(37):26091–26097

    CAS  PubMed  Google Scholar 

  104. Sturla LM, Amorino G, Alexander MS, Mikkelsen RB, Valerie K, Schmidt-Ullrichr RK (2005) Requirement of Tyr-992 and Tyr-1173 in phosphorylation of the epidermal growth factor receptor by ionizing radiation and modulation by SHP2. J Biol Chem 280(15):14597–14604

    CAS  PubMed  Google Scholar 

  105. Benavides-Serrato A, Lee J, Holmes B, Landon KA, Bashir T, Jung ME, Lichtenstein A, Gera J (2017) Specific blockade of Rictor-mTOR association inhibits mTORC2 activity and is cytotoxic in glioblastoma. PLoS One 12(4):e0176599

    PubMed  PubMed Central  Google Scholar 

  106. Kharbanda A, Walter DM, Gudiel AA, Schek N, Feldser DM, Witze ES (2020) Blocking EGFR palmitoylation suppresses PI3K signaling and mutant KRAS lung tumorigenesis. Sci Signal 13(621):eaax2364. https://doi.org/10.1126/scisignal.aax2364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Mattoon DR, Lamothe B, Lax I, Schlessinger J (2004) The docking protein Gab1 is the primary mediator of EGF-stimulated activation of the PI-3K/Akt cell survival pathway. BMC Biol 2(1):1–12

    Google Scholar 

  108. Castellano E, Sheridan C, Thin MZ, Nye E, Spencer-Dene B, Diefenbacher ME (2013) Requirement for interaction of PI3-kinase p110α with RAS in lung tumor maintenance. Cancer Cell 24(5):617–630

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Aicart-Ramos C, Valero RA, Rodriguez-Crespo I (2011) Protein palmitoylation and subcellular trafficking. Biochim Biophys Acta 1808(12):2981–2994

    CAS  PubMed  Google Scholar 

  110. Conibear E, Davis NG (2010) Palmitoylation and depalmitoylation dynamics at a glance. J Cell Sci 123(23):4007–4010

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Fan QW, Cheng C, Knight ZA, Haas-Kogan D, Stokoe D, James CD (2009) EGFR signals to mTOR through PKC and independently of Akt in glioma. Sci Signal 2(55):ra4

    PubMed  PubMed Central  Google Scholar 

  112. Fan QW, Weiss WA (2010) Targeting the RTK-PI3K-mTOR axis in malignant glioma: overcoming resistance. Curr Top Microbiol Immunol 347:279–296

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Mecca C, Giambanco I, Donato R, Arcuri C (2018) Microglia and aging: the role of the TREM2–DAP12 and CX3CL1-CX3CR1 axes. Int J Mol Sci 19(1):318

    PubMed Central  Google Scholar 

  114. Calabrese B, Halpain S (2005) Essential role for the PKC target MARCKS in maintaining dendritic spine morphology. Neuron 48(1):77–90

    CAS  PubMed  Google Scholar 

  115. Thomanetz V, Angliker N, Cloëtta D, Lustenberger RM, Schweighauser M, Oliveri F et al (2013) Ablation of the mTORC2 component rictor in brain or Purkinje cells affects size and neuron morphology. J Cell Biol 201(2):293–308

    CAS  PubMed  PubMed Central  Google Scholar 

  116. An Z, Aksoy O, Zheng T, Fan QW, Weiss WA (2018) Epidermal growth factor receptor and EGFRvIII in glioblastoma: signaling pathways and targeted therapies. Oncogene 37(12):1561–1575

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Bianco R, Shin I, Ritter CA, Yakes FM, Basso A, Rosen N (2003) Loss of PTEN/MMAC1/TEP in EGF receptor-expressing tumor cells counteracts the antitumor action of EGFR tyrosine kinase inhibitors. Oncogene 22(18):2812–2822

    CAS  PubMed  Google Scholar 

  118. Koul D (2008) PTEN signaling pathways in glioblastoma. Cancer biol & ther 7(9):1321–1325

    CAS  Google Scholar 

  119. Saleem H, Abdul UK, Küçükosmanoglu A, Houweling M, Cornelissen FM, Heiland DH et al (2019) The TICking clock of EGFR therapy resistance in glioblastoma: target independence or target compensation. Drug Resist Updates 43:29–37

    Google Scholar 

  120. Fenton TR, Nathanson D, De Albuquerque CP, Kuga D, Iwanami A, Dang J (2012) Resistance to EGF receptor inhibitors in glioblastoma mediated by phosphorylation of the PTEN tumor suppressor at tyrosine 240. Proc Natl Acad Sci 109(35):14164–14169

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Klempner SJ, Myers AP, Cantley LC (2013) What a tangled web we weave: emerging resistance mechanisms to inhibition of the phosphoinositide 3-kinase pathway. Cancer disc 3(12):1345–1354

    CAS  Google Scholar 

  122. Suzuki Y, Shirai K, Oka K, Mobaraki A, Yoshida Y, Noda SE (2010) Higher pAkt expression predicts a significant worse prognosis in glioblastomas. J Radiation Res 51(3):343–348

    CAS  Google Scholar 

  123. Dangelmaier C, Manne BK, Liverani E, Jin J, Bray P, Kunapuli SP (2014) PDK1 selectively phosphorylates Thr (308) on Akt and contributes to human platelet functional responses. Thromb Haemost 111(3):508

    CAS  PubMed  Google Scholar 

  124. Fan QW, Cheng C, Knight ZA, Haas-Kogan D, Stokoe D, James CD et al (2009) EGFR signals to mTOR through PKC and independently of Akt in glioma. Sci Signaling 2(55):ra4

    Google Scholar 

  125. Ronellenfitsch MW, Luger AL, Steinbach JP (2019) EGFR and mTOR as therapeutic targets in glioblastoma. Oncotarget 10(46):4721

    PubMed  PubMed Central  Google Scholar 

  126. Jebali A, Dumaz N (2018) The role of RICTOR downstream of receptor tyrosine kinase in cancers. Mol Cancer 17(1):1–10

    Google Scholar 

  127. Kolch W, Halasz M, Granovskaya M, Kholodenko BN (2015) The dynamic control of signal transduction networks in cancer cells. Nat Rev Cancer 15(9):515–527

    CAS  PubMed  Google Scholar 

  128. Lo HW (2010) Targeting Ras-RAF-ERK and its interactive pathways as a novel therapy for malignant gliomas. Curr cancer drug targets 10(8):840–848

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Deschênes-Simard X, Kottakis F, Meloche S, Ferbeyre G (2014) ERKs in cancer: friends or foes? Cancer Res 74(2):412–419

    PubMed  Google Scholar 

  130. Katanasaka Y, Kodera Y, Kitamura Y, Morimoto T, Tamura T, Koizumi F (2013) Epidermal growth factor receptor variant type III markedly accelerates angiogenesis and tumor growth via inducing c-myc mediated angiopoietin-like 4 expression in malignant glioma. Mol cancer 12(1):1–12

    Google Scholar 

  131. He K, Qi Q, Chan CB, Xiao G, Liu X, Tucker-Burden C (2013) Blockade of glioma proliferation through allosteric inhibition of JAK2. Sci Signal. 6(283):ra55

    PubMed  PubMed Central  Google Scholar 

  132. Fan QW, Cheng CK, Gustafson WC, Charron E, Zipper P, Wong RA (2013) EGFR phosphorylates tumor-derived EGFRvIII driving STAT3/5 and progression in glioblastoma. Cancer Cell 24(4):438–449

    CAS  PubMed  Google Scholar 

  133. Mellinghoff IK, Wang MY, Vivanco I, Haas-Kogan DA, Zhu S, Dia EQ (2005) Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. New Engl J Med 353(19):2012–2024

    CAS  PubMed  Google Scholar 

  134. Wen PY, Kesari S (2008) Malignant gliomas in adults-reply. New Engl J of Med 359(17):1850–1850

    CAS  Google Scholar 

  135. Wilson TA, Karajannis MA, Harter DH (2014) Glioblastoma multiforme: state of the art and future therapeutics. Surg Neurol Int 5:64

    PubMed  PubMed Central  Google Scholar 

  136. Shinojima N, Tada K, Shiraishi S, Kamiryo T, Kochi M, Nakamura H et al (2003) Prognostic value of epidermal growth factor receptor in patients with glioblastoma multiforme. Cancer Res 63(20):6962–6970

    CAS  PubMed  Google Scholar 

  137. Olson JJ, Barnett D, Yang J, Assietti R, Cotsonis G, James CD (1998) Gene amplification as a prognostic factor in primary brain tumors. Clin Cancer Res 4(1):215–222

    CAS  PubMed  Google Scholar 

  138. Arora A, Scholar EM (2005) Role of tyrosine kinase inhibitors in cancer therapy. J Pharmacol & Exp Ther 315(3):971–979

    CAS  Google Scholar 

  139. Baselga J (2006) Targeting tyrosine kinases in cancer: the second wave. Science 312(5777):1175–1178

    CAS  PubMed  Google Scholar 

  140. Cameron AJ, Procyk KJ, Leitges M, Parker PJ (2008) PKC alpha protein but not kinase activity is critical for glioma cell proliferation and survival. Int J cancer 123(4):769–779

    CAS  PubMed  Google Scholar 

  141. Feldkamp MM, Lau N, Guha A (1997) Signal transduction pathways and their relevance in human astrocytomas. J Neuro Oncol 35(3):223–248

    CAS  Google Scholar 

  142. Steinberg SF (2008) Structural basis of protein kinase C isoform function. Physiol Rev 88(4):1341–1378

    CAS  PubMed  Google Scholar 

  143. Baldwin RM, Barrett GM, Parolin DA, Gillies JK, Paget JA, Lavictoire SJ et al (2010) Coordination of glioblastoma cell motility by PKCι. Mol Cancer 9(1):1–13

    Google Scholar 

  144. Carmo AD, Balça-Silva J, Matias D, Lopes M (2013) PKC signaling in glioblastoma. Cancer Biol & ther 14(4):287–294

    Google Scholar 

  145. Lindsley CW, Brown HA (2012) Phospholipase D as a therapeutic target in brain disorders. Neuro Psycho Pharmacol 37(1):301–302

    CAS  Google Scholar 

  146. Kang DW, Hwang WC, Noh YN, Park KS, Min DS (2020) Phospholipase D1 inhibition sensitizes glioblastoma to temozolomide and suppresses its tumorigenicity. J pathol 252(3):304–316

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Gomez-Cambronero J (2014) Phospholipase D in cell signaling: from a myriad of cell functions to cancer growth and metastasis. J Biol Chem 289(33):22557–22566

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Gomez-Cambronero J (2014) Phosphatidic acid, phospholipase D and tumorigenesis. Adv Biol Regul 54:197–206

    CAS  PubMed  Google Scholar 

  149. Borel M, Cuvillier O, Magne D, Mebarek S, Brizuela L (2020) Increased phospholipase D activity contributes to tumorigenesis in prostate cancer cell models. Mol Cell Biochem 473(1):263–279

    CAS  PubMed  Google Scholar 

  150. Zheng Y, Rodrik V, Toschi A, Shi M, Hui L, Shen Y et al (2006) Phospholipase D couples’ survival and migration signals in stress response of human cancer cells. J Biol Chem 281(23):15862–15868

    CAS  PubMed  Google Scholar 

  151. Diaz-Aragon R, Ramirez-Ricardo J, Cortes-Reynosa P, Simoni-Nieves A, Gomez-Quiroz LE, Salazar EP (2019) Role of phospholipase D in migration and invasion induced by linoleic acid in breast cancer cells. Mol Cell Biochem 457(1):119–132

    CAS  PubMed  Google Scholar 

  152. Rizzo MA, Romero G (2002) Pharmacological importance of phospholipase D and phosphatidic acid in the regulation of the mitogen-activated protein kinase cascade. Pharmacol Ther 94(1–2):35–50

    CAS  PubMed  Google Scholar 

  153. Fang Y, Vilella-Bach M, Bachmann R, Flanigan A, Chen J (2001) Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science 294(5548):942–1945

    Google Scholar 

  154. Ahn BH, Kim SY, Kim EH, Choi KS, Kwon TK, Lee YH et al (2003) Trans-modulation between phospholipase D and c-Src enhances cell proliferation. Mol Cell Biol 23(9):3103–3115

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Bruntz RC, Taylor E, Lindsley CW, Brown HA (2014) Phospholipase D2 mediates survival signaling through direct regulation of Akt in glioblastoma cells. J Biol Chem 289(2):600–616

    CAS  PubMed  Google Scholar 

  156. Freyberg Z, Sweeney D, Siddhanta A, Bourgoin S, Frohman M, Shields D (2001) Intracellular localization of phospholipase D1 in mammalian cells. Mol Biol Cell 12(4):943–955

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Kang DW, Choi KY (2014) Functional regulation of phospholipase D expression in cancer and inflammation. J Biol Chem 289(33):22575–22582

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Liu C, Tu Y, Sun X, Jiang J, Jin X, Bo X (2011) Wnt/beta-Catenin pathway in human glioma: expression pattern and clinical/prognostic correlations. Clin Exp Med 11(2):105–112

    CAS  PubMed  Google Scholar 

  159. Kang DW, Choi CY, Cho YH, Tian H, Di Paolo G, Choi KY et al (2015) Targeting phospholipase D1 attenuates intestinal tumorigenesis by controlling β-catenin signaling in cancer-initiating cells. J Exp Med 212(8):1219–1237

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Kawashima M, Suzuki SO, Doh-Ura K, Iwaki T (2000) α-Synuclein is expressed in a variety of brain tumors showing neuronal differentiation. Acta Neuro pathologica 99(2):154–160

    CAS  Google Scholar 

  161. Fung KM, Rorke LB, Giasson B, Lee VMY, Trojanowski JQ (2003) Expression of α-, β-, and γ-synuclein in glial tumors and medulloblastomas. Acta Neuropathol 106(2):167–175

    CAS  PubMed  Google Scholar 

  162. Kubo SI, Nemani VM, Chalkley RJ, Anthony MD, Hattori N, Mizuno Y et al (2005) A combinatorial code for the interaction of α-synuclein with membranes. J Biol Chem 280(36):31664–31672

    CAS  PubMed  Google Scholar 

  163. Fantini J, Yahi N (2011) Molecular basis for the glycosphingolipid-binding specificity of α-synuclein: key role of tyrosine 39 in membrane insertion. J Mol Biol 408(4):654–669

    CAS  PubMed  Google Scholar 

  164. Duan J, Ying Z, Su Y, Lin F, Deng Y (2017) α-Synuclein binds to cytoplasmic vesicles in U251 glioblastoma cells. Neurosci Lett 642:148–152

    CAS  PubMed  Google Scholar 

  165. Guan H, Yang H, Yang M, Yanagisawa D, Bellier JP, Mori M (2017) Mitochondrial ferritin protects SH-SY5Y cells against H2O2-induced oxidative stress and modulates α-synuclein expression. Exp Neurol 291:51–61

    CAS  PubMed  Google Scholar 

  166. Bruening W, Giasson BI, Klein-Szanto AJ, Lee VMY, Trojanowski JQ, Godwin AK (2000) Synucleins are expressed in the majority of breast and ovarian carcinomas and in preneoplastic lesions of the ovary cancer: Interdisciplinary Int. J Am Cancer Soc 88(9):2154–2163

    CAS  Google Scholar 

  167. Tanji K, Imaizumi T, Yoshida H, Mori F, Yoshimoto M, Satoh K (2001) Expression of α-synuclein in a human glioma cell line and its up-regulation by interleukin-1β. Neuro Rep 12(9):1909–1912

    CAS  Google Scholar 

  168. Mencke P, Hanss Z, Boussaad I, Sugier PE, Elbaz A, Krüger R (2020) Bidirectional relation between Parkinsons disease and glioblastoma multiforme. Front Neurol 11:898

    PubMed  PubMed Central  Google Scholar 

  169. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES (1997) Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science 276(5321):2045–2047

    CAS  PubMed  Google Scholar 

  170. Israeli E, Yakunin E, Zarbiv Y, Hacohen-Solovich A, Kisos H, Loeb V (2011) α-Synuclein expression selectively affects tumorigenesis in mice modeling Parkinson’s disease. PLoS ONE 6(5):e19622

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Ye Q, Wang TF, Peng YF, Xie J, Feng B, Qiu MY (2010) Expression of α-, β-and γ-synuclein in colorectal cancer, and potential clinical significance in progression of the disease. Oncol Rep 23(2):429–436

    CAS  PubMed  Google Scholar 

  172. Ejma M, Madetko N, Brzecka A, Guranski K, Alster P, Misiuk-Hojło M (2020) The Links between Parkinson’s disease and cancer. Biomedicines 8(10):416

    CAS  PubMed Central  Google Scholar 

  173. Wang P, Yuan Y, Lin W, Zhong H, Xu K, Qi X (2019) Roles of sphingosine-1-phosphate signaling in cancer. Cancer cell Int 19(1):1–12

    Google Scholar 

  174. Ponnusamy S, Meyers-Needham M, Senkal CE, Saddoughi SA, Sentelle D, Selvam SP (2010) Sphingolipids and cancer: ceramide and sphingosine-1-phosphate in the regulation of cell death and drug resistance. Future Oncol 6(10):1603–1624

    CAS  PubMed  Google Scholar 

  175. Mora R, Dokic I, Kees T, Hüber CM, Keitel D, Geibig R (2010) Sphingolipid rheostat alterations related to transformation can be exploited for specific induction of lysosomal cell death in murine and human glioma. Glia 58(11):1364–1383

    PubMed  Google Scholar 

  176. Van Brocklyn JR, Jackson CA, Pearl DK, Kotur MS, Snyder PJ, Prior TW (2005) Sphingosine kinase-1 expression correlates with poor survival of patients with glioblastoma multiforme: roles of sphingosine kinase isoforms in growth of glioblastoma cell lines. J Neuropathol Exp Neurol 64(8):695–705

    PubMed  Google Scholar 

  177. Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420(6916):629–635

    CAS  PubMed  Google Scholar 

  178. Radeff-Huang J, Seasholtz TM, Matteo RG, Brown JH (2004) G-protein mediated signaling pathways in lysophospholipid induced cell proliferation and survival. J Cell Biochem 92(5):949–966

    CAS  PubMed  Google Scholar 

  179. Sanchez T, Thangada S, Wu MT, Kontos CD, Wu D, Wu H (2005) PTEN as an effector in the signaling of antimigratory G protein-coupled receptor. Proc Natl Acad Sci 102(12):4312–4317

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Guo D, Hlavin Bell E, Mischel P, Chakravarti A (2014) Targeting SREBP-1-driven lipid metabolism to treat cancer. Curr pharmaceutical design 20(15):2619–2626

    CAS  Google Scholar 

  181. Horton JD, Goldstein JL, Brown MS (2002) SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. The J Clinical invest 109(9):1125–1131

    CAS  Google Scholar 

  182. Williams KJ, Argus JP, Zhu Y, Wilks MQ, Marbois BN, York AG et al (2013) An essential requirement for the SCAP/SREBP signaling axis to protect cancer cells from lipotoxicity. Cancer Res 73(9):2850–2862

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Kamisuki S, Mao Q, Abu-Elheiga L, Gu Z, Kugimiya A, Kwon Y (2009) A small molecule that blocks fat synthesis by inhibiting the activation of SREBP. Chem Biol 16(8):882–892

    CAS  PubMed  Google Scholar 

  184. Guo D, Prins RM, Dang J, Kuga D, Iwanami A, Soto H (2009) EGFR signaling through an Akt-SREBP-1–dependent, rapamycin-resistant pathway sensitizes glioblastomas to antilipogenic therapy. Sci Signal 2(101):82

    Google Scholar 

  185. Wilentz RE, Witters LA, Pizer ES (2000) Lipogenic enzymes fatty acid synthase and acetyl-coenzyme A carboxylase are coexpressed with sterol regulatory element binding protein and Ki-67 in fetal tissues. Pediatric Dev Pathol 3(6):525–531

    CAS  Google Scholar 

  186. Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327(5961):46–50

    CAS  PubMed  Google Scholar 

  187. Srivastava NK, Pradhan S, Mittal B, Gowda GN (2010) High resolution NMR based analysis of serum lipids in Duchenne muscular dystrophy patients and its possible diagnostic significance. NMR Biomed Int J Devoted Dev Application Magnetic Resonance In vivo 23(1):13–22

    CAS  Google Scholar 

  188. Tosi MR, Tugnoli V (2005) Cholesteryl esters in malignancy. Clin Chim Acta 359(1–2):27–45

    CAS  PubMed  Google Scholar 

  189. Guo D, Bell EH, Chakravarti A (2013) Lipid metabolism emerges as a promising target for malignant glioma therapy. CNS oncology 2(3):289–299

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Chuu CP, Hiipakka RA, Kokontis JM, Fukuchi J, Chen RY, Liao S (2006) Inhibition of tumor growth and progression of LNCaP prostate cancer cells in athymic mice by androgen and liver X receptor agonist. Cancer Res 66(13):6482–6486

    CAS  PubMed  Google Scholar 

  191. Zelcer N, Hong C, Boyadjian R, Tontonoz P (2009) LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor. Science 325(5936):100–104

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Hong C, Tontonoz P (2014) Liver X receptors in lipid metabolism: opportunities for drug discovery. Nat Rev Drug discovery 13(6):433–444

    CAS  PubMed  Google Scholar 

  193. Gabitova L, Gorin A, Astsaturov I (2014) Molecular pathways: sterols and receptor signaling in cancer. Clinical Cancer Res 20(1):28–34

    CAS  Google Scholar 

  194. Guo D, Reinitz F, Youssef M, Hong C, Nathanson D, Akhavan D (2011) An LXR agonist promotes glioblastoma cell death through inhibition of an EGFR/AKT/SREBP-1/LDLR–dependent pathway. Cancer Disc 1(5):442–456

    CAS  Google Scholar 

  195. Cheng C, Geng F, Cheng X, Guo D (2018) Lipid metabolism reprogramming and its potential targets in cancer. Cancer Commun 38(1):1–14

    CAS  Google Scholar 

  196. Jacobo-Albavera L, Domínguez-Pérez M, Medina-Leyte DJ, González-Garrido A, Villarreal-Molina T (2021) The role of the ATP-binding cassette A1 (ABCA1) in human disease. Int J Mol Sci 22(4):1593

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Weinberg SE, Chandel NS (2015) Targeting mitochondria metabolism for cancer therapy. Nat Chem Biol 11(1):9

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Iranmanesh Y, Jiang B, Favour OC, Dou Z, Wu J, Li J et al (2021) Mitochondria’s role in the maintenance of cancer stem cells in glioblastoma. Front Oncol 11:101

    Google Scholar 

  199. Peiris-Pagès M, Martinez-Outschoorn UE, Pestell RG, Sotgia F, Lisanti MP (2016) Cancer stem cell metabolism. Breast Cancer Res 18(1):1–10

    Google Scholar 

  200. Humeau J, Bravo-San Pedro JM, Vitale I, Nuñez L, Villalobos C, Kroemer G et al (2018) Calcium signaling and cell cycle: progression or death. Cell Calcium 70:3–15

    CAS  PubMed  Google Scholar 

  201. Garofano L, Migliozzi S, Oh YT, D’Angelo F, Najac RD, Ko A (2021) Pathway-based classification of glioblastoma uncovers a mitochondrial subtype with therapeutic vulnerabilities. Nat Cancer 2(2):141–156

    PubMed  PubMed Central  Google Scholar 

  202. Attardi G, Schatz G (1988) Biogenesis of mitochondria. Annual Rev Cell Biol 4:289–333

    CAS  Google Scholar 

  203. Krell D, Assoku M, Galloway M, Mulholland P, Tomlinson I, Bardella C (2011) Screen for IDH1, IDH2, IDH3, D2HGDH and L2HGDH mutations in glioblastoma. PLoS ONE 6(5):e19868

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Franceschi S, Corsinovi D, Lessi F, Tantillo E, Aretini P, Menicagli M (2018) Mitochondrial enzyme GLUD2 plays a critical role in glioblastoma progression. E BioMedicine 37:56–67

    Google Scholar 

  205. Meng ZX, Li S, Wang L, Ko HJ, Lee Y, Jung DY et al (2013) Baf60c drives glycolytic metabolism in the muscle and improves systemic glucose homeostasis through Deptor-mediated Akt activation. Nat Med 19(5):640–645

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Shimano H (2001) Sterol regulatory element-binding proteins (SREBPs): transcriptional regulators of lipid synthetic genes. Prog Lipid Res 40(6):439–452

    CAS  PubMed  Google Scholar 

  207. Uyeda K, Repa JJ (2006) Carbohydrate response element binding protein, ChREBP, a transcription factor coupling hepatic glucose utilization and lipid synthesis. Cell Metab 4(2):107–110

    CAS  PubMed  Google Scholar 

  208. Tang Y, Wallace M, Sanchez-Gurmaches J, Hsiao WY, Li H, Lee PL (2016) Adipose tissue mTORC2 regulates ChREBP-driven de novo lipogenesis and hepatic glucose metabolism. Nature Commun 7(1):1–14

    Google Scholar 

  209. Steidl E, Pilatus U, Hattingen E, Steinbach JP, Zanella F, Ronellenfitsch MW et al (2016) Myoinositol as a biomarker in recurrent glioblastoma treated with bevacizumab: A 1H-magnetic resonance spectroscopy study. PLoS ONE 11(12):e0168113

    PubMed  PubMed Central  Google Scholar 

  210. Maehama T, Dixon JE (1998) The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3, 4, 5-trisphosphate. J Biol Chem 273(22):13375–13378

    CAS  PubMed  Google Scholar 

  211. Benjamin DI, Louie SM, Mulvihill MM, Kohnz RA, Li DS, Chan LG (2014) Inositol phosphate recycling regulates glycolytic and lipid metabolism that drives cancer aggressiveness. ACS Chem Biol 9(6):1340–1350

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Areeb Z, Stuart SF, West AJ, Gomez J, Nguyen HP, Paradiso L, Zulkifli A et al (2020) Reduced EGFR and increased miR-221 is associated with increased resistance to temozolomide and radiotherapy in glioblastoma. Scientific Rep 10(1):1–12

    Google Scholar 

  213. Serna E, Lopez-Gines C, Monleon D, Muñoz-Hidalgo L, Callaghan RC, Gil-Benso R et al (2014) Correlation between EGFR amplification and the expression of microRNA-200c in primary glioblastoma multiforme. PLoS ONE 9(7):102927

    Google Scholar 

  214. Yin D, Ogawa S, Kawamata N, Leiter A, Ham M, Li D (2013) miR-34a functions as a tumor suppressor modulating EGFR in glioblastoma multiforme. Oncogene 32(9):1155–1163

    CAS  PubMed  Google Scholar 

  215. Zhang Z, Song X, Tian H, Miao Y, Feng X, Li Y et al (2017) MicroRNA-137 inhibits growth of glioblastoma through EGFR suppression. Am J Translational Res 9(3):1492

    CAS  Google Scholar 

  216. Rao SAM, Arimappamagan A, Pandey P, Santosh V, Hegde AS, Chandramouli BA et al (2013) miR-219-5p inhibits receptor tyrosine kinase pathway by targeting EGFR in glioblastoma. PLoS ONE 8(5):e63164

    PubMed  PubMed Central  Google Scholar 

  217. Ji Y, Sun Q, Zhang J, Hu H (2018) MiR-615 inhibits cell proliferation, migration and invasion by targeting EGFR in human glioblastoma. Biochem Biophys Res Commun 499(3):719–726

    CAS  PubMed  Google Scholar 

  218. Liu Z, Jiang Z, Huang J, Huang S, Li Y, Yu S, Yu S et al (2014) miR-7 inhibits glioblastoma growth by simultaneously interfering with the PI3K/ATK and Raf/MEK/ERK pathways. Int J Oncol 44(5):1571–1580

    CAS  PubMed  Google Scholar 

  219. Alfardus H, McIntyre A, Smith S (2017) MicroRNA regulation of glycolytic metabolism in glioblastoma. BioMed Res Int. https://doi.org/10.1155/2017/9157370

    Article  PubMed  PubMed Central  Google Scholar 

  220. Guan B, Wu K, Zeng J, Xu S, Mu L, Gao Y et al (2017) Tumor-suppressive microRNA-218 inhibits tumor angiogenesis via targeting the mTOR component RICTOR in prostate cancer. Oncotarget 8(5):8162

    PubMed  Google Scholar 

Download references

Funding

This work was supported by SERB, Government of INDIA with Grant Number EMR/2017/001201. I would like to thank SASTRA management for infrastructural support and constant encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Janaki Ramaiah.

Ethics declarations

Conflict of interest

Author declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any one of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11033_2021_6462_MOESM1_ESM.jpg

Supplementary file1—Supplementary Figure 1. Glucose and acetate dependent Rictor activation and GBM cancer cell proliferation. Glucose and acetate metabolism provide acetyl-CoA in GBM cancer cells. The histone acetyl -transferases (HATs) CBP/ p300 and GCNF/PCAF acetylates various lysine residues such as K1107, K1108, K1116, K1119, K1125 on Rictor protein leading to enhanced mTORC2 activity. The increased mTORC2 phosphorylates Akt at Ser 473. IGF-IGFR pathway brings Akt, 3’-phosphoinositide-dependent kinase-1 (PDK1) proteins to the plasma membrane. Here PDK1 phosphorylates Akt at T308 and Rictor driven mTORC2 activity induce phosphorylate Akt Ser-473 in response to IGF-1 stimulation. Thus, the IGF pathway is involved in Akt activation, cell growth, survival, and proliferation. (JPG 160 kb)

11033_2021_6462_MOESM2_ESM.jpg

Supplementary file2—Supplementary Figure 2. The production of acetyl COA and its function at oligodendrocytes. Glucose and acetate are the sources of acetyl COA production. The acetyl COA combine with the oxaloacetate form citrate. The citrate with the help of enzyme citrate lyase will be cleaved into acetate in the mitochondria. The acetyl -COA combine with aspartate to form N-acetyl aspartate (NAA) and will be transported from its place of production (i, e, mitochondria of brain adipocyte) to oligodendrocyte where in NAA will be further utilized for various biological processes. (JPG 60 kb)

11033_2021_6462_MOESM3_ESM.jpg

Supplementary file3—Supplementary Figure 3. Synthesis of N-acetyl aspartate (NAA) and NAAG. In neurons particularly at mitochondria of brain adipocytes, the L-aspartate and acetyl-COA combine and form N-acetyl aspartate (NAA) and transported to oligodendrocytes wherein NAA will be converted back to L-aspartate and acetyl-COA (or) NAA combine with glutamate and form N-acetyl aspartate glutamate (NAAG). From neurons, the NAAG will be transported into extracellular space wherein the action of enzyme carboxypeptidase NAAG will be converted to NAA and glutamate. (JPG 44 kb)

11033_2021_6462_MOESM4_ESM.tif

Supplementary file4—Supplementary Figure 4. PKC protein interconnects EGFR and PI3K/Akt/mTOR pathways. The activated EGFR interconnect with the mTOR pathway Via PKC protein. Thus, the possibility of EGFR regulating the mTOR pathway which involved in cancer cell growth and proliferation. (TIF 666 kb)

11033_2021_6462_MOESM5_ESM.jpg

Supplementary file5—Supplementary Figure 5. mTORC1 and mTORC2 complexes and their role in cancer cell. mTORC1 complex consists of mTOR, mLST8, DEPTOR, RAPTOR, PRAS40, FKBP38. Where as mTORC2 complex comprises of mTOR, mLST8, DEPTOR, RICTOR, mSIN1, Protor1/2. Here mTORC1 mainly participate in protein synthesis, microRNA biogenesis and cell growth. mTORC2 complex participate in cancer cell metabolism, survival and drug-resistance. (JPG 272 kb)

Supplementary file6 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramaiah, M.J., Kumar, K.R. mTOR-Rictor-EGFR axis in oncogenesis and diagnosis of glioblastoma multiforme. Mol Biol Rep 48, 4813–4835 (2021). https://doi.org/10.1007/s11033-021-06462-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1007/s11033-021-06462-2

Keywords

Profiles

  1. M. Janaki Ramaiah