Skip to main content

Numerical Investigation of Cosmological Singularities

  • Chapter
Relativity and Scientific Computing
  • 321 Accesses

Summary

A primary unresolved issue for cosmological singularities is whether or not their behavior is locally of the Mixmaster type [as conjectured by Belinskii, Khalatnikov, and Lifshitz (BKL)]. The Mixmaster dynamics first appears in spatially homogeneous cosmologies of Bianchi types VIII and IX. A multiple of the spatial scalar curvature acts as a closed potential leading, in the evolution toward the singularity (say τ → ∞), to an (almost certainly) infinite sequence of bounces whose parameters exhibit the sensitivity to the initial conditions usually associated with chaos. Other homogeneous cosmologies are characterized by open (or no) potentials leading to a last bounce as τ → ∞ . Such models are called asymptotically velocity term dominated (AVTD). Here we shall describe a numerical approach to address the BKL conjecture. Starting with a symplectic numerical method ideally suited to this problem, we shall consider application of the method to three models of increasing complexity. The first application is to spatially homogeneous (vacuum) Mixmaster cosmologies where we compare the symplectic ODE solver to a Runge-Kutta one. The second application is to the (plane symmetric, vacuum) Gowdy universe on T3 × R. The dynamical degrees of freedom satisfy nonlinearly coupled PDEs in one spatial dimension and time. We demonstrate support for conjectured AVTD behavior for this model and explain its observed nonlinear small-scale spatial structure. Finally, we study U(1) symmetric, vacuum cosmologies on T3 × R. These are the simplest spatially inhomogeneous universes in which local Mixmaster dynamics is allowed. The Gowdy code is easily generalized to this model, although the spatial differencing needed in the symplectic method is not trivial. For AVTD models, we expect the potential-like term in the Hamiltonian constraint to vanish as τ → ∞ while in local Mixmaster it becomes (locally) large from time to time. We show how the potential behaves for a variety of generic U(l) models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fleck, J.A., Morris, J.R., Feit, M.D. (1976): Time-dependent propagation of high-energy laser-beams through atmosphere. Appl. Phys. 10, 129–160

    Article  ADS  Google Scholar 

  2. Moncrief, V. (1983): Finite-difference approach to solving operator equations of motion in quantum theory. Phys. Rev. D 28, 2485–2490

    Article  MathSciNet  ADS  Google Scholar 

  3. Berger, B.K., Moncrief, V. (1993): Numerical investigation of cosmological singularities. Phys. Rev. D 48, 4676–4687

    Article  MathSciNet  ADS  Google Scholar 

  4. Blanco, S., Costa, A., Rosso, O.A. (195): Chaos in classical cosmology. II. Preprint University of Buenos Aires

    Google Scholar 

  5. Misner, C.W., Thorne, K.S., Wheeler, J.A. (1973): Gravitation. Freeman, San Francisco

    Google Scholar 

  6. Belinskii, V.A., Lifshitz, E.M., Khalatnikov, I.M. (1971): Oscillatory approach to the singular point in relativistic cosmology. Sov. Phys. Usp. 13, 745–765

    Article  ADS  Google Scholar 

  7. Misner, C. W. (1969): Mixmaster universe. Phys. Rev. Lett. 22, 1071–1074

    Article  ADS  MATH  Google Scholar 

  8. Ryan Jr., M.P., Shepley, L.C. (1975): Homogeneous relativistic cosmologies. Princeton University Press, Princeton

    Google Scholar 

  9. Chernoff, D.F., Barrow J.D. (1983): Chaos in the Mixmaster universe. Phys. Rev. Lett. 50, 134–137

    Article  MathSciNet  ADS  Google Scholar 

  10. Berger, B.K. (1994): How to determine approximate Mixmaster parameters from numerical evolution of Einstein’s equations. Phys. Rev. D 49, 1120–1123

    Article  ADS  Google Scholar 

  11. Moser, A.R., Matzner, R.A., Ryan Jr., M.P. (1973): Numerical solutions for symmetric Bianchi IX universes. Ann. Phys. (N.Y.) 79, 558–579

    Article  ADS  Google Scholar 

  12. Hobill, D., Burd, A., Coley, A. (eds.) (1994): Deterministic chaos in general relativity. Plenum, New York

    Google Scholar 

  13. Kasner, E. (1921): Geometrical theorems on Einstein’s cosmological equations. Am. J. Math. 43, 130

    Article  MathSciNet  MATH  Google Scholar 

  14. Gowdy, R.H. (1971): Gravitation waves in closed universes. Phys. Rev. Lett. 27, 826–829

    Article  ADS  Google Scholar 

  15. Berger, B.K. (1974): Quantum graviton creation in a model universe. Ann. Phys. (N.Y.) 83, 458–490

    Article  ADS  Google Scholar 

  16. Isenberg, J., Moncrief, V. (1990): Asymptotic behavior of the gravitational field and the nature of singularities in Gowdy spacetimes. Ann. Phys. (N.Y.) 199, 84–122

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Grubišić, B., Moncrief, V. (1993): Asymptotic behavior of the T3 × R Gowdy space-times. Phys. Rev. D 47, 2371–2382

    Article  MathSciNet  ADS  Google Scholar 

  18. Moncrief, V. (1986): Reduction of Einstein’s equations for vacuum space-times with space-like U(1) isometry groups. Ann. Phys. (N.Y.) 167, 118–142

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Suzuki, M. (1990): Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations. Phys. Lett. A 146, 319–323

    Article  MathSciNet  ADS  Google Scholar 

  20. Berger, B.K. (1991): Comments on the computation of Liapunov exponents for the Mixmaster universe. Gen. Rel. Grav. 23, 1385–1402

    Article  ADS  Google Scholar 

  21. Berger, B.K. (1990): Numerical study of initially expanding Mixmaster universes. Class. Quantum Grav. 7, 203–216

    Article  ADS  Google Scholar 

  22. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T. (1992): Numerical recipes (second edition). Cambridge University Press, Cambridge

    Google Scholar 

  23. Garcia, A.L. (1994): Numerical methods for physicists. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  24. Berger, B.K., Garfinkle, D., Strasser, E. (1995): A numerical study of Mixmaster dynamics in magnetic Bianchi V I. cosmologies. In preparation

    Google Scholar 

  25. Berger, B.K., Garfinkle, D.,Grubišić, B., Moncrief, V. (1995): Phenomenology of the Gowdy cosmology on T3 × R. In preparation

    Google Scholar 

  26. Grubišić, B., Moncrief, V. (1994): Mixmaster spacetime, Geroch’s transformation, and constants of motion. Phys. Rev. D 49, 2792–2800

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Berger, B.K. (1996). Numerical Investigation of Cosmological Singularities. In: Hehl, F.W., Puntigam, R.A., Ruder, H. (eds) Relativity and Scientific Computing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-95732-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-95732-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-95734-5

  • Online ISBN: 978-3-642-95732-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics