Skip to main content
Log in

Biomarkers in the Clinical Diagnosis and Management of Traumatic Brain Injury

  • Brain Injury
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Traumatic brain injury (TBI) is the leading cause of death and disability among young adults. Numerous safety improvements in the workplace, the addition of airbags to vehicles, and the enforcement of speed limits have all helped to reduce the incidence and severity of head trauma. While improvements in emergency response times and acute care have increased TBI survivability, this has heightened the necessity for developing reliable methods to identify patients at risk of developing secondary pathologies. At present, the primary clinical indicators for the presence of brain injury are the Glasgow Coma Scale (GCS), pupil reactivity, and head computed tomography (CT). While these indices have proven useful for stratifying the magnitude and extent of brain damage, they have limited utility for predicting adverse secondary events or detecting subtle damage. Biomarkers, reflecting a biological response to injury or disease, have proven useful for the diagnosis of many pathological conditions including cancer, heart failure, infection, and genetic disorders. For TBI, several proteins synthesized in astroglial cells or neurons have been proposed as potential biomarkers. These proteins include the BB isozyme of creatine kinase (CK-BB, predominant in brain), glial fibrilary acidic protein (GFAP), myelin basic protein (MBP), neuron-specific enolase (NSE), and S100B.

The presence of these biomarkers in the cerebrospinal fluid and serum of patients with moderate-to-severe TBI, and their correlation with outcome, suggest that they may have utility as surrogate markers in clinical trials. In addition, many of these markers have been found to be sensitive indicators of injury, and therefore may have the potential to diagnose persons with mild TBI. In addition to biomarkers that correlate with long-term outcome, a few studies have identified prognostic biomarkers for secondary injury that may be useful in individualizing patient management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II

Similar content being viewed by others

References

  1. Jennett B. Epidemiology of head injury. J Neurol Neurosurg Psychiatry 1996; 60: 362–9

    Article  PubMed  CAS  Google Scholar 

  2. National Center for Health Statistics, Centers for Disease Control and Prevention. National hospital ambulatory medical care survey. Emergency Department File (2002). CD-ROM Series 13, No. 33. Atlanta (GA): National Center for Health Statistics, Centers for Disease Control and Prevention, 2000

  3. Steyerberg EW, Mushkudiani N, Perel P, et al. Predicting outcome after traumatic brain injury: development and international validation of prognostic scores based on admission characteristics. PLoS Med 2008 Aug; 5(8): 1251–61

    Article  Google Scholar 

  4. Langlois JA, Rutland-Brown W, Thomas KE. Traumatic brain injury in the United States: emergency department visits, hospitalizations, and deaths. Atlanta (GA): Centers for Disease Control and Prevention, National Center for Injury Prevention and Control, 2004

    Google Scholar 

  5. Centers for Disease Control and Prevention, National Center for Injury Prevention and Control. Overivew [online]. Available from URL: http://www.cdc.gov/ncipc/tbi/Overview.htm [Accessed 2008 Oct 28]

  6. Hoge CW, Castro CA, Messer SC, et al. Combat duty in Iraq and Afghanistan, mental health problems, and barriers to care. N Engl J Med 2004 Jul 1; 351(1): 13–22

    Article  PubMed  CAS  Google Scholar 

  7. Okie S. Traumatic brain injury in the war zone. N Engl J Med 2005 May 19; 352(20): 2043–7

    Article  PubMed  CAS  Google Scholar 

  8. Holcomb JB, Stansbury LG, Champion HR, et al. Understanding combat casualty care statistics. J Trauma 2006 Feb; 60(2): 397–401

    Article  PubMed  Google Scholar 

  9. Teasdale G, Jennett B. Assessment of coma and impaired consciousness: a practical scale. Lancet 1974 Jul 13; II(7872): 81–4

    Article  Google Scholar 

  10. Doezema D, King JN, Tandberg D, et al. Magnetic resonance imaging in minor head injury. Ann Emerg Med 1991 Dec; 20(12): 1281–5

    Article  PubMed  CAS  Google Scholar 

  11. Haydel MJ, Preston CA, Mills TJ, et al. Indications for computed tomography in patients with minor head injury. N Engl J Med 2000 Jul 13; 343(2): 100–5

    Article  PubMed  CAS  Google Scholar 

  12. Powell JM, Ferraro JV, Dikmen SS, et al. Accuracy of mild traumatic brain injury diagnosis. Arch Phys Med Rehabil 2008 Aug; 89(8): 1550–5

    Article  PubMed  Google Scholar 

  13. Hoge CW, McGurk D, Thomas JL, et al. Mild traumatic brain injury in U.S. Soldiers returning from Iraq. N Engl J Med 2008 Jan 31; 358(5): 453–63

    Article  PubMed  CAS  Google Scholar 

  14. Schneiderman AI, Braver ER, Kang HK. Understanding sequelae of injury mechanisms and mild traumatic brain injury incurred during the conflicts in Iraq and Afghanistan: persistent postconcussive symptoms and posttraumatic stress disorder. Am J Epidemiol 2008 Jun 15; 167(12): 1446–52

    Article  PubMed  Google Scholar 

  15. Ponsford J, Willmott C, Rothwell A, et al. Impact of early intervention on outcome after mild traumatic brain injury in children. Pediatrics 2001 Dec; 108(6): 1297–303

    Article  PubMed  CAS  Google Scholar 

  16. Ponsford J, Willmott C, Rothwell A, et al. Impact of early intervention on outcome following mild head injury in adults. J Neurol Neurosurg Psychiatry 2002 Sep; 73(3): 330–2

    Article  PubMed  CAS  Google Scholar 

  17. Katz RT, Deluca J. Sequelae of minor traumatic brain injury. Am Fam Physician 1992 Nov; 46(5): 1491–8

    PubMed  CAS  Google Scholar 

  18. Dikmen S, Machamer J, Temkin N. Mild head injury: facts and artifacts. J Clin Exp Neuropsychol 2001 Dec; 23(6): 729–38

    Article  PubMed  CAS  Google Scholar 

  19. Berger RP, Pierce MC, Wisniewski SR, et al. Serum S100B concentrations are increased after closed head injury in children: a preliminary study. J Neuro-trauma 2002 Nov; 19(11):1405–9

    Google Scholar 

  20. Berger RP, Kochanek PM, Pierce MC. Biochemical markers of brain injury: could they be used as diagnostic adjuncts in cases of inflicted traumatic brain injury? Child Abuse Negl 2004 Jul; 28 (7): 739–54

    Google Scholar 

  21. Berger RP, Adelson PD, Pierce MC, et al. Serum neuron-specific enolase, S100B, and myelin basic protein concentrations after inflicted and noninflicted traumatic brain injury in children. J Neurosurg 2005 Jul; 103(1 Suppl.): 61–8

    PubMed  Google Scholar 

  22. Berger RP, Dulani T, Adelson PD, et al. Identification of inflicted traumatic brain injury in well-appearing infants using serum and cerebrospinal markers: a possible screening tool. Pediatrics 2006 Feb; 117(2): 325–32

    Article  PubMed  Google Scholar 

  23. Berger RP, Ta’asan S, Rand A, et al. Multiplex assessment of serum biomarker concentrations in well-appearing children with inflicted traumatic brain injury. Pediatr Res. Epub 2008 Sep 10

  24. Demaerel P, Casteels I, Wilms G. Cranial imaging in child abuse. Eur Radiol 2002 Apr; 12(4): 849–57

    Article  PubMed  CAS  Google Scholar 

  25. Duhaime AC, Gennarelli TA, Thibault LE, et al. The shaken baby syndrome: a clinical, pathological, and biomechanical study. J Neurosurg 1987 Mar; 66(3): 409–15

    Article  PubMed  CAS  Google Scholar 

  26. Ellaway BA, Payne EH, Rolfe K, et al. Are abused babies protected from further abuse? Arch Dis Child 2004 Sep; 89(9): 845–6

    Article  PubMed  CAS  Google Scholar 

  27. Chesnut RM, Marshall SB, Piek J, et al. Early and late systemic hypotension as a frequent and fundamental source of cerebral ischemia following severe brain injury in the Traumatic Coma Data Bank. Acta Neurochir Suppl (Wien) 1993; 59: 121–5

    CAS  Google Scholar 

  28. Selassie AW, Zaloshnja E, Langlois JA, et al. Incidence of long-term disability following traumatic brain injury hospitalization, United States, 2003. J Head Trauma Rehabil 2008 Mar; 23(2): 123–31

    Article  PubMed  Google Scholar 

  29. Stocchetti N, Colombo A, Ortolano F, et al. Time course of intracranial hypertension after traumatic brain injury. J Neurotrauma2007 Aug; 24(8): 1339–46

    Article  PubMed  Google Scholar 

  30. Stocchetti N, Zanaboni C, Colombo A, et al. Refractory intracranial hypertension and “second-tier” therapies in traumatic brain injury. Intensive Care Med 2008 Mar; 34(3): 461–7

    Article  PubMed  Google Scholar 

  31. Smrcka M, Mrlian A, Karlsson-Valik J, et al. The effect of head injury upon the immune system. Bratisl Lek Listy 2007; 108(3): 144–8

    PubMed  CAS  Google Scholar 

  32. Arciniegas DB, Anderson CA, Topkoff J, et al. Mild traumatic brain injury: a neuropsychiatric approach to diagnosis, evaluation, and treatment. Neurop-sychiatr Dis Treat 2005 Dec; 1(4): 311–27

    Google Scholar 

  33. Levin HS. Treatment of postconcussional symptoms with CDP-choline. J Neurol Sci1991 Jul; 103 Suppl.: S39–42

    Article  PubMed  Google Scholar 

  34. Hamm CW, Katus HA. New biochemical markers for myocardial cell injury. Curr Opin Cardiol 1995 Jul; 10(4): 355–60

    Article  PubMed  CAS  Google Scholar 

  35. Alpert JS, Thygesen K, Antman E, et al. Myocardial infarction redefined: a consensus document of the Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. J Am Coll Cardiol 2000 Sep; 36(3): 959–69

    Article  PubMed  CAS  Google Scholar 

  36. Kleiman NS, Lakkis N, Cannon CP, et al. Prospective analysis of creatine kinase muscle-brain fraction and comparison with troponin T to predict cardiac risk and benefit of an invasive strategy in patients with non-ST-elevation acute coronary syndromes. J Am Coll Cardiol 2002 Sep 18; 40(6): 1044–50

    Article  PubMed  CAS  Google Scholar 

  37. Pepe MS, Etzioni R, Feng Z, et al. Phases of biomarker development for early detection of cancer. J Natl Cancer Inst 2001 Jul 18; 93(14): 1054–61

    Article  PubMed  CAS  Google Scholar 

  38. Biberthaler P, Linsenmeier U, Pfeifer KJ, et al. Serum S-100B concentration provides additional information fot the indication of computed tomography in patients after minor head injury: a prospective multicenter study. Shock 2006 May; 25(5): 446–53

    Article  PubMed  CAS  Google Scholar 

  39. Sherer M, Yablon SA, Nakase-Richardson R, et al. Effect of severity of post-traumatic confusion and its constituent symptoms on outcome after traumatic brain injury. Arch Phys Med Rehabil 2008 Jan; 89(1): 42–7

    Article  PubMed  Google Scholar 

  40. Posmantur RM, Zhao X, Kampfl A, et al. Immunoblot analyses of the relative contributions of cysteine and aspartic proteases to neurofilament breakdown products following experimental brain injury in rats. Neurochem Res 1998 Oct; 23(10): 1265–76

    Article  PubMed  CAS  Google Scholar 

  41. Fountoulakis M, Juranville JF. Enrichment of low-abundance brain proteins by preparative electrophoresis. Anal Biochem 2003 Feb 15; 313(2): 267–82

    Article  PubMed  CAS  Google Scholar 

  42. Tumani H, Teunissen C, Sussmuth S, et al. Cerebrospinal fluid biomarkers of neurodegeneration in chronic neurological diseases. Expert Rev Mol Diagn 2008 Jul; 8(4): 479–94

    Article  PubMed  CAS  Google Scholar 

  43. Wenner BR, Lovell MA, Lynn BC. Proteomic analysis of human ventricular cerebrospinal fluid from neurologically normal, elderly subjects using two-dimensional LC-MS/MS. J Proteome Res 2004 Jan; 3(1): 97–103

    Article  PubMed  CAS  Google Scholar 

  44. Clark RS, Kochanek PM, Adelson PD, et al. Increases in bcl-2 protein in cerebro-spinal fluid and evidence for programmed cell death in infants and children after severe traumatic brain injury. J Pediatr 2000 Aug; 137(2): 197–204

    Article  PubMed  CAS  Google Scholar 

  45. Whalen MJ, Carlos TM, Kochanek PM, et al. Soluble adhesion molecules in CSF are increased in children with severe head injury. J Neurotrauma 1998 Oct; 15(10): 777–87

    Article  PubMed  CAS  Google Scholar 

  46. Shore PM, Thomas NJ, Clark RS, et al. Continuous versus intermittent cerebrospinal fluid drainage after severe traumatic brain injury in children: effect on biochemical markers. J Neurotrauma 2004 Sep; 21(9): 1113–22

    Article  PubMed  Google Scholar 

  47. Kruse A, Cesarini KG, Bach FW, et al. Increases of neuron-specific enolase, S-100 protein, creatine kinase and creatine kinase BB isoenzyme in CSF following intraventricular catheter implantation.Acta Neurochir (Wien)1991; 110(3-4): 106–9

    Article  CAS  Google Scholar 

  48. Hergenroeder G, Redell JB, Moore AN, et al. Identification of serum biomarkers in brain-injured adults: potential for predicting elevated intracranial pressure. J Neurotrauma 2008 Feb; 25(2): 79–93

    Article  PubMed  Google Scholar 

  49. Gabbita SP, Scheff SW, Menard RM, et al. Cleaved-tau: a biomarker of neuronal damage after traumatic brain injury. J Neurotrauma 2005 Jan; 22(1): 83–94

    Article  PubMed  Google Scholar 

  50. Hu S, Wang J, Meijer J, et al. Salivary proteomic and genomic biomarkers for primary Sjogren’s syndrome. Arthritis Rheum 2007 Nov; 56(11): 3588–600

    Article  PubMed  CAS  Google Scholar 

  51. Kaufman E, Lamster IB. The diagnostic applications of saliva: a review. Crit Rev Oral Biol Med 2002; 13(2): 197–212

    Article  PubMed  Google Scholar 

  52. Streckfus C, Bigler L, Tucci M, et al. A preliminary study of CA15-3, c-erbB-2, epidermal growth factor receptor, cathepsin-D, and p53 in saliva among women with breast carcinoma. Cancer Invest 2000; 18(2): 101–9

    Article  PubMed  CAS  Google Scholar 

  53. Li C, Ha T, Ferguson Jr DA, et al. A newly developed PCR assay of H. pylori in gastric biopsy, saliva, and feces: evidence of high prevalence of H. pylori in saliva supports oral transmission. Dig Dis Sci 1996 Nov; 41(11): 2142–9

    Article  PubMed  CAS  Google Scholar 

  54. Loeb MB, Riddell RH, James C, et al. Evaluation of salivary antibodies to detect infection with Helicobacter pylori. Can J Gastroenterol 1997 Jul; 11(5): 437–40

    PubMed  CAS  Google Scholar 

  55. Cordeiro ML, Turpin CS, McAdams SA. A comparative study of saliva and OraSure oral fluid. Ann N Y Acad Sci 1993 Sep 20; 694: 330–1

    Article  PubMed  CAS  Google Scholar 

  56. Centers for Disease Control and Prevention (CDC). False-positive oral fluid rapid HIV tests: New York City, 2005–2008. MMWR Morb Mortal Wkly Rep 2008; 57(24): 660–5

    Google Scholar 

  57. Gorg A, Weiss W, Dunn MJ. Current two-dimensional electrophoresis technology for proteomics. Proteomics 2004 Dec; 4(12): 3665–85

    Article  PubMed  CAS  Google Scholar 

  58. Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 2002 Nov; 1(11): 845–67

    Article  PubMed  CAS  Google Scholar 

  59. Ding YH, Hixson KK, Giometti CS, et al. The proteome of dissimilatory metal-reducing microorganism Geobacter sulfurreducens under various growth conditions. Biochim Biophys Acta 2006 Jul; 1764(7): 1198–206

    Article  PubMed  CAS  Google Scholar 

  60. Wang KK, Ottens AK, Liu MC, et al. Proteomic identification of biomarkers of traumatic brain injury. Expert Rev Proteomics 2005 Aug; 2(4): 603–14

    Article  PubMed  CAS  Google Scholar 

  61. Borovecki F, Lovrecic L, Zhou J, et al. Genome-wide expression profiling of human blood reveals biomarkers for Huntington’s disease. Proc Natl Acad Sci U S A 2005 Aug 2; 102(31): 11023–8

    Article  PubMed  CAS  Google Scholar 

  62. Unlu M, Morgan ME, Minden JS. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 1997 Oct; 18(11): 2071–7

    Article  PubMed  CAS  Google Scholar 

  63. Orchekowski R, Hamelinck D, Li L, et al. Antibody microarray profiling reveals individual and combined serum proteins associated with pancreatic cancer. Cancer Res 2005 Dec 1; 65(23): 11193–202

    Article  PubMed  CAS  Google Scholar 

  64. Miller JC, Zhou H, Kwekel J, et al. Antibody microarray profiling of human prostate cancer sera: antibody screening and identification of potential biomarkers. Proteomics2003 Jan; 3(1): 56–63

    Article  PubMed  CAS  Google Scholar 

  65. Haab BB, Lizardi PM. RCA-enhanced protein detection arrays. Methods Mol Biol 2006; 328:15–29

    PubMed  CAS  Google Scholar 

  66. Woodbury RL, Varnum SM, Zangar RC. Elevated HGF levels in sera from breast cancer patients detected using a protein microarray ELISA. J Proteome Res 2002 May; 1(3): 233–7

    Article  PubMed  CAS  Google Scholar 

  67. Relucio KI, Beernink HT, Chen D, et al. Proteomic analysis of serum cytokine levels in response to highly active antiretroviral therapy (HAART). J Proteome Res 2005 Mar; 4(2): 227–31

    Article  PubMed  CAS  Google Scholar 

  68. Zweig MH, Campbell G. Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem1993 Apr; 39(4): 561–77

    PubMed  CAS  Google Scholar 

  69. Gao J, Garulacan LA, Storm SM, et al. Biomarker discovery in biological fluids. Methods 2005 Mar; 35(3): 291–302

    CAS  Google Scholar 

  70. PetricoinIII EF, Ornstein DK, Paweletz CP, et al. Serum proteomic patterns for detection of prostate cancer. J Natl Cancer Inst 2002 Oct 16; 94(20): 1576–8

    Article  PubMed  CAS  Google Scholar 

  71. Pusztai L, Gregory BW, Baggerly KA, et al. Pharmacoproteomic analysis of prechemotherapy and postchemotherapy plasma samples from patients receiving neoadjuvant or adjuvant chemotherapy for breast carcinoma. Cancer 2004 May 1; 100(9): 1814–22

    Article  PubMed  CAS  Google Scholar 

  72. Petricoin EF, Ardekani AM, Hitt BA, et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet 2002 Feb 16; 359(9306): 572–7

    Article  PubMed  CAS  Google Scholar 

  73. Qu Y, Adam BL, Yasui Y, et al. Boosted decision tree analysis of surface-enhanced laser desorption/ionization mass spectral serum profiles discriminates prostate cancer from noncancer patients. Clin Chem 2002 Oct; 48(10): 1835–43

    PubMed  CAS  Google Scholar 

  74. Clarke W, Silverman BC, Zhang Z, et al. Characterization of renal allograft rejection by urinary proteomic analysis. Ann Surg 2003 May; 237(5): 660–4

    PubMed  Google Scholar 

  75. Zethelius B, Berglund L, Sundstrom J, et al. Use of multiple biomarkers to improve the prediction of death from cardiovascular causes. N Engl J Med 2008 May 15; 358(20): 2107–16

    Article  PubMed  CAS  Google Scholar 

  76. Su JQ, Liu J.Linear combinations of multiple diagnostic markers. J Am Stat Assoc 1993; 88: 1350–5

    Article  Google Scholar 

  77. Liu A, Schisterman EF, Zhu Y. On linear combinations of biomarkers to improve diagnostic accuracy. Stat Med 2005 Jan 15; 24(1): 37–47

    Article  PubMed  Google Scholar 

  78. Brain Trauma Foundation; American Association of Neurological Surgeons; Con-gress of Neurological Surgeons; Joint Section on Neurotrauma and Critical Care, AANS/CNS, Bratton SL, Chestnut RM, Ghajar J, et al. Guidelines for the management of severe traumatic brain injury, 3rd edition. J Neurotrauma 2007; 24 Suppl. 1: S1-106

  79. Bullock MR, Povlishock JT. Editor’s commentary. J Neurotrauma 2007; 24 Suppl. 1: vii-viii [online]. Available from URL: http://www.liebertonline.com/doi/pdfplus/10.1089/neu.2007.9998 [Accessed 2008 Nov 11]

  80. Vos PE, Lamers KJ, Hendriks JC, et al. Glial and neuronal proteins in serum predict outcome after severe traumatic brain injury. Neurology 2004 Apr 27; 62(8): 1303–10

    Article  PubMed  CAS  Google Scholar 

  81. Anderson RE, Hansson LO, Nilsson O, et al. High serum S100B levels for trauma patients without head injuries. Neurosurgery 2001 Jun; 48(6): 1255–8

    PubMed  CAS  Google Scholar 

  82. Herrmann M, Jost S, Kutz S, et al. Temporal profile of release of neurobiochemical markers of brain damage after traumatic brain injury is associated with intracranial pathology as demonstrated in cranial computerized tomography. J Neurotrauma 2000 Feb; 17(2): 113–22

    Article  PubMed  CAS  Google Scholar 

  83. Muller K, Townend W, Biasca N, et al. S100B serum level predicts computed tomography findings after minor head injury. J Trauma 2007 Jun; 62(6): 1452–6

    Article  PubMed  CAS  Google Scholar 

  84. Herrmann M, Curio N, Jost S, et al. Release of biochemical markers of damage to neuronal and glial brain tissue is associated with short and long term neurop-sychological outcome after traumatic brain injury. J Neurol Neurosurg Psychiatry 2001 Jan; 70(1): 95–100

    Article  PubMed  CAS  Google Scholar 

  85. Ringger NC, O’Steen BE, Brabham JG, et al. A novel marker for traumatic brain injury: CSF alphaII-spectrin breakdown product levels. J Neurotrauma 2004 Oct; 21(10): 1443–56

    Article  PubMed  CAS  Google Scholar 

  86. Bazarian JJ, Zemlan FP, Mookerjee S, et al. Serum S-100B and cleaved-tau are poor predictors of long-term outcome after mild traumatic brain injury. Brain Inj 2006 Jun; 20(7): 759–65

    Article  PubMed  Google Scholar 

  87. Woertgen C, Rothoerl RD, Holzschuh M, et al. Comparison of serial S-100 and NSE serum measurements after severe head injury. Acta Neurochir (Wien) 1997; 139(12): 1161–4

    Article  CAS  Google Scholar 

  88. Raabe A, Grolms C, Seifert V. Serum markers of brain damage and outcome prediction in patients after severe head injury. Br J Neurosurg 1999 Feb; 13(1): 56–9

    Article  PubMed  CAS  Google Scholar 

  89. Ingebrigtsen T, Romner B. Serial S-100 protein serum measurements related to early magnetic resonance imaging after minor head injury: case report. J Neurosurg 1996 Nov; 85(5): 945–8

    Article  PubMed  CAS  Google Scholar 

  90. Ingebrigtsen T, Waterloo K, Jacobsen EA, et al. Traumatic brain damage in minor head injury: relation of serum S-100 protein measurements to magnetic resonance imaging and neurobehavioral outcome. Neurosurgery 1999 Sep; 45(3): 468–75

    Article  PubMed  CAS  Google Scholar 

  91. Ingebrigtsen T, Romner B, Marup-Jensen S, et al. The clinical value of serum S-100 protein measurements in minor head injury: a Scandinavian multicentre study. Brain Inj 2000 Dec; 14(12): 1047–55

    Article  PubMed  CAS  Google Scholar 

  92. Pelinka LE, Toegel E, Mauritz W, et al. Serum S 100 B: a marker of brain damage in traumatic brain injury with and without multiple trauma. Shock 2003 Mar; 19(3): 195–200

    Article  PubMed  CAS  Google Scholar 

  93. Raabe A, Grolms C, Sorge O, et al. Serum S-100B protein in severe head injury. Neurosurgery 1999 Sep; 45(3): 477–83

    Article  PubMed  CAS  Google Scholar 

  94. Spinella PC, Dominguez T, Drott HR, et al. S-100β protein-serum levels in healthy children and its association with outcome in pediatric traumatic brain injury. Crit Care Med 2003 Mar; 31(3): 939–45

    Article  PubMed  CAS  Google Scholar 

  95. Unden J, Bellner J, Eneroth M, et al. Raised serum S100B levels after acute bone fractures without cerebral injury. J Trauma 2005 Jan; 58(1): 59–61

    Article  PubMed  Google Scholar 

  96. Unden J, Astrand R, Waterloo K, et al. Clinical significance of serum S100B levels in neurointensive care. Neurocrit Care 2007; 6(2): 94–9

    Article  PubMed  CAS  Google Scholar 

  97. Waterloo K, Ingebrigtsen T, Romner B. Neuropsychological function in patients with increased serum levels of protein S-100 after minor head injury. Acta Neurochir (Wien) 1997; 139(1): 26–31

    Article  CAS  Google Scholar 

  98. Woertgen C, Rothoerl RD, Metz C, et al. Comparison of clinical, radiologic, and serum marker as prognostic factors after severe head injury. J Trauma 1999 Dec; 47(6): 1126–30

    Article  PubMed  CAS  Google Scholar 

  99. Skogseid IM, Nordby HK, Urdal P, et al. Increased serum creatine kinase BB and neuron specific enolase following head injury indicates brain damage. Acta Neurochir (Wien) 1992; 115(3-4): 106–11

    Article  CAS  Google Scholar 

  100. Fridriksson T, Kini N, Walsh-Kelly C, et al. Serum neuron-specific enolase as a predictor of intracranial lesions in children with head trauma: a pilot study. Acad Emerg Med 2000 Jul; 7(7): 816–20

    Article  PubMed  CAS  Google Scholar 

  101. Berger RP, Pierce MC, Wisniewski SR, et al. Neuron-specific enolase and S100B in cerebrospinal fluid after severe traumatic brain injury in infants and children. Pediatrics 2002 Feb; 109(2): E31

    Article  PubMed  Google Scholar 

  102. Varma S, Janesko KL, Wisniewski SR, et al. F2-isoprostane and neuron-specific enolase in cerebrospinal fluid after severe traumatic brain injury in infants and children. J Neurotrauma 2003 Aug; 20(8): 781–6

    Article  PubMed  Google Scholar 

  103. Yamazaki Y, Yada K, Morii S, et al. Diagnostic significance of serum neuronspecific enolase and myelin basic protein assay in patients with acute head injury. Surg Neurol 1995 Mar; 43(3): 267–70

    Article  PubMed  CAS  Google Scholar 

  104. Ross SA, Cunningham RT, Johnston CF, et al. Neuron-specific enolase as an aid to outcome prediction in head injury. Br J Neurosurg 1996 Oct; 10(5): 471–6

    Article  PubMed  CAS  Google Scholar 

  105. Raabe A, Grolms C, Keller M, et al. Correlation of computed tomography findings and serum brain damage markers following severe head injury. Acta Neurochir (Wien) 1998; 140(8): 787–91

    Article  CAS  Google Scholar 

  106. Haskins WE, Kobeissy FH, Wolper RA, et al. Rapid discovery of putative protein biomarkers of traumatic brain injury by SDS-PAGE-capillary liquid chromatography-tandem mass spectrometry. J Neurotrauma 2005 Jun; 22(6): 629–44

    Article  PubMed  Google Scholar 

  107. Pelinka LE, Kroepfl A, Schmidhammer R, et al. Glial fibrillary acidic protein in serum after traumatic brain injury and multiple trauma. J Trauma 2004 Nov; 57(5): 1006–12

    Article  PubMed  CAS  Google Scholar 

  108. Pelinka LE, Kroepfl A, Leixnering M, et al. GFAP versus S100B in serum after traumatic brain injury: relationship to brain damage and outcome. J Neurotrauma 2004 Nov; 21(11): 1553–61

    Article  PubMed  Google Scholar 

  109. Woertgen C, Rothoerl RD, Wiesmann M, et al. Glial and neuronal serum markers after controlled cortical impact injury in the rat. Acta Neurochir Suppl 2002; 81: 205–7

    PubMed  CAS  Google Scholar 

  110. Nylen K, Ost M, Csajbok LZ, et al. Increased serum-GFAP in patients with severe traumatic brain injury is related to outcome. J Neurol Sci 2006 Jan 15; 240(1-2): 85–91

    Article  PubMed  CAS  Google Scholar 

  111. Missler U, Orlowski N, Notzold A, et al. Early elevation of S-100B protein in blood after cardiac surgery is not a predictor of ischemic cerebral injury. Clin Chim Acta 2002 Jul; 321(1-2): 29–33

    Article  PubMed  CAS  Google Scholar 

  112. Pineda JA, Lewis SB, Valadka AB, et al. Clinical significance of alpha II-spectrin breakdown products in cerebrospinal fluid after severe traumatic brain injury. J Neurotrauma 2007 Feb; 24(2): 354–66

    Article  PubMed  Google Scholar 

  113. Buki A, Siman R, Trojanowski JQ, et al. The role of calpain-mediated spectrin proteolysis in traumatically induced axonal injury. J Neuropathol Exp Neurol 1999 Apr; 58(4): 365–75

    Article  PubMed  CAS  Google Scholar 

  114. Farkas O, Polgar B, Szekeres-Bartho J, et al. Spectrin breakdown products in the cerebrospinal fluid in severe head injury: preliminary observations. Acta Neurochir (Wien) 2005 Aug; 147(8): 855–61

    Article  CAS  Google Scholar 

  115. Hall ED, Sullivan PG, Gibson TR, et al. Spatial and temporal characteristics of neurodegeneration after controlled cortical impact in mice: more than a focal brain injury. J Neurotrauma 2005 Feb; 22(2): 252–65

    Article  PubMed  Google Scholar 

  116. Hayes NV, Phillips GW, Carden MJ, et al. Definition of a sequence unique in beta II spectrin required for its axon-specific interaction with fodaxin (A60). J Neurochem 1997 Apr; 68(4): 1686–95

    Article  PubMed  CAS  Google Scholar 

  117. Knoblach SM, Alroy DA, Nikolaeva M, et al. Caspase inhibitor z-DEVD-fmk attenuates calpain and necrotic cell death in vitro and after traumatic brain injury. J Cereb Blood Flow Metab 2004 Oct; 24(10): 1119–32

    Article  PubMed  CAS  Google Scholar 

  118. Pike BR, Zhao X, Newcomb JK, et al. Regional calpain and caspase-3 proteolysis of alpha-spectrin after traumatic brain injury. Neuroreport 1998 Aug 3; 9(11): 2437–42

    Article  PubMed  CAS  Google Scholar 

  119. Pike BR, Flint J, Dutta S, et al. Accumulation of non-erythroid alpha II-spectrin and calpain-cleaved alpha II-spectrin breakdown products in cerebrospinal fluid after traumatic brain injury in rats. J Neurochem 2001 Sep; 78(6): 1297–306

    Article  PubMed  CAS  Google Scholar 

  120. Pike BR, Flint J, Dave JR, et al. Accumulation of calpain and caspase-3 proteolytic fragments of brain-derived alpha II-spectrin in cerebral spinal fluid after middle cerebral artery occlusion in rats. J Cereb Blood Flow Metab 2004 Jan; 24(1): 98–106

    Article  PubMed  CAS  Google Scholar 

  121. Pineda JA, Wang KK, Hayes RL. Biomarkers of proteolytic damage following traumatic brain injury. Brain Pathol 2004 Apr; 14(2):202–9

    Article  PubMed  CAS  Google Scholar 

  122. Riederer BM, Zagon IS, Goodman SR. Brain spectrin(240/235) and brain spectrin (240/235E): two distinct spectrin subtypes with different locations within mammalian neural cells. J Cell Biol 1986 Jun; 102(6): 2088–97

    Article  PubMed  CAS  Google Scholar 

  123. Chatfield DA, Zemlan FP, Day DJ, et al. Discordant temporal patterns of S100beta and cleaved tau protein elevation after head injury: a pilot study. Br J Neurosurg 2002 Oct; 16(5): 471–6

    Article  PubMed  CAS  Google Scholar 

  124. Zemlan FP, Jauch EC, Mulchahey JJ, et al. C-tau biomarker of neuronal damage in severe brain injured patients: association with elevated intracranial pressure and clinical outcome. Brain Res 2002 Aug 23; 947(1): 131–9

    Article  PubMed  CAS  Google Scholar 

  125. Zemlan FP, Rosenberg WS, Luebbe PA, et al. Quantification of axonal damage in traumatic brain injury: affinity purification and characterization of cerebrospinal fluid tau proteins. J Neurochem 1999 Feb; 72(2): 741–50

    Article  PubMed  CAS  Google Scholar 

  126. Shaw GJ, Jauch EC, Zemlan FP. Serum cleaved tau protein levels and clinical outcome in adult patients with closed head injury. Ann Emerg Med2002 Mar; 39(3): 254–7

    Article  PubMed  Google Scholar 

  127. Berger RP, Beers SR, Richichi R, et al. Serum biomarker concentrations and outcome after pediatrie traumatic brain injury. J Neurotrauma 2007 Dec; 24(12): 1793–801

    Article  PubMed  Google Scholar 

  128. Liu MC, Akle V, Zheng W, et al. Extensive degradation of myelin basic protein isoforms by calpain following traumatic brain injury. J Neurochem 2006 Aug; 98(3): 700–12

    Article  PubMed  CAS  Google Scholar 

  129. Ottens AK, Golden EC, Bustamante L, et al. Proteolysis of multiple myelin basic protein isoforms after neurotrauma: characterization by mass spectrometry. J Neurochem 2008 Mar; 104(5): 1404–14

    Article  PubMed  CAS  Google Scholar 

  130. Thomas DG, Palfreyman JW, Ratcliffe JG. Serum-myelin-basic-protein assay in diagnosis and prognosis of patients with head injury. Lancet 1978 Jan 21; I(8056): 113–5

    Article  Google Scholar 

  131. Pelsers MM, Hanhoff T, Van der Voort D, et al. Brain- and heart-type fatty acid-binding proteins in the brain: tissue distribution and clinical utility. Clin Chem 2004 Sep; 50(9): 1568–75

    Article  PubMed  CAS  Google Scholar 

  132. Pleines UE, Morganti-Kossmann MC, Rancan M, et al. S-100 beta reflects the extent of injury and outcome, whereas neuronal specific enolase is a better indicator of neuroinflammation in patients with severe traumatic brain injury. J Neurotrauma 2001 May; 18(5): 491–8

    Article  PubMed  CAS  Google Scholar 

  133. Winter CD, Pringle AK, Clough GF, et al. Raised parenchymal interleukin-6 levels correlate with improved outcome after traumatic brain injury. Brain 2004 Feb; 127 (Pt 2): 315–20

    Article  PubMed  Google Scholar 

  134. Maier B, Schwerdtfeger K, Mautes A, et al. Differential release of interleukines 6, 8, and 10 in cerebrospinal fluid and plasma after traumatic brain injury. Shock 2001 Jun; 15(6): 421–6

    Article  PubMed  CAS  Google Scholar 

  135. Muller M, Schwerdtfeger K, Maier B, et al. Cerebral blood flow velocity and inflammatory response after severe traumatic brain injury. Eur J Ultrasound 2001 Mar; 12(3): 203–8

    Article  PubMed  CAS  Google Scholar 

  136. Singhal A, Baker AJ, Hare GM, et al. Association between cerebrospinal fluid interleukin-6 concentrations and outcome after severe human traumatic brain injury. J Neurotrauma 2002 Aug; 19(8): 929–37

    Article  PubMed  CAS  Google Scholar 

  137. Arand M, Melzner H, Kinzl L, et al. Early inflammatory mediator response following isolated traumatic brain injury and other major trauma in humans. Langenbecks Arch Surg 2001 Jul; 386(4): 241–8

    Article  PubMed  CAS  Google Scholar 

  138. Schwartz JG, Bazan III C, Gage CL, et al. Serum creatine kinase isoenzyme BB is a poor index to the size of various brain lesions. Clin Chem1989 Apr; 35(4): 651–4

    PubMed  CAS  Google Scholar 

  139. Uryu K, Giasson BI, Longhi L, et al. Age-dependent synuclein pathology following traumatic brain injury in mice. Exp Neurol 2003 Nov; 184(1): 214–24

    Article  PubMed  CAS  Google Scholar 

  140. Smith DH, Uryu K, Saatman KE, et al. Protein accumulation in traumatic brain injury. Neuromolecular Med 2003; 4(1-2): 59–72

    Article  PubMed  CAS  Google Scholar 

  141. Bramlett HM, Dietrich WD. Synuclein aggregation: possible role in traumatic brain injury. Exp Neurol 2003 Nov; 184(1): 27–30

    Article  PubMed  CAS  Google Scholar 

  142. Newell KL, Boyer P, Gomez-Tortosa E, et al. Alpha-synuclein immunoreactivity is present in axonal swellings in neuroaxonal dystrophy and acute traumatic brain injury. J Neuropathol Exp Neurol 1999 Dec; 58(12): 1263–8

    Article  PubMed  CAS  Google Scholar 

  143. Grande PO, Moller AD, Nordstrom CH, et al. Low-dose prostacyclin in treatment of severe brain trauma evaluated with microdialysis and jugular bulb oxygen measurements. Acta Anaesthesiol Scand 2000 Aug; 44(7): 886–94

    Article  PubMed  CAS  Google Scholar 

  144. Kahraman S, Ozgurtas T, Kayali H, et al. Monitoring of serum ionized magnesium in neurosurgical intensive care unit: preliminary results. Clin Chim Acta 2003 Aug; 334(1-2): 211–5

    Article  PubMed  CAS  Google Scholar 

  145. Saniova B, Drobny M, Lehotsky J, et al. Biochemical and clinical improvement of cytotoxic state by amantadine sulphate. Cell Mol Neurobiol 2006 Oct; 26(7-8): 1475–82

    Article  PubMed  CAS  Google Scholar 

  146. Mazzeo AT, Kunene NK, Gilman CB, et al. Severe human traumatic brain injury, but not cyclosporin a treatment, depresses activated T lymphocytes early after injury. J Neurotrauma 2006 Jun; 23(6): 962–75

    Article  PubMed  Google Scholar 

  147. Mrlian A, Smrcka M, Klabusay M. The use of controlled mild hypothermia and immune system status in patients with severe brain injury. Bratisl Lek Listy 2006; 107(4): 113–7

    PubMed  CAS  Google Scholar 

  148. Kleindienst A, Ross BM. A critical analysis of the role of the neurotrophic protein S100B in acute brain injury. J Neurotrauma 2006 Aug; 23(8): 1185–200

    Article  PubMed  Google Scholar 

  149. Kleindienst A, Hesse F, Bullock MR, et al. The neurotrophic protein S100B: value as a marker of brain damage and possible therapeutic implications. Prog Brain Res 2007; 161: 317–25

    Article  PubMed  CAS  Google Scholar 

  150. Shore PM, Berger RP, Varma S, et al. Cerebrospinal fluid biomarkers versus Glasgow Coma Scale and Glasgow Outcome Scale in pediatric traumatic brain injury: the role of young age and inflicted injury. J Neurotrauma 2007 Jan; 24(1): 75–86

    Article  PubMed  Google Scholar 

  151. Savola O, Pyhtinen J, Leino TK, et al. Effects of head and extracranial injuries on serum protein S100B levels in trauma patients.J Trauma 2004 Jun; 56(6): 1229–34

    Article  PubMed  CAS  Google Scholar 

  152. Kleindienst A, Tolias CM, Corwin FD, et al. Assessment of cerebral S100B levels by proton magnetic resonance spectroscopy after lateral fluid-percussion injury in the rat. J Neurosurg 2005 Jun; 102(6): 1115–21

    Article  PubMed  CAS  Google Scholar 

  153. DaRocha AB, Schneider RF, de Freitas GR, et al. Role of serum S100B as a predictive marker of fatal outcome following isolated severe head injury or multitrauma in males. Clin Chem Lab Med 2006; 44(10): 1234–42

    PubMed  Google Scholar 

  154. Raabe A, Kopetsch O, Woszczyk A, et al. Serum S-100B protein as a molecular marker in severe traumatic brain injury. Restor Neurol Neurosci 2003; 21(3-4): 159–69

    PubMed  CAS  Google Scholar 

  155. Piazza O, Esposito G, De RE, et al. S100B in Guillain-Barre syndrome. Br J Anaesth 2006 Jan; 96(1): 141–2

    Article  PubMed  CAS  Google Scholar 

  156. Bonner JA, Sloan JA, Rowland KM, et al. Significance of neuron-specific enolase levels before and during therapy for small cell lung cancer. Clin Cancer Res 2000 Feb; 6(2): 597–601

    PubMed  CAS  Google Scholar 

  157. McKeating EG, Andrews PJ, Mascia L. Relationship of neuron specific enolase and protein S-100 concentrations in systemic and jugular venous serum to injury severity and outcome after traumatic brain injury. Acta Neurochir Suppl 1998; 71: 117–9

    PubMed  CAS  Google Scholar 

  158. Hsu AA, Fenton K, Weinstein S, et al. Neurological injury markers in children with septic shock. Pediatr Crit Care Med 2008 May; 9(3): 245–51

    Article  PubMed  Google Scholar 

  159. Missler U, Wiesmann M, Wittmann G, et al. Measurement of glial fibrillary acidic protein in human blood: analytical method and preliminary clinical results. Clin Chem 1999 Jan; 45(1): 138–41

    PubMed  CAS  Google Scholar 

  160. Warren MW, Zheng W, Kobeissy FH, et al. Calpain- and caspase-mediated alpha II-spectrin and tau proteolysis in rat cerebrocortical neuronal cultures after ecstasy or methamphetamine exposure. Int J Neuropsychopharmacol 2007 Aug; 10(4): 479–89

    Article  PubMed  CAS  Google Scholar 

  161. Warren MW, Kobeissy FH, Liu MC, et al. Concurrent calpain and caspase-3 mediated proteolysis of alpha II-spectrin and tau in rat brain after methamphetamine exposure: a similar profile to traumatic brain injury. Life Sci 2005 Dec 5; 78(3): 301–9

    Article  PubMed  CAS  Google Scholar 

  162. Cardali S, Maugeri R. Detection of alphaII-spectrin and breakdown products in humans after severe traumatic brain injury. J Neurosurg Sci 2006 Jun; 50(2): 25–31

    PubMed  CAS  Google Scholar 

  163. Glatz JF, van derVusse GJ. Cellular fatty acid-binding proteins: their function and physiological significance. Prog Lipid Res 1996 Sep; 35(3): 243–82

    Article  PubMed  CAS  Google Scholar 

  164. Delanghe J, DeBM, De WH, et al. Estimation of brain lesion size based on quantifying CK-BB release. Clin Chem 1990 Feb; 36(2): 404–5

    PubMed  CAS  Google Scholar 

  165. Levitt MA, Cook LA, Simon BC, et al. Biochemical markers of cerebral injury in patients with minor head trauma and ethanol intoxication. Acad Emerg Med 1995 Aug; 2(8): 675–80

    Article  PubMed  CAS  Google Scholar 

  166. Perel P, Arango M, Clayton T, et al. Predicting outcome after traumatic brain injury: practical prognostic models based on large cohort of international patients. BMJ 2008 Feb 23; 336(7641): 425–9

    Article  PubMed  Google Scholar 

  167. Maas AI, Hukkelhoven CW, Marshall LF, et al. Prediction of outcome in traumatic brain injury with computed tomographic characteristics: a comparison between the computed tomographic classification and combinations of computed tomographic predictors. Neurosurgery 2005 Dec; 57(6): 1173–82

    Article  PubMed  Google Scholar 

  168. Chieregato A, Fainardi E, Morselli-Labate AM, et al. Factors associated with neurological outcome and lesion progression in traumatic subarachnoid hemorrhage patients. Neurosurgery 2005 Apr; 56(4): 671–80

    Article  PubMed  Google Scholar 

  169. Wardlaw JM, Easton VJ, Statham P. Which CT features help predict outcome after head injury? J Neurol Neurosurg Psychiatry 2002 Feb; 72(2): 188–92

    Article  PubMed  CAS  Google Scholar 

  170. Bullock MR. Comments. Neurosurgery 2005; 57(6): 1181

    Google Scholar 

  171. Mathez D, Bagnarelli P, Gorin I, et al. Reductions in viral load and increases in T lymphocyte numbers in treatment-naive patients with advanced HIV-1 infection treated with ritonavir, zidovudine and zalcitabine triple therapy. Antivir Ther 1997 Jul; 2(3): 175–83

    PubMed  CAS  Google Scholar 

  172. Mellors JW, Munoz A, Giorgi JV, et al. Plasma viral load and CD4+ lymphocytes as prognostic markers of HIV-1 infection. Ann Intern Med 1997 Jun 15; 126(12): 946–54

    PubMed  CAS  Google Scholar 

  173. Sahuquillo J, Poca MA, Amoros S. Current aspects of pathophysiology and cell dysfunction after severe head injury. Curr Pharm Des 2001 Oct; 7(15): 1475–503

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The Vivian L. Smith Center for Neurological Research supported the preparation of this review; research in the authors’ laboratories was supported by The Mission Connect/TIRR Foundation and grants from the National Institutes of Health (grant numbers NS35457, NS049160, and MH072933). The funding organizations had no role in the design, conduct, collection, management, analysis, or interpretation of the review.

The authors have no conflicts of interest to report. All those who made relevant contributions to the work have been included as authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgene W. Hergenroeder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hergenroeder, G.W., Redell, J.B., Moore, A.N. et al. Biomarkers in the Clinical Diagnosis and Management of Traumatic Brain Injury. Mol Diag Ther 12, 345–358 (2008). https://doi.org/10.1007/BF03256301

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/BF03256301

Keywords