Skip to main content
Log in

Ad libitum water consumption off-sets the thermal and cardiovascular strain exacerbated by dehydration during a 3-h simulated heatwave

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

To assess whether ad libitum water ingestion of different temperatures is sufficient to prevent dehydration-related exacerbations of thermal and cardiovascular strain, during exposure to conditions representative of a heatwave.

Methods

Twelve participants (mean ± SD; 25 ± 4 years) exercised for 180 min at 3 METs in 40.1 ± 0.6 °C, 40.4 ± 2.1%RH four times: (i) consuming 20 °C water ad libitum (AL20); (ii) consuming 4 °C water ad libitum (AL4); (iii) replacing no fluids (NOFR); (iv) replacing sweat losses (FULLFR). Fluid consumption (FC), dehydration (%DEH), rectal temperature (Tre), rate–pressure product (RPP), forearm blood flow (FBF), mean skin temperature (Tsk), and local sweat rate (LSR) were measured/determined.

Results

FC was greater in AL20 (1.30 ± 0.41 L) than AL4 (1.03 ± 0.32 L; P = 0.003). %DEH was lower (P < 0.001) in AL20 (0.11 ± 0.76%), AL4 (0.43 ± 0.64%), and FULLFR (0.01 ± 0.12%) compared to NOFR (1.93 ± 0.28%). %DEH was lower in AL20 than AL4 (P = 0.003). In NOFR, end-trial changes in Tre were greater (P < 0.001) (1.05 ± 0.27 °C) compared to all other trials, but similar among AL20 (0.72 ± 0.30 °C), AL4 (0.76 ± 0.25 °C) and FULLFR (0.74 ± 0.35 °C). End-trial RPP was higher (P < 0.001) in NOFR (12,389 ± 1578 mmHg·bpm) compared to all other trials, but similar among FULLFR (11,067 ± 1292 mmHg·bpm), AL20 (11,214 ± 2078 mmHg·bpm) and AL4 (11,089 ± 1795 mmHg·bpm). No differences in Tsk or LSR were observed among trials, but FBF was lower in NOFR compared to FULLFR (2.84 ± 0.69 vs. 3.52 ± 0.96 ml/100 ml/min; P = 0.029).

Conclusion

4 °C or 20 °C ad libitum water ingestion prevented dehydration levels that exacerbate thermal/cardiovascular strain, despite blunted fluid intake with 4 °C water. Higher core temperatures with NOFR are attributed to impaired internal heat distribution secondary to a lower FBF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Contributions

CG: approved final manuscript. NBM: provided analysis supervision. Approved final manuscript. AEH: contributed to construction and editing of manuscript. Approved final manuscript. OJ: manuscript editing. Supported study discretionary funding of consumables etc. Provided overall supervision of project. Approved final manuscript.

Corresponding author

Correspondence to Ollie Jay.

Ethics declarations

Conflicts of interest

The authors declare no conficts of interest for the research.

Additional information

Communicated by Narihiko Kondo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Graham, C., Morris, N.B., Harwood, A.E. et al. Ad libitum water consumption off-sets the thermal and cardiovascular strain exacerbated by dehydration during a 3-h simulated heatwave. Eur J Appl Physiol 120, 391–399 (2020). https://doi.org/10.1007/s00421-019-04283-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1007/s00421-019-04283-7

Keywords