Abstract
The goal of this study was to establish a convenient and effective approach to anti-inflammation treatment by rebalancing the sympathetic-vagal system via vagal nerve stimulation (VNS). We established an endotoxemia model in Sprague–Dawley rats using lipopolysaccharide (LPS) injection. Electrical discharges in the vagal system, including the nucleus tractus solitarii (NTS) and afferent and efferent cervical vagal nerves, were detected. The condition of sympathetic-vagal balance, presented as heart rate variability (HRV) and hepatic norepinephrine/acetylcholine (NE/ACh), was measured following endotoxemia with and without VNS. Discharges in afferent and efferent vagal nerves increased significantly following LPS injection compared with the basis level and corresponding time points in the control group. Discharges in the NTS also increased significantly following LPS injection. The HRV components, including normalized high frequency (HFnm), normalized low frequency (LFnm), LF/HF, and very low frequency (VLF), increased significantly following LPS injection. HFnm values in the LPS + VNS group increased significantly compared with the LPS group. Conversely, LFnm, LF/HF, and VLF in the LPS + VNS group decreased significantly compared with the LPS group. Hepatic NE and ACh significantly decreased within 6 h after LPS injection compared with the basal level and the control groups (P < 0.05). VNS did not significantly improve hepatic NE, but the ACh levels in the LPS + VNS group were higher than those in other groups. Sympathetic and vagal nervous systems are enhanced following endotoxemia. The overexcitation of the sympathetic system leads to sympathetic-vagal disequilibrium. The rebalance of the sympathetic and vagal system is crucial for critically ill patients.



Similar content being viewed by others
References
Alicea C, Belkowski S, Eisenstein TK, Adler MW, Rogers TJ (1996) Inhibition of primary murine macrophage cytokine production in vitro following treatment with the kappa-opioid agonist U50, 488H. J Neuroimmunol 64:83–90
Annane D, Trabold F, Sharshar T, Jarrin I, Blanc AS, Raphael JC, Gajdos P (1999) Inappropriate sympathetic activation at onset of septic shock—a spectral analysis approach. Am J Respir Crit Care Med 160:458–465
Blalock JE (2002) Harnessing a neural-immune circuit to control inflammation and shock. J Exp Med 195:F25–F28
Bouma MG, Stad RK, van den Wildenberg F, Buurman WA (1994) Differential regulatory effects of adenosine on cytokine release by activated human monocytes. J Immunol 153:4159–4168
Ek M, Engblom D, Saha S, Blomqvist A, Jakobsson PJ, Ericsson-Dahlstrand A (2001) Inflammatory response—pathway across the blood–brain barrier. Nature 410:430–431
Grogan EL, Morris JA, Norris PR, France DJ, Ozdas A, Stiles RA, Harris PA, Dawant BM, Speroff T (2004) Reduced heart rate volatility. Ann Surg 240:547–554
Huang J, Zhang NC, Zhou J, Yang ZH (2008) Effects of stimulation of intact vagus nerve on systemic inflammatory response in rats. Zhonghua Shao Shang Za Zhi 24:99–101
Korach M, Sharshar T, Jarrin I, Fouillot JP, Raphael JC, Gajdos P, Annane D (2001) Cardiac variability in critically ill adults: influence of sepsis. Crit Care Med 29:1380–1385
Kunitake T, Ishiko N (1992) Power spectrum analysis of heart rate fluctuations and respiratory movements associated with cooling the human skin. J Auton Nerv Syst 38:45–55
Levin BE, Brown KL, Pawar G, Dunnmeynell A (1995) Widespread and lateralization effects of acute traumatic brain injury on norepinephrine turnover in the rat brain. Brain Res 674:307–313
Lo Giudice P, Careddu A, Magni G, Quagliata T, Pacifici L, Carminati P (2002) Autonomic neuropathy in streptozotocin diabetic rats: effect of acetyl-l-carnitine. Diabetes Res Clin Pract 56:173–180
Oberholzer A, Oberholzer C, Moldawer LL (2002) Inteyleukin-10: a complex role in the pathogenesis of sepsis syndromes and its potential as an anti-inflammatory drug. Crit Care Med 30:S58–S63
Pagani M, Montano N, Porta A, Malliani A, Abboud FM, Birkett C, Somers VK (1997) Relationship between spectral components of cardiovascular variabilities and direct measures of muscle sympathetic nerve activity in humans. Circulation 95:1441–1448
Patil VK, David M (2009) Hepatotoxic potential of malathion in the freshwater teleost, Labeo rohita (Hamilton). Veterinarski Arhiv 79:179–188
Pavlov VA, Ochani M, Yang LH, Gallowitsch-Puerta M, Ochani K, Lin XC, Levi J, Parrish WR, Rosas-Ballina M, Czura CJ, LaRosa GJ, Miller EJ, Tracey KJ, Al-Abed Y (2007) Selective alpha 7-nicotinic acetylcholine receptor agonist GTS-21 improves survival in murine endotoxemia and severe sepsis. Crit Care Med 35:1139–1144
Rosas-Ballina M, Ochani M, Parrish WR, Ochani K, Harris YT, Huston JM, Chavan S, Tracey KJ (2008) Splenic nerve is required for cholinergic anti inflammatory pathway control of TNF in endotoxemia. Proc Natl Acad Sci USA 105:11008–11013
Sackeim HA, Rush AJ, George MS, Marangell LB, Husain MM, Nahas Z, Johnson CR, Seidman S, Giller C, Haines S, Simpson RK, Goodman RR (2001) Vagus nerve stimulation (VNS (TM)) for treatment-resistant depression: efficacy, side effects, and predictors of outcome. Neuropsychopharmacology 25:713–728
Spengler RN, Chensue SW, Giacherio DA, Blenk N, Kunkel SL (1994) Endogenous norepinephrine regulates tumor necrosis factor-alpha production from macrophages in vitro. J Immunol 152:3024–3031
Stauss HM (2003) Heart rate variability. Am J Physiol Regul Integr Comp Physiol 285:R927–R931
Steinman L (2004) Elaborate interactions between the immune and nervous systems. Nat Immunol 5:575–581
Straub RH, Grum F, Strauch U, Capellino S, Bataille F, Bleich A, Falk W, Scholmerich J, Obermeier F (2008) Anti-inflammatory role of sympathetic nerves in chronic intestinal inflammation. Gut 57:911–921
Sun Y, Qin C, Foreman RD, Chen JD (2005) Intestinal electric stimulation modulates neuronal activity in the nucleus of the solitary tract in rats. Neurosci Lett 385:64–69
van Westerloo DJ, Giebelen IA, Florquin S, Daalhuisen J, Bruno MJ, de Vos AF, Tracey KJ, van der Poll T (2005) The cholinergic anti-inflammatory pathway regulates the host response during septic peritonitis. J Infect Dis 191:2138–2148
Zdrenghea D, Sitar-Taut A, Pop D (2007) Comparison between heart rate variability and recovery in ischemic patients. Rom J Intern Med 45:171–175
Zeitlinger M, Marsik C, Steiner I, Sauermann R, Seir K, Jilma B, Wagner O, Joukhadar C (2007) Immunomodulatory effects of fosfomycin in an endotoxin model in human blood. J Antimicrob Chemother 59:219–223
Zhou M, Yang SL, Koo DJ, Ornan DA, Chaudry IH, Wang P (2001) The role of Kupffer cell alpha(2)-adrenoceptors in norepinephrine-induced TNF-alpha production. Biochim Biophys Acta 1537:49–57
Acknowledgments
We would appreciate the editors and anonymous reviewers once again for their excellent comments which improved our paper greatly.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Huang, J., Wang, Y., Jiang, D. et al. The sympathetic-vagal balance against endotoxemia. J Neural Transm 117, 729–735 (2010). https://doi.org/10.1007/s00702-010-0407-6
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1007/s00702-010-0407-6


