Skip to main content
Log in

Cancer stem cells in breast cancer and metastasis

  • Review
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

The cancer stem cell theory poses that cancers develop from a subset of malignant cells that possess stem cell characteristics and has been proposed to account for the development of a variety of malignancies, including breast cancer. These cancer stem cells (CSC) possess characteristics of both stem cells and cancer cells, in that they have the properties of self-renewal, asymmetric cell division, resistance to apoptosis, independent growth, tumourigenicity and metastatic potential. A CSC origin for breast cancer can neatly explain both the heterogeneity of breast cancers and the relapse of the tumours after treatment. However, many reports on CSC in the breast are contradictory. There is variation with respect to how breast cancer stem cells should be identified, their characteristics and a possible lack of correlation between clinical outcome and breast cancer stem cell status of a tumour. These combined factors have made breast cancer stem cells a highly contentious issue. In this review, we highlight the progress in the analysis of cancer stem cells, with an emphasis on breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertram JS (2000) The molecular biology of cancer. Mol Asp Med 21(6):167

    Article  CAS  Google Scholar 

  2. Hart IR (2004) Biology of cancer. Oncology 32(3):1

    Google Scholar 

  3. Garcia M, Jemal A, Ward EM, Center MM, Hao Y, Siegel RL, Thun MJ (2007) Global cancer facts and figures 2007. American Cancer Society, Atlanta, GA

    Google Scholar 

  4. Wicha MS, Liu S, Dontu G (2006) Cancer stem cells: an old idea–a paradigm shift. Cancer Res 66(4):1883–1890 discussion 1895-1886

    Article  CAS  PubMed  Google Scholar 

  5. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3(7):730–737

    Article  CAS  PubMed  Google Scholar 

  6. Cobaleda C, Gutierrez-Cianca N, Perez-Losada J, Flores T, Garcia-Sanz R, Gonzalez M, Sanchez-Garcia I (2000) A primitive hematopoietic cell is the target for the leukemic transformation in human Philadelphia-positive acute lymphoblastic leukemia. Blood 95(3):1007

    CAS  PubMed  Google Scholar 

  7. Cox CV, Evely RS, Oakhill A, Pamphilon DH, Goulden NJ, Blair A (2004) Characterization of acute lymphoblastic leukemia progenitor cells. Blood 104(9):2919

    Article  CAS  PubMed  Google Scholar 

  8. Cox CV, Martin HM, Kearns PR, Virgo P, Evely RS, Blair A (2007) Characterization of a progenitor cell population in childhood T-cell acute lymphoblastic leukemia. Blood 109(2):674

    Article  CAS  PubMed  Google Scholar 

  9. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100(7):3983–3988

    Article  CAS  PubMed  Google Scholar 

  10. Vermeulen L, Todaro M, de Sousa Mello F, Sprick MR, Kemper K, Perez Alea M, Richel DJ, Stassi G, Medema JP (2008) Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc Natl Acad Sci USA 105(36):13427–13432

    Article  CAS  PubMed  Google Scholar 

  11. Odoux C, Fohrer H, Hoppo T, Guzik L, Stolz DB, Lewis DW, Gollin SM, Gamblin TC, Geller DA, Lagasse E (2008) A stochastic model for cancer stem cell origin in metastatic colon cancer. Cancer Res 68(17):6932–6941

    Article  CAS  PubMed  Google Scholar 

  12. Todaro M, Alea MP, Di Stefano AB, Cammareri P, Vermeulen L, Iovino F, Tripodo C, Russo A, Gulotta G, Medema JP et al (2007) Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell 1(4):389–402

    Article  CAS  PubMed  Google Scholar 

  13. Chu P, Clanton DJ, Snipas TS, Lee J, Mitchell E, Nguyen ML, Hare E, Peach RJ (2009) Characterization of a subpopulation of colon cancer cells with stem cell-like properties. Int J Cancer 124(6):1312–1321

    Article  CAS  PubMed  Google Scholar 

  14. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63(18):5821–5828

    CAS  PubMed  Google Scholar 

  15. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke M, Simeone DM (2007) Identification of pancreatic cancer stem cells. Cancer Res 67:1030–1037

    Article  CAS  PubMed  Google Scholar 

  16. Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, Bruns CJ, Heeschen C (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1(3):313–323

    Article  CAS  PubMed  Google Scholar 

  17. Patrawala L, Calhoun-Davis T, Schneider-Broussard R, Tang DG (2007) Hierarchical organization of prostate cancer cells in xenograft tumors: the CD44 + alpha2beta1 + cell population is enriched in tumor-initiating cells. Cancer Res 67(14):6796–6805

    Article  CAS  PubMed  Google Scholar 

  18. Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A, Conticello C, Ruco L, Peschle C, De Maria R (2008) Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 15(3):504–514

    Article  CAS  PubMed  Google Scholar 

  19. Ho MM, Ng AV, Lam S, Hung JY (2007) Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res 67(10):4827–4833

    Article  CAS  PubMed  Google Scholar 

  20. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65(23):10946

    Article  CAS  PubMed  Google Scholar 

  21. Bonkhoff H (1996) Role of the basal cells in premalignant changes of the human prostate: a stem cell concept for the development of prostate cancer. Eur Urol 30(2):201–205

    CAS  PubMed  Google Scholar 

  22. Dou J, Pan M, Wen P, Li Y, Tang Q, Chu L, Zhao F, Jiang C, Hu W, Hu K et al (2007) Isolation and identification of cancer stem-like cells from murine melanoma cell lines. Cell Mol Immunol 4(6):467–472

    PubMed  Google Scholar 

  23. Qiang L, Yang Y, Ma YJ, Chen FH, Zhang LB, Liu W, Qi Q, Lu N, Tao L, Wang XT et al (2009) Isolation and characterization of cancer stem like cells in human glioblastoma cell lines. Cancer Lett 279(1):13–21

    Article  CAS  PubMed  Google Scholar 

  24. Domen J, Gandy KL, Weissman IL (1998) Systemic overexpression of BCL-2 in the hematopoietic system protects transgenic mice from the consequences of lethal irradiation. Blood 91(7):2272

    CAS  PubMed  Google Scholar 

  25. Peters R, Leyvraz S, Perey L (1998) Apoptotic regulation in primitive hematopoietic precursors. Blood 92(6):2041

    CAS  PubMed  Google Scholar 

  26. Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF, Hilsenbeck SG, Pavlick A, Zhang X, Chamness GC et al (2008) Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 100(9):672

    Article  CAS  PubMed  Google Scholar 

  27. Moltzahn FR, Volkmer J-P, Rottke D, Ackermann R (2008) “Cancer stem cells”–lessons from Hercules to fight the hydra. Urol Oncol 26(6):581

    PubMed  Google Scholar 

  28. Hill RP (2006) Identifying cancer stem cells in solid tumors: case not proven. Cancer Res 66(4):1891

    Article  CAS  PubMed  Google Scholar 

  29. Imyanitov EN, Hanson KP (2004) Mechanisms of breast cancer. Drug Disc Today 1(2):235

    Article  CAS  Google Scholar 

  30. Polyak K (2007) Breast cancer: origins and evolution. J Clin Invest 117(11):3155–3163

    Article  CAS  PubMed  Google Scholar 

  31. Burns JS, Abdallah BM, Guldberg P, Rygaard J, Schroder HD, Kassem M (2005) Tumorigenic heterogeneity in cancer stem cells evolved from long-term cultures of telomerase-immortalized human mesenchymal stem cells. Cancer Res 65(8):3126–3135

    CAS  PubMed  Google Scholar 

  32. Rosland GV, Svendsen A, Torsvik A, Sobala E, McCormack E, Immervoll H, Mysliwietz J, Tonn JC, Goldbrunner R, Lonning PE et al (2009) Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. Cancer Res 69(13):5331–5339

    Article  CAS  PubMed  Google Scholar 

  33. Shi C, Mai Y, Zhu Y, Cheng T, Su Y (2007) Spontaneous transformation of a clonal population of dermis-derived multipotent cells in culture. In Vitro Cell Dev Biol Anim 43(8–9):290–296

    Article  CAS  PubMed  Google Scholar 

  34. Siebzehnrubl FA, Jeske I, Muller D, Buslei R, Coras R, Hahnen E, Huttner HB, Corbeil D, Kaesbauer J, Appl T et al (2009) Spontaneous in vitro transformation of adult neural precursors into stem-like cancer cells. Brain Pathol 19(3):399–408

    Article  CAS  PubMed  Google Scholar 

  35. Rubio D, Garcia-Castro J, Martin MC, de la Fuente R, Cigudosa JC, Lloyd AC, Bernad A (2005) Spontaneous human adult stem cell transformation. Cancer Res 65(8):3035–3039

    CAS  PubMed  Google Scholar 

  36. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  PubMed  Google Scholar 

  37. Smith GH (1996) Experimental mammary epithelial morphogenesis in an in vivo model: evidence for distinct cellular progenitors of the ductal and lobular phenotype. Breast Cancer Res Treat 39(1):21

    Article  CAS  PubMed  Google Scholar 

  38. Kordon EC, Smith GH (1998) An entire functional mammary gland may comprise the progeny from a single cell. Development 125(10):1921

    CAS  PubMed  Google Scholar 

  39. Stingl J, Eaves CJ, Kuusk U, Emerman JT (1998) Phenotypic and functional characterization in vitro of a multipotent epithelial cell present in the normal adult human breast. Differentiation 63(4):201–213

    Article  CAS  PubMed  Google Scholar 

  40. Villadsen R, Fridriksdottir AJ, Ronnov-Jessen L, Gudjonsson T, Rank F, LaBarge MA, Bissell MJ, Petersen OW (2007) Evidence for a stem cell hierarchy in the adult human breast. J Cell Biol 177(1):87–101

    Article  CAS  PubMed  Google Scholar 

  41. Gudjonsson T, Villadsen R, Nielsen HL, Ronnov-Jessen L, Bissel MJ, Petersen OW (2002) Isolation, immortalization, and characterization of a human breast epithelial cell line with stem cell properties. Genes Dev 16:693–706

    Article  CAS  PubMed  Google Scholar 

  42. Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, Wicha MS (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17(10):1253–1270

    Article  CAS  PubMed  Google Scholar 

  43. Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML, Wu L, Lindeman GJ, Visvader JE (2006) Generation of a functional mammary gland from a single stem cell. Nature 439:84–88

    Article  CAS  PubMed  Google Scholar 

  44. Dey D, Saxena M, Paranjape AN, Krishnan V, Giraddi R, Kumar MV, Mukherjee G, Rangarajan A (2009) Phenotypic and functional characterization of human mammary stem/progenitor cells in long term culture. PLoS ONE 4(4):e5329

    Article  PubMed  CAS  Google Scholar 

  45. Williams C, Helguero L, Edvardsson K, Haldosen LA, Gustafsson JA (2009) Gene expression in murine mammary epithelial stem cell-like cells shows similarities to human breast cancer gene expression. Breast Cancer Res 11(3):R26

    Article  PubMed  CAS  Google Scholar 

  46. Zucchi I, Sanzone S, Astigiano S, Pelucchi P, Scotti M, Valsecchi V, Barbieri O, Bertoli G, Albertini A, Reinbold RA et al (2007) The properties of a mammary gland cancer stem cell. Proc Natl Acad Sci USA 104(25):10476–10481

    Article  CAS  PubMed  Google Scholar 

  47. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111

    Article  CAS  PubMed  Google Scholar 

  48. Takaishi S, Okumura T, Tu S, Wang SS, Shibata W, Vigneshwaran R, Gordon SA, Shimada Y, Wang TC (2009) Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells 27(5):1006–1020

    Article  CAS  PubMed  Google Scholar 

  49. Palapattu GS, Wu C, Silvers CR, Martin HB, Williams K, Salamone L, Bushnell T, Huang LS, Yang Q, Huang J (2009) Selective expression of CD44, a putative prostate cancer stem cell marker, in neuroendocrine tumor cells of human prostate cancer. Prostate 69(7):787–798

    Article  CAS  PubMed  Google Scholar 

  50. Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D, Pilotti S, Pierotti MA, Daidone MG (2005) Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 65(13):5506–5511

    Article  CAS  PubMed  Google Scholar 

  51. Zhou J, Zhang H, Gu P, Margolick JB, Yin D, Zhang Y (2009) Cancer stem/progenitor cell active compound 8-quinolinol in combination with paclitaxel achieves an improved cure of breast cancer in the mouse model. Breast Cancer Res Treat 115:269

    Article  CAS  PubMed  Google Scholar 

  52. Wright M, Calcagno A, Salcido C, Carlson M, Ambudkar S, Varticovski L (2008) Brca1 breast tumors contain distinct CD44 +/CD24- and CD133 + cells with cancer stem cell characteristics. Breast Cancer Res 10(1):R10

    Article  PubMed  CAS  Google Scholar 

  53. Li Z, Liu CP, He YL, Tian Y, Huang T (2008) Analysis on clone in vitro and tumorigenic capacity in vivo of different subsets cells from the MCF-7 human breast cancer cell line. Sichuan Da Xue Xue Bao Yi Xue Ban 39(4):547–549

    PubMed  Google Scholar 

  54. Yu M, Smolen GA, Zhang J, Wittner B, Schott BJ, Brachtel E, Ramaswamy S, Maheswaran S, Haber DA (2009) A developmentally regulated inducer of EMT, LBX1, contributes to breast cancer progression. Genes Dev 23(15):1737–1742

    Article  CAS  PubMed  Google Scholar 

  55. Xiao Y, Ye Y, Yearsley K, Jones S, Barsky SH (2008) The lymphovascular embolus of inflammatory breast cancer expresses a stem cell-like phenotype. Am J Pathol 173(2):561–574

    Article  CAS  PubMed  Google Scholar 

  56. Ross DT, Scherf U, Eisen MB, Perou CM, Rees C, Spellman P, Iyer V, Jeffrey SS, Van de Rijn M, Waltham M et al (2000) Systematic variation in gene expression patterns in human cancer cell lines. Nat Genet 24(3):227–235

    Article  CAS  PubMed  Google Scholar 

  57. Kao J, Salari K, Bocanegra M, Choi YL, Girard L, Gandhi J, Kwei KA, Hernandez-Boussard T, Wang P, Gazdar AF et al (2009) Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery. PLoS ONE 4(7):e6146

    Article  PubMed  CAS  Google Scholar 

  58. Kondo T (2007) Stem cell-like cancer cells in cancer cell lines. Cancer Biomark 3(4–5):245–250

    CAS  PubMed  Google Scholar 

  59. Mylona E, Giannopoulou I, Fasomytakis E, Nomikos A, Magkou C, Bakarakos P, Nakopoulou L (2008) The clinicopathologic and prognostic significance of CD44 +/CD24-/low and CD44-/CD24 + tumor cells in invasive breast carcinomas. Hum Pathol 39(7):1096

    Article  CAS  PubMed  Google Scholar 

  60. Sheridan C, Kishimoto H, Fuchs RK, Mehrotra S, Bhat-Nakshatri P, Turner CH, Goulet R, Badve S, Nakshatri H (2006) CD44 +/CD24- breast cancer cells exhibit enhanced invasive properties, an early step necessary for metastasis. Breast Cancer Res 8:R59

    Article  PubMed  CAS  Google Scholar 

  61. Honeth G, Bendahl PO, Ringner M, Saal LH, Gruvberger-Saal SK, Lovgren K, Grabau D, Ferno M, Borg A, Hegardt C (2008) The CD44 +/CD24- phenotype is enriched in basal-like breast tumors. Breast Cancer Res 10(3):R53

    Article  PubMed  CAS  Google Scholar 

  62. Fillmore CM, Kuperwasser C (2008) Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res 10(2):R25

    Article  PubMed  CAS  Google Scholar 

  63. Zheng X, Shen G, Yang X, Liu W (2007) Most C6 cells are cancer stem cells: evidence from clonal and population analyses. Cancer Res 67(8):3691–3697

    Article  CAS  PubMed  Google Scholar 

  64. Shipitsin M, Campbell LL, Argani P, Weremowicz S, Bloushtain-Qimron N, Yao J, Nikolskaya T, Serebryiskaya T, Beroukhim R, Hu M (2007) Molecular definition of breast tumor heterogeneity. Cancer Cell 11:259–273

    Article  CAS  PubMed  Google Scholar 

  65. Liu AY, True LD, LaTray L, Nelson PS, Ellis WJ, Vessella RL, Lange PH, Hood L, van den Engh G (1997) Cell-cell interaction in prostate gene regulation and cytodifferentiation. Proc Natl Acad Sci USA 94(20):10705–10710

    Article  CAS  PubMed  Google Scholar 

  66. Korkaya H, Paulson A, Iovino F, Wicha MS (2008) HER2 regulates the mammary stem/progenitor cell population driving tumorigenesis and invasion. Oncogene 27(47):6120–6130

    Article  CAS  PubMed  Google Scholar 

  67. Lu ZQ, Li HG, Zhang HZ, Fan MJ, Shen XM, He XX (2008) Expression and significance of CD44(+)ESA(+)CD24(-/low), stem cell markers for breast cancer, in non-small-cell lung carcinoma. Ai Zheng 27(6):575–579

    CAS  PubMed  Google Scholar 

  68. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S et al (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1(5):555

    Article  CAS  PubMed  Google Scholar 

  69. Balicki D (2007) Moving forward in human mammary stem cell biology and breast cancer prognostication using ALDH1. Cell Stem Cell 1(5):485–487

    Article  CAS  Google Scholar 

  70. Nishii T, Yashiro M, Shinto O, Sawada T, Ohira M, Hirakawa K (2009) Cancer stem cell-like SP cells have a high adhesion ability to the peritoneum in gastric carcinoma. Cancer Sci 100(8):1397–1402

    Article  CAS  PubMed  Google Scholar 

  71. Pontier SM, Muller WJ (2009) Integrins in mammary-stem-cell biology and breast-cancer progression–a role in cancer stem cells? J Cell Sci 122(Pt 2):207–214

    Article  CAS  PubMed  Google Scholar 

  72. Pfeiffer MJ, Schalken JA (2009) Stem cell characteristics in prostate cancer cell lines. Eur Urol. doi:10.1016/j.eururo.2009.01.015

  73. Lee RH, Seo MJ, Pulin AA, Gregory CA, Ylostalo J, Prockop DJ (2009) The CD34-like protein PODXL and alpha6-integrin (CD49f) identify early progenitor MSCs with increased clonogenicity and migration to infarcted heart in mice. Blood 113(4):816–826

    Article  CAS  PubMed  Google Scholar 

  74. Cariati M, Naderi A, Brown JP, Smalley MJ, Pinder SE, Caldas C, Purushotham AD (2008) Alpha-6 integrin is necessary for the tumourigenicity of a stem cell-like subpopulation within the MCF7 breast cancer cell line. Int J Cancer 122(2):298–304

    Article  CAS  PubMed  Google Scholar 

  75. Liu S, Dontu G, Wicha MS (2005) Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer Res 7(3):86–95

    Article  CAS  PubMed  Google Scholar 

  76. Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434(7035):843

    Article  CAS  PubMed  Google Scholar 

  77. Seidensticker MJ, Behrens J (2000) Biochemical interactions in the wnt pathway. Biochim Biophys Acta 1495(2):168

    Article  CAS  PubMed  Google Scholar 

  78. Lejeune S, Huguet EL, Hamby A, Poulsom R, Harris AL (1995) Wnt5a cloning, expression, and up-regulation in human primary breast cancers. Clin Cancer Res 1(2):215–222

    CAS  PubMed  Google Scholar 

  79. Brown AM (2001) Wnt signaling in breast cancer: have we come full circle? Breast Cancer Res 3(6):351–355

    Article  CAS  PubMed  Google Scholar 

  80. Wielenga VJ, Smits R, Korinek V, Smit L, Kielman M, Fodde R, Clevers H, Pals ST (1999) Expression of CD44 in Apc and Tcf mutant mice implies regulation by the WNT pathway. Am J Pathol 154(2):515–523

    CAS  PubMed  Google Scholar 

  81. Li Y, Welm B, Podsypanina K, Huang S, Chamorro M, Zhang X, Rowlands T, Egeblad M, Cowin P, Werb Z et al (2003) Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proceedings of the National Academy of Science USA 100:15853–15858

    Article  CAS  Google Scholar 

  82. Korkaya H, Paulson A, Charafe-Jauffret E, Ginestier C, Brown M, Dutcher J, Clouthier SG, Wicha MS (2009) Regulation of mammary stem/progenitor cells by PTEN/Akt/beta-catenin signaling. PLoS Biol 7(6):e1000121

    Article  PubMed  CAS  Google Scholar 

  83. Wang Z, Li Y, Banerjee S, Sarkar FH (2009) Emerging role of Notch in stem cells and cancer. Cancer Lett 279(1):8

    Article  CAS  PubMed  Google Scholar 

  84. Zardawi SJ (2009) Dysregulation of Hedgehog, Wnt and Notch signalling pathways in breast cancer. Histol Histopathol 24(1699–5848):385–398

    CAS  PubMed  Google Scholar 

  85. Farnie G, Clarke RB (2007) Mammary stem cells and breast cancer-role of Notch signalling. Stem Cell Rev 3(2):169–175

    Article  CAS  PubMed  Google Scholar 

  86. Mine T, Matsueda S, Li Y, Tokumitsu H, Gao H, Danes C, Wong KK, Wang X, Ferrone S, Ioannides CG (2009) Breast cancer cells expressing stem cell markers CD44 + CD24 lo are eliminated by Numb-1 peptide-activated T cells. Cancer Immunol Immunother 58(8):1185–1194

    Article  CAS  PubMed  Google Scholar 

  87. Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A (2007) HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 17(2):165–172

    Article  CAS  PubMed  Google Scholar 

  88. Liu S, Dontu G, Mantle ID, Patel S, Ahn NS, Jackson KW, Suri P, Wicha MS (2006) Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 66(12):6063–6071

    Article  CAS  PubMed  Google Scholar 

  89. Yoo MH, Hatfield DL (2008) The cancer stem cell theory: is it correct? Mol Cells 26(5):514–516

    CAS  PubMed  Google Scholar 

  90. Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ (2008) Efficient tumour formation by single human melanoma cells. Nature 456(7222):593

    Article  CAS  PubMed  Google Scholar 

  91. Dontu G (2008) Breast cancer stem cell markers–the rocky road to clinical applications. Breast Cancer Res 10(5):110

    Article  PubMed  CAS  Google Scholar 

  92. Fillmore C, Kuperwasser C (2007) Human breast cancer stem cell markers CD44 and CD24: enriching for cells with functional properties in mice or in man? Breast Cancer Res 9(3):303

    Article  PubMed  CAS  Google Scholar 

  93. Kennedy JA, Barabe F, Poeppl AG, Wang JCY, Dick JE (2007) Comment on “Tumor growth need not be driven by rare cancer stem cells”. Science %R 101126/science1149590 318(5857):1722c

    Google Scholar 

  94. Chen Y, Rittling SR (2003) Novel murine mammary epithelial cell lines that form osteolytic bone metastases: effect of strain background on tumor homing. Clin Exp Metastasis 20(2):111–120

    Article  CAS  PubMed  Google Scholar 

  95. Kondo M, Scherer DC, Miyamoto T, King AG, Akashi K, Sugamura K, Weissman IL (2000) Cell-fate conversion of lymphoid-committed progenitors by instructive actions of cytokines. Nature 407(6802):383–386

    Article  CAS  PubMed  Google Scholar 

  96. Pollett JB, Corsi KA, Weiss KR, Cooper GM, Barry DA, Gharaibeh B, Huard J (2007) Malignant transformation of multipotent muscle-derived cells by concurrent differentiation signals. Stem Cells 25(9):2302–2311

    Article  CAS  PubMed  Google Scholar 

  97. Khaled WT, Read EK, Nicholson SE, Baxter FO, Brennan AJ, Came PJ, Sprigg N, McKenzie AN, Watson CJ (2007) The IL-4/IL-13/Stat6 signalling pathway promotes luminal mammary epithelial cell development. Development 134(15):2739–2750

    Article  CAS  PubMed  Google Scholar 

  98. Charafe-Jauffret E, Ginestier C, Iovino F, Wicinski J, Cervera N, Finetti P, Hur MH, Diebel ME, Monville F, Dutcher J et al (2009) Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res 69(4):1302–1313

    Article  CAS  PubMed  Google Scholar 

  99. Weber GF, Ashkar S (2000) Molecular mechanisms of tumor dissemination in primary and metastatic brain cancers. Brain Res Bull 53(4):421–424

    Article  CAS  PubMed  Google Scholar 

  100. Gralow JR (2005) Optimizing the treatment of metastatic breast cancer. Breast Cancer Res Treat 89:S9

    Article  CAS  PubMed  Google Scholar 

  101. Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C, Guise TA, Massague J (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3(6):537–549

    Article  CAS  PubMed  Google Scholar 

  102. Abraham BK, Fritz P, McClellan M, Hauptvogel P, Athelogou M, Brauch H (2005) Prevalence of CD44 +/CD24-/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clin Cancer Res 11(3):1154

    CAS  PubMed  Google Scholar 

  103. Ling LJ, Wang S, Liu XA, Shen EC, Ding Q, Lu C, Xu J, Cao QH, Zhu HQ, Wang F (2008) A novel mouse model of human breast cancer stem-like cells with high CD44 + CD24-/lower phenotype metastasis to human bone. Chin Med J 121(20):1980–1986

    CAS  PubMed  Google Scholar 

  104. Liu R, Wang X, Chen GY, Dalerba P, Gurney A, Hoey T, Sherlock G, Lewicki J, Shedden K, Clarke MF (2007) The prognostic role of a gene signature from tumorigenic breast-cancer cells. N Engl J Med 356(3):217–226

    Article  CAS  PubMed  Google Scholar 

  105. Mastro LD, Clavarezza M, Venturini M (2007) Reducing the risk of distant metastases in breast cancer patients: role of aromatase inhibitors. Cancer Treat Rev 33(8):681

    Article  PubMed  CAS  Google Scholar 

  106. Brown LF, Berse B, Van de Water L, Papadopoulos-Sergiou A, Perruzzi CA, Manseau EJ, Dvorak HF, Senger DR (1992) Expression and distribution of osteopontin in human tissues: widespread association with luminal epithelial surfaces. Mol Biol Cell 3(10):1169–1180

    CAS  PubMed  Google Scholar 

  107. Weber GF, Ashkar S, Cantor H (1997) Interaction between CD44 and osteopontin as a potential basis for metastasis formation. Proc Assoc Am Physicians 109(1):1–9

    CAS  PubMed  Google Scholar 

  108. Wai PY, Kuo PC (2004) The role of Osteopontin in tumor metastasis. J Surg Res 121(2):228

    Article  CAS  PubMed  Google Scholar 

  109. Suzuki M, Mose E, Galloy C, Tarin D (2007) Osteopontin gene expression determines spontaneous metastatic performance of orthotopic human breast cancer xenografts. Am J Pathol 171(2):682–692

    Article  CAS  PubMed  Google Scholar 

  110. Chakraborty G, Jain S, Kundu GC (2008) Osteopontin promotes vascular endothelial growth factor-dependent breast tumor growth and angiogenesis via autocrine and paracrine mechanisms. Cancer Res 68(1):152–161

    Article  CAS  PubMed  Google Scholar 

  111. Balic M, Lin H, Young L, Hawes D, Giuliano A, McNamara G, Datar RH, Cote RJ (2006) Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin Cancer Res 12(19):5615

    Article  CAS  PubMed  Google Scholar 

  112. Draffin JE, McFarlane S, Hill A, Johnston PG, Waugh DJ (2004) CD44 potentiates the adherence of metastatic prostate and breast cancer cells to bone marrow endothelial cells. Cancer Res 64(16):5702

    Article  CAS  PubMed  Google Scholar 

  113. Tuck AB, Arsenault DM, O’Malley FP, Hota C, Ling MC, Wilson SM, Chambers AF (1999) Osteopontin induces increased invasiveness and plasminogen activator expression of human mammary epithelial cells. Oncogene 18(29):4237–4246

    Article  CAS  PubMed  Google Scholar 

  114. Tuck AB, O’Malley FP, Singhal H, Harris JF, Tonkin KS, Kerkvliet N, Saad Z, Doig GS, Chambers AF (1998) Osteopontin expression in a group of lymph node negative breast cancer patients. Int J Cancer 79(5):502–508

    Article  CAS  PubMed  Google Scholar 

  115. Tuck AB, O’Malley FP, Singhal H, Tonkin KS, Harris JF, Bautista D, Chambers AF (1997) Osteopontin and p53 expression are associated with tumor progression in a case of synchronous, bilateral, invasive mammary carcinomas. Arch Pathol Lab Med 121(6):578–584

    CAS  PubMed  Google Scholar 

  116. Darash-Yahana M, Pikarsky E, Abramovitch R, Zeira E, Pal B, Karplus R, Beider K, Avniel S, Kasem S, Galun E et al (2004) Role of high expression levels of CXCR4 in tumor growth, vascularization, and metastasis. FASEB J 18(11):1240–1242

    CAS  PubMed  Google Scholar 

  117. Adwan H, Bauerle TJ, Berger MR (2004) Downregulation of osteopontin and bone sialoprotein II is related to reduced colony formation and metastasis formation of MDA-MB-231 human breast cancer cells. Cancer Gene Ther 11(2):109–120

    Article  CAS  PubMed  Google Scholar 

  118. Schabath H, Runz S, Joumaa S, Altevogt P (2006) CD24 affects CXCR4 function in pre-B lymphocytes and breast carcinoma cells. J Cell Sci 119(Pt 2):314–325

    Article  CAS  PubMed  Google Scholar 

  119. Li Z, Ding Y, Deng Y (1998) Mechanism of CD44V6 in human colorectal carcinoma metastasis. Zhonghua Yi Xue Za Zhi 78(10):729–732

    CAS  PubMed  Google Scholar 

  120. Patrawala L, Calhoun T, Schneider-Broussard R, Li H, Bhatia B, Tang S, Reilly JG, Chandra D, Zhou J, Claypool K et al (2006) Highly purified CD44 + prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 25(12):1696–1708

    Article  CAS  PubMed  Google Scholar 

  121. Berner HS, Suo Z, Risberg B, Villman K, Karlsson MG, Nesland JM (2003) Clinicopathological associations of CD44 mRNA and protein expression in primary breast carcinomas. Histopathology 42(6):546–554

    Article  CAS  PubMed  Google Scholar 

  122. van ‘t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871):530–536

    Article  Google Scholar 

  123. Gonen M (2009) Statistical aspects of gene signatures and molecular targets. Gastrointest Cancer Res 3(2):S19–S21

    PubMed  Google Scholar 

  124. Hurt EM, Kawasaki BT, Klarmann GJ, Thomas SB, Farrar WL (2008) CD44 + CD24(-) prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. Br J Cancer 98(4):756–765

    Article  CAS  PubMed  Google Scholar 

  125. Glinsky GV (2007) Stem cell origin of death-from-cancer phenotypes of human prostate and breast cancers. Stem Cell Rev 3(1):79–93

    Article  CAS  PubMed  Google Scholar 

  126. Phillips TM, McBride WH, Pajonk F (2006) The response of CD24(-/low)/CD44 + breast cancer-initiating cells to radiation. J Natl Cancer Inst 98(24):1777–1785

    Article  PubMed  Google Scholar 

  127. Eriksson M, Guse K, Bauerschmitz G, Virkkunen P, Tarkkanen M, Tanner M, Hakkarainen T, Kanerva A, Desmond RA, Pesonen S et al (2007) Oncolytic adenoviruses kill breast cancer initiating CD44 + CD24-/low cells. Mol Ther 15(12):2088–2093

    Article  CAS  PubMed  Google Scholar 

  128. Neyt M, Huybrechts M, Hulstaert F, Vrijens F, Ramaekers D (2008) Trastuzumab in early stage breast cancer: a cost-effectiveness analysis for Belgium. Health Policy 87(2):146

    Article  PubMed  Google Scholar 

  129. Hall PS, Cameron DA (2009) Current perspective: trastuzumab. Eur J Cancer 45(1):12

    Article  CAS  PubMed  Google Scholar 

  130. Emens LA (2005) Trastuzumab: targeted therapy for the management of HER-2/neu-overexpressing metastatic breast cancer. Am J Ther 12(3):243–253

    PubMed  Google Scholar 

  131. Burstein HJ, Kuter I, Campos SM, Gelman RS, Tribou L, Parker LM, Manola J, Younger J, Matulonis U, Bunnell CA et al (2001) Clinical activity of trastuzumab and vinorelbine in women with HER2-overexpressing metastatic breast cancer. J Clin Oncol 19(10):2722

    CAS  PubMed  Google Scholar 

  132. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M et al (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. NEJM 344(11):783

    Article  CAS  PubMed  Google Scholar 

  133. Marty M, Cognetti F, Maraninchi D, Snyder R, Mauriac L, Tubiana-Hulin M, Chan S, Grimes D, Anton A, Lluch A et al (2005) Randomized phase II trial of the efficacy and safety of trastuzumab combined with docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer administered as first-line treatment: the M77001 study group. J Clin Oncol 23(19):4265

    Article  CAS  PubMed  Google Scholar 

  134. Bedard PL, Cardoso F, Piccart-Gebhart MJ (2009) Stemming resistance to HER-2 targeted therapy. J Mammary Gland Biol Neoplasia 14(1):55–66

    Article  PubMed  Google Scholar 

  135. Palyi-Krekk Z, Barok M, Isola J, Tammi M, Szollosi J, Nagy P (2007) Hyaluronan-induced masking of ErbB2 and CD44-enhanced trastuzumab internalisation in trastuzumab resistant breast cancer. Eur J Cancer 43(16):2423–2433

    Article  CAS  PubMed  Google Scholar 

  136. Li Y, Zhang T, Schwartz SJ, Sun D (2009) New developments in Hsp90 inhibitors as anti-cancer therapeutics: Mechanisms, clinical perspective and more potential. Drug Resist Updates 12(1–2):17

    Article  CAS  Google Scholar 

  137. Smith JR, Workman P (2007) Targeting the cancer chaperone HSP90. Drug Disc Today 4(4):219

    Article  Google Scholar 

  138. Solit DB, Rosen N (2006) Hsp90: a novel target for cancer therapy. Curr Top Med Chem 6(11):1205–1214

    Article  CAS  PubMed  Google Scholar 

  139. Solit DB, Chiosis G (2008) Development and application of Hsp90 inhibitors. Drug Discov Today 13(1–2):38–43

    Article  CAS  PubMed  Google Scholar 

  140. Patel K, Piagentini M, Rascher A, Tian ZQ, Buchanan GO, Regentin R, Hu Z, Hutchinson CR, McDaniel R (2004) Engineered biosynthesis of geldanamycin analogs for Hsp90 inhibition. Chem Biol 11(12):1625–1633

    Article  CAS  PubMed  Google Scholar 

  141. Sauvageot CM, Weatherbee JL, Kesari S, Winters SE, Barnes J, Dellagatta J, Ramakrishna NR, Stiles CD, Kung AL, Kieran MW et al (2008) Efficacy of the HSP90 inhibitor 17-AAG in human glioma cell lines and tumorigenic glioma stem cells. Neuro Oncol 11(2):109–121

    Article  PubMed  CAS  Google Scholar 

  142. Zhang H, Burrows F (2004) Targeting multiple signal transduction pathways through inhibition of Hsp90. J Mol Med 82(8):488–499

    Article  CAS  PubMed  Google Scholar 

  143. Powers MV, Workman P (2006) Targeting of multiple signalling pathways by heat shock protein 90 molecular chaperone inhibitors. Endocr Relat Cancer 13(1):S125–S135

    Article  CAS  PubMed  Google Scholar 

  144. Kamal A, Thao L, Sensintaffar J, Zhang L, Boehm MF, Fritz LC, Burrows FJ (2003) A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425(6956):407–410

    Article  CAS  PubMed  Google Scholar 

  145. Workman P (2004) Altered states: selectively drugging the Hsp90 cancer chaperone. Trends Mol Med 10(2):47–51

    Article  CAS  PubMed  Google Scholar 

  146. Citri A, Kochupurakkal BS, Yarden Y (2004) The achilles heel of ErbB-2/HER2: regulation by the Hsp90 chaperone machine and potential for pharmacological intervention. Cell Cycle 3(1):51–60

    CAS  PubMed  Google Scholar 

  147. Citri A, Gan J, Mosesson Y, Vereb G, Szollosi J, Yarden Y (2004) Hsp90 restrains ErbB-2/HER2 signalling by limiting heterodimer formation. EMBO Rep 5(12):1165–1170

    Article  CAS  PubMed  Google Scholar 

  148. Smith-Jones PM, Solit DB, Akhurst T, Afroze F, Rosen N, Larson SM (2004) Imaging the pharmacodynamics of HER2 degradation in response to Hsp90 inhibitors. Nat Biotechnol 22(6):701–706

    Article  CAS  PubMed  Google Scholar 

  149. Basso AD, Solit DB, Chiosis G, Giri B, Tsichlis P, Rosen N (2002) Akt forms an intracellular complex with heat shock protein 90 (Hsp90) and Cdc37 and is destabilized by inhibitors of Hsp90 function. J Biol Chem 277(42):39858–39866

    Article  CAS  PubMed  Google Scholar 

  150. Barksdale KA, Bijur GN (2009) The basal flux of Akt in the mitochondria is mediated by heat shock protein 90. J Neurochem 108(5):1289–1299

    Article  CAS  PubMed  Google Scholar 

  151. Sato S, Fujita N, Tsuruo T (2000) Modulation of Akt kinase activity by binding to Hsp90. Proc Natl Acad Sci USA 97(20):10832–10837

    Article  CAS  PubMed  Google Scholar 

  152. Rodina A, Vilenchik M, Moulick K, Aguirre J, Kim J, Chiang A, Litz J, Clement CC, Kang Y, She Y et al (2007) Selective compounds define Hsp90 as a major inhibitor of apoptosis in small-cell lung cancer. Nat Chem Biol 3(8):498–507

    Article  CAS  PubMed  Google Scholar 

  153. Burrows F, Zhang H, Kamal A (2004) Hsp90 activation and cell cycle regulation. Cell Cycle 3(12):1530–1536

    CAS  PubMed  Google Scholar 

  154. Theodoraki MA, Kunjappu M, Sternberg DW, Caplan AJ (2007) Akt shows variable sensitivity to an Hsp90 inhibitor depending on cell context. Exp Cell Res 313(18):3851–3858

    Article  CAS  PubMed  Google Scholar 

  155. Yun BG, Matts RL (2005) Differential effects of Hsp90 inhibition on protein kinases regulating signal transduction pathways required for myoblast differentiation. Exp Cell Res 307(1):212–223

    Article  CAS  PubMed  Google Scholar 

  156. Sato N, Yamamoto T, Sekine Y, Yumioka T, Junicho A, Fuse H, Matsuda T (2003) Involvement of heat-shock protein 90 in the interleukin-6-mediated signaling pathway through STAT3. Biochem Biophys Res Commun 300(4):847–852

    Article  CAS  PubMed  Google Scholar 

  157. Taldone T, Gozman A, Maharaj R, Chiosis G (2008) Targeting Hsp90: small-molecule inhibitors and their clinical development. Curr Opin Pharmacol 8(4):370–374

    Article  CAS  PubMed  Google Scholar 

  158. Jensen MR, Schoepfer J, Radimerski T, Massey A, Guy CT, Brueggen J, Quadt C, Buckler A, Cozens R, Drysdale MJ et al (2008) NVP-AUY922: a small molecule HSP90 inhibitor with potent antitumor activity in preclinical breast cancer models. Breast Cancer Res 10(2):R33

    Article  PubMed  CAS  Google Scholar 

  159. Tsutsumi S, Scroggins B, Koga F, Lee MJ, Trepel J, Felts S, Carreras C, Neckers L (2008) A small molecule cell-impermeant Hsp90 antagonist inhibits tumor cell motility and invasion. Oncogene 27(17):2478–2487

    Article  CAS  PubMed  Google Scholar 

  160. Sydor JR, Normant E, Pien CS, Porter JR, Ge J, Grenier L, Pak RH, Ali JA, Dembski MS, Hudak J et al (2006) Development of 17-allylamino-17-demethoxygeldanamycin hydroquinone hydrochloride (IPI-504), an anti-cancer agent directed against Hsp90. Proc Natl Acad Sci USA 103(46):17408–17413

    Article  CAS  PubMed  Google Scholar 

  161. Fan X, Matsui W, Khaki L, Stearns D, Chun J, Li YM, Eberhart CG (2006) Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res 66(15):7445–7452

    Article  CAS  PubMed  Google Scholar 

  162. Kim HL, Cassone M, Otvos L Jr, Vogiatzi P (2008) HIF-1alpha and STAT3 client proteins interacting with the cancer chaperone Hsp90: therapeutic considerations. Cancer Biol Ther 7(1):10–14

    Article  CAS  PubMed  Google Scholar 

  163. Prinsloo E, Setati MM, Longshaw VM, Blatch GL (2009) Chaperoning stem cells: a role for heat shock proteins in the modulation of stem cell self-renewal and differentiation? BioEssays 31(4):370–377

    Article  CAS  PubMed  Google Scholar 

  164. Sain N, Krishnan B, Ormerod MG, De Rienzo A, Liu WM, Kaye SB, Workman P, Jackman AL (2006) Potentiation of paclitaxel activity by the HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin in human ovarian carcinoma cell lines with high levels of activated AKT. Mol Cancer Ther 5(5):1197–1208

    Article  CAS  PubMed  Google Scholar 

  165. Zhang R, Luo D, Miao R, Bai L, Ge Q, Sessa WC, Min W (2005) Hsp90-Akt phosphorylates ASK1 and inhibits ASK1-mediated apoptosis. Oncogene 24(24):3954–3963

    Article  CAS  PubMed  Google Scholar 

  166. Chen JX, Meyrick B (2004) Hypoxia increases Hsp90 binding to eNOS via PI3 K-Akt in porcine coronary artery endothelium. Lab Invest 84(2):182–190

    Article  CAS  PubMed  Google Scholar 

  167. Solit DB, Basso AD, Olshen AB, Scher HI, Rosen N (2003) Inhibition of heat shock protein 90 function down-regulates Akt kinase and sensitizes tumors to Taxol. Cancer Res 63(9):2139–2144

    CAS  PubMed  Google Scholar 

  168. Grammatikakis N, Lin JH, Grammatikakis A, Tsichlis PN, Cochran BH (1999) p50(cdc37) acting in concert with Hsp90 is required for Raf-1 function. Mol Cell Biol 19(3):1661–1672

    CAS  PubMed  Google Scholar 

  169. Piatelli MJ, Doughty C, Chiles TC (2002) Requirement for a hsp90 chaperone-dependent MEK1/2-ERK pathway for B cell antigen receptor-induced cyclin D2 expression in mature B lymphocytes. J Biol Chem 277(14):12144–12150

    Article  CAS  PubMed  Google Scholar 

  170. Pratt WB (1997) The role of the hsp90-based chaperone system in signal transduction by nuclear receptors and receptors signaling via MAP kinase. Annu Rev Pharmacol Toxicol 37:297–326

    Article  CAS  PubMed  Google Scholar 

  171. Schulte TW, Blagosklonny MV, Ingui C, Neckers L (1995) Disruption of the Raf-1-Hsp90 molecular complex results in destabilization of Raf-1 and loss of Raf-1-Ras association. J Biol Chem 270(41):24585–24588

    Article  CAS  PubMed  Google Scholar 

  172. She QB, Solit D, Basso A, Moasser MM (2003) Resistance to gefitinib in PTEN-null HER-overexpressing tumor cells can be overcome through restoration of PTEN function or pharmacologic modulation of constitutive phosphatidylinositol 3’-kinase/Akt pathway signaling. Clin Cancer Res 9(12):4340–4346

    CAS  PubMed  Google Scholar 

  173. Hambardzumyan D, Becher OJ, Rosenblum MK, Pandolfi PP, Manova-Todorova K, Holland EC (2008) PI3 K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo. Genes Dev 22(4):436–448

    Article  CAS  PubMed  Google Scholar 

  174. Lee JS, Gil JE, Kim JH, Kim TK, Jin X, Oh SY, Sohn YW, Jeon HM, Park HJ, Park JW et al (2008) Brain cancer stem-like cell genesis from p53-deficient mouse astrocytes by oncogenic Ras. Biochem Biophys Res Commun 365(3):496–502

    Article  CAS  PubMed  Google Scholar 

  175. Hostein I, Robertson D, DiStefano F, Workman P, Clarke PA (2001) Inhibition of signal transduction by the Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin results in cytostasis and apoptosis. Cancer Res 61(10):4003–4009

    CAS  PubMed  Google Scholar 

  176. Massard C, Deutsch E, Soria JC (2006) Tumour stem cell-targeted treatment: elimination or differentiation. Ann Oncol 17(11):1620–1624

    Article  CAS  PubMed  Google Scholar 

  177. Xu Q, Yuan X, Tunici P, Liu G, Fan X, Xu M, Hu J, Hwang JY, Farkas DL, Black KL et al (2009) Isolation of tumour stem-like cells from benign tumours. Br J Cancer 101(2):303–311

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Ernst and Ethel Eriksen Trust, National Research Foundation, Rhodes University, Cancer Research Initiative of South Africa, Claude Leon Foundation and Deutscher Akademischer Austausch Dienst for funding. We have attempted to review the literature completely; however, we accept that we are not able to cite all contributions to the field of breast cancer stem cells and apologise if we have inadvertently omitted any key contributions to this field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrienne L. Edkins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawson, J.C., Blatch, G.L. & Edkins, A.L. Cancer stem cells in breast cancer and metastasis. Breast Cancer Res Treat 118, 241–254 (2009). https://doi.org/10.1007/s10549-009-0524-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s10549-009-0524-9

Keywords

Profiles

  1. Adrienne L. Edkins