Skip to main content
Log in

Role of epithelial–mesenchymal transition markers in triple-negative breast cancer

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Triple-negative breast cancers (TNBCs) are a heterogeneous group of breast tumours that are often associated with adverse pathological characteristics, poorer clinical outcomes and lack of targeted therapeutic options. Epithelial–mesenchymal transition, which plays a crucial role in tumour development and progression, is characterised by a transition from epithelial to mesenchymal phenotype and loss of proteins involved in maintaining cell junctions. We aimed to correlate protein expression of E-cadherin, Snail2 and transforming growth factor beta (TGF-β) with clinicopathological parameters and survivals of a series of patients with TNBC. The study cohort comprised 767 TNBCs diagnosed at the Department of Pathology, Singapore General Hospital from 1994 to 2012. Immunohistochemistry was performed on sections cut from tissue microarrays using the polymeric method. Staining intensity and percentage of positive tumour cells were evaluated and correlated with clinicopathological findings and clinical outcomes. Loss of E-cadherin expression, Snail2 positivity, cytoplasmic and nuclear expression of TGF-β were observed in 265 (35.2 %), 241 (32.0 %), 272 (36.2 %) and 262 (34.8 %) tumours, respectively. Histological grade significantly correlated with Snail2 positivity (P < 0.001) and loss of membranous E-cadherin expression (P = 0.003). Nuclear expression of TGF-β was inversely correlated with histological grade (P = 0.010). Median follow-up was 73 months, with a maximum of 236 months. Despite a graphical curve for earlier recurrence in patients with tumours harbouring a combinational phenotype of loss of membranous E-cadherin and positive Snail2 expression, there was no statistical significance. Similarly for women with tumours expressing cytoplasmic TGF-β, graphical representation showed poorer metastasis-free survival but without statistical significance. Loss of membranous E-cadherin and positive Snail2 expression are significantly associated with high-grade TNBCs. More work is needed to improve understanding of the role of TGF-β in TNBC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bray F, Ren JS, Masuyer E, Ferlay J (2013) Global estimates of cancer prevalence for 27 sites in the adult population in 2008. Int J Cancer 132:1133–1145

    Article  CAS  PubMed  Google Scholar 

  2. Thike AA, Cheok PY, Jara-Lazaro AR, Tan B, Tan P, Tan PH (2010) Triple-negative breast cancer: clinicopathological characteristics and relationship with basal-like breast cancer. Mod Pathol 23:123–133

    Article  CAS  PubMed  Google Scholar 

  3. Dawood S (2010) Triple-negative breast cancer: epidemiology and management options. Drugs 70:2247–2258

    Article  CAS  PubMed  Google Scholar 

  4. Pal S, Lüchtenborg M, Davies EA, Jack RH (2014) The treatment and survival of patients with triple negative breast cancer in a London population. Springerplus 3:553

    Article  PubMed Central  PubMed  Google Scholar 

  5. Reis-Filho JS, Tutt ANJ (2008) Triple negative tumours: a critical review. Histopathology 52:108–118

    Article  CAS  PubMed  Google Scholar 

  6. Iwase H, Kurebayashi J, Tsuda H, Ohta T, Kurosumi M, Miyamoto K, Yamamoto Y, Iwase T (2010) Clinicopathological analyses of triple negative breast cancer using surveillance data from the registration committee of the japanese breast cancer society. Breast Cancer 17:118–124

    Article  PubMed  Google Scholar 

  7. Liu ZB, Wu J, Ping B, Feng LQ, Di GH, Lu JS, Shen KW, Shen ZZ, Shaol ZM (2009) Basal cytokeratin expression in relation to immunohistochemical and clinical characterization in breast cancer patients with triple negative phenotype. Tumori 95:53–62

    CAS  PubMed  Google Scholar 

  8. Thiery JP, Acloque H, Huang RYJ, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139:871–890

    Article  CAS  PubMed  Google Scholar 

  9. Larue L, Bellacosa A (2005) Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3′ kinase/akt pathways. Oncogene 24:7443–7454

    Article  CAS  PubMed  Google Scholar 

  10. Creighton CJ, Gibbons DL, Kurie JM (2013) The role of epithelial-mesenchymal transition programming in invasion and metastasis: a clinical perspective. Cancer Manag Res 5:187–195

    Article  PubMed Central  PubMed  Google Scholar 

  11. Gall TMH, Frampton AE (2013) Gene of the month: e-cadherin (cdh1). J Clin Pathol 66:928–932

    Article  CAS  PubMed  Google Scholar 

  12. Kashiwagi S, Yashiro M, Takashima T, Nomura S, Noda S, Kawajiri H, Ishikawa T, Wakasa K, Hirakawa K (2010) Significance of e-cadherin expression in triple-negative breast cancer. Br J Cancer 103:249–255

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Tang D, Xu S, Zhang Q, Zhao W (2012) The expression and clinical significance of the androgen receptor and e-cadherin in triple-negative breast cancer. Med Oncol 29:526–533

    Article  CAS  PubMed  Google Scholar 

  14. Savagner P, Yamada KM, Thiery JP (1997) The zinc-finger protein slug causes desmosome dissociation, an initial and necessary step for growth factor-induced epithelial-mesenchymal transition. J Cell Biol 137:1403–1419

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Hajra KM, Chen DYS, Fearon ER (2002) The slug zinc-finger protein represses e-cadherin in breast cancer. Cancer Res 62:1613–1618

    CAS  PubMed  Google Scholar 

  16. Reinhold WC, Reimers MA, Lorenzi P, Ho J, Shankavaram UT, Ziegler MS, Bussey KJ, Nishizuka S, Ikediobi O, Pommier YG, Weinstein JN (2010) Multifactorial regulation of e-cadherin expression: an integrative study. Mol Cancer Ther 9:1–16

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Parvani JG, Taylor MA, Schiemann WP (2011) Noncanonical tgf-β signaling during mammary tumorigenesis. J Mammary Gland Biol Neoplasia 16:127–146

    Article  PubMed Central  PubMed  Google Scholar 

  18. Members of the Guidelines Working Group of the National Coordinating Committee for Breast Pathology (2005) Pathology reporting of breast disease. NHS Cancer Screening Programmes and The Royal College of Pathologists, United Kingdom

    Google Scholar 

  19. Roxanis I (2013) Occurrence and significance of epithelial-mesenchymal transition in breast cancer. J Clin Pathol 66:517–521

    Article  CAS  PubMed  Google Scholar 

  20. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  CAS  PubMed  Google Scholar 

  21. Iqbal J, Chong PY, Tan PH (2013) Breast cancer stem cells: an update. J Clin Pathol 66:485–490

    Article  CAS  PubMed  Google Scholar 

  22. Oon ML, Thike AA, Tan SY, Tan PH (2015) Cancer stem cell and epithelial-mesenchymal transition markers predict worse outcome in metaplastic carcinoma of the breast. Breast Cancer Res Treat 150:31–41

    Article  CAS  PubMed  Google Scholar 

  23. Principe DR, Doll JA, Bauer J, Jung B, Munshi HG, Bartholin L, Pasche B, Lee C, Grippo PJ (2014) Tgf-β: duality of function between tumor prevention and carcinogenesis. J Natl Cancer Inst 106:djt369

    Article  PubMed Central  PubMed  Google Scholar 

  24. Muraoka-Cook RS, Dumont N, Arteaga CL (2005) Dual role of transforming growth factor beta in mammary tumorigenesis and metastatic progression. Clin Cancer Res 11:937s–943s

    CAS  PubMed  Google Scholar 

  25. Gobbi H, Arteaga CL, Jensen RA, Simpson JF, Dupont WD, Olson SJ, Schuyler PA, Plummer WD, Page DL (2000) Loss of expression of transforming growth factor beta type ii receptor correlates with high tumour grade in human breast in situ and invasive carcinomas. Histopathology 36:168–177

    Article  CAS  PubMed  Google Scholar 

  26. Ding X, Park SI, McCauley LK, Wang CY (2013) Signaling between transforming growth factor β (tgf-β) and transcription factor snai2 represses expression of microrna mir-203 to promote epithelial-mesenchymal transition and tumor metastasis. J Biol Chem 288:10241–10253

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Singhai R, Patil VW, Jaiswal SR, Patil SD, Tayade MB, Patil AV (2011) E-cadherin as a diagnostic biomarker in breast cancer. N Am J Med Sci 3:227–233

    Article  PubMed Central  PubMed  Google Scholar 

  28. Qureshi HS, Linden MD, Divine G, Raju UB (2006) E-cadherin status in breast cancer correlates with histologic type but does not correlate with established prognostic parameters. Am J Clin Pathol 125:377–385

    Article  PubMed  Google Scholar 

  29. Schwartz AM, Henson DE, Chen D, Rajamarthandan S (2014) Histologic grade remains a prognostic factor for breast cancer regardless of the number of positive lymph nodes and tumor size: a study of 161 708 cases of breast cancer from the seer program. Arch Pathol Lab Med 138:1048–1052

    Article  PubMed  Google Scholar 

  30. Moustakas A, Heldin P (2014) Tgfβ and matrix-regulated epithelial to mesenchymal transition. Biochim Biophys Acta 1840:2621–2634

    Article  CAS  PubMed  Google Scholar 

  31. Polyak K (2011) Heterogeneity in breast cancer. J Clin Investig 121:3786–3788

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Micalizzi DS, Farabaugh SM, Ford HL (2010) Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia 15:117–134

    Article  PubMed Central  PubMed  Google Scholar 

  33. Aleskandarany MA, Negm OH, Green AR, Ahmed MAH, Nolan CC, Tighe PJ, Ellis IO, Rakha EA (2014) Epithelial mesenchymal transition in early invasive breast cancer: an immunohistochemical and reverse phase protein array study. Breast Cancer Res Treat 145:339–348

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study is part of a research project approved by the SingHealth Centralised Institutional Review Board (CIRB Ref: 2013/664/F) and was funded by the Stratified Medicine Programme Office (Grant No: SMPO201302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puay Hoon Tan.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheung, S.Y., Boey, Y.J.Y., Koh, V.C.Y. et al. Role of epithelial–mesenchymal transition markers in triple-negative breast cancer. Breast Cancer Res Treat 152, 489–498 (2015). https://doi.org/10.1007/s10549-015-3485-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s10549-015-3485-1

Keywords