- Agre P, Kozono D (2003) Aquaporin water channels: molecular mechanisms for human deseases. FEBS Lett 555:72–78 - Article 
    PubMed 
    CAS 
    
                    Google Scholar 
                 
- Amiry-Moghaddam M, Ottersen OP (2003) The molecular basis of water transport in the brain. Nat Rev Neurosci 4:991–1001 - Article 
    PubMed 
    CAS 
    
                    Google Scholar 
                 
- Bemana I, Nagao S (1999) Treatment of brain edema with a nonpeptide arginine vasopressin V1 receptor antagonist OPC-21268 in rats. Neurosurgery 44:148–155 - Article 
    PubMed 
    CAS 
    
                    Google Scholar 
                 
- Buijs RM (1978) Intra and extrahypothalamic vasopressin and oxytocin pathway in the rat. Pathways to limbic system, medulla oblongata and spinal cord. Cell Tissue Res 192:423–435 - Article 
    PubMed 
    CAS 
    
                    Google Scholar 
                 
- Chen Y, McNeill JR, Hajek I, Hertz L (1992) Effect of vasopressin on brain swelling at the cellular level: do astrocytes exhibit a furosemide-vasopressin-sensitive mechanism for volume regulation? Can J Physiol Pharmacol 70:S367–S373 - PubMed 
    CAS 
    
                    Google Scholar 
                 
- Cserr HF, Latzkovits L (1992) A role for centrally released vasopressin in brain ion and volume regulation: a hypothesis. Prog Brain Res 91:3–6 - Article 
    PubMed 
    CAS 
    
                    Google Scholar 
                 
- Del Bigio MR, Fedoroff S (1990) Swelling of astroglia in vitro and the effect of arginine vasopressin and atrial natriuretic peptide. Acta Neurochir Suppl 51:14–16 - 
                    Google Scholar 
                 
- DePasquale M, Patlak CS, Cserr HF (1989) Brain ion and volume regulation during acute hypernatremia in Brattleboro rats. Am J Physiol 256:F1059–F1066 - 
                    Google Scholar 
                 
- de Vries GJ, Miller MA (1998) Anatomy and function of extrahypothalamic vasopressin systems in the brain. Prog Brain Res 199:3–20 - 
                    Google Scholar 
                 
- Dickinson LD, Betz AL (1992) Attenuated development of ischemic brain edema in vasopressin deficient rats. J Cereb Blood Flow Metab 12:681–690 - PubMed 
    CAS 
    
                    Google Scholar 
                 
- Dixon CE, Clifton GL, Lighthall JW, Yaghmai AA, Hayes RL (1991) A controlled cortical impact model of traumatic brain injury in the rat. J Neurosci Methods 39:253–262 - Article 
    PubMed 
    CAS 
    
                    Google Scholar 
                 
- Doczi T, Szerdahelyi P, Gluya K, Kiss J (1982) Brain water accumulation after the central administration of vasopressin. Neurosurgery 11:402–407 - PubMed 
    CAS 
    
                    Google Scholar 
                 
- Doczi T, Laszlo FA, Szerdahelyi P, Joo F (1984) Involvement of vasopressin in brain edema formation: further evidence obtained from the Brattleboro diabetes insipidus rat with experimental subarachnoid hemorrhage. Neurosurgery 14:436–441 - Article 
    PubMed 
    CAS 
    
                    Google Scholar 
                 
- Faraci FM, Mayhan WG, Farrrell WJ, Heistad DD (1988) Humoral regulation of blood flow to choroid plexus: role of arginine vasopressin. Circ Res 63:373–379 - PubMed 
    CAS 
    
                    Google Scholar 
                 
- Finkelstein A (1987) Water movements through lipid bilayers, pores and plasma membranes: theory and reality. John Wiley & Sons, New York - 
                    Google Scholar 
                 
- Graham DI, Adams JH, Nicoll JA, Maxwell WL, Gennarelli TA (1995) The nature, distribution and causes of traumatic brain injury. Brain Pathol 5:397–406 - Article 
    PubMed 
    CAS 
    
                    Google Scholar 
                 
- Kleindienst A, Fazzina G, Dunbar JG, Glisson R, Marmarou A (2006) Protective effect of the V1a receptor antagonist SR49059 on brain edema formation following middle cerebral artery occlusion in the rat. Acta Neurochir Suppl 96:303–306 - Article 
    PubMed 
    CAS 
    
                    Google Scholar 
                 
- Landgraf R (1992) Central release of vasopressin: stimuli, dynamics, consequences. Prog Brain Res 91:29–39 - Article 
    PubMed 
    CAS 
    
                    Google Scholar 
                 
- Latzkovits L, Cserr HF, Park JT, Patlak CS, Pettigrew KD, Rimanoczy A (1993) Effects of arginine vasopressin and atriopeptin on glial cell volume measured as 3-MG space. Am J Physiol 264:C603–C608 - PubMed 
    CAS 
    
                    Google Scholar 
                 
- Manley GT, Fujimura M, Ma T, Noshita N, Filiz F, Bollen AW, Chan P, Verkman AS (2000) Aquaporin4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med 6:159–163 - Article 
    PubMed 
    CAS 
    
                    Google Scholar 
                 
- Marmarou A (1994) Traumatic brain edema: an overview. Acta Neurochir Suppl 60:421–424 - CAS 
    
                    Google Scholar 
                 
- Nielsen S, Nagelhus EA, Amiry-Moghaddam M, Bourque C, Agre P, Ottersen OP (1997) Specialized membrane domains for water transport in glial cells: high- resolution immunogold cytochemistry of aquaporin4 in rat brain. J Neurosci 17:171–180 - PubMed 
    CAS 
    
                    Google Scholar 
                 
- Nierman H, Amry-Moghaddam M, Holthoff K, Witte Ow, Ottersen OP (2001) A novel role of vasopressin in the brain: modulation of activity-dependent water flux in the neocortex. J Neurosci 21:3045–3051 - 
                    Google Scholar 
                 
- Noto T, Nakajima T, Saji Y, Nagawa Y (1978) Effect of vasopressin on intracranial pressure of rabbit. Endocrinol Jpn 25:591–596 - PubMed 
    CAS 
    
                    Google Scholar 
                 
- Papadopoulos MC, Krishna S, Verkman AS (2002) Aquaporin water channels and brain edema. Mt Sinai J Med 69:242–248 - PubMed 
    
                    Google Scholar 
                 
- Raichle ME, Grubb RL (1978) Regulation of brain water permeability by centrally released vasopressin. Brain Res 143: 191–194 - Article 
    PubMed 
    CAS 
    
                    Google Scholar 
                 
- Reeder RF, Nattie EE, North WG (1986) Effect of vasopressin on cold-induced brain edema in cats. J Neurosurg 64:941–950 - Article 
    PubMed 
    CAS 
    
                    Google Scholar 
                 
- Rosenberg GA, Scremin O, Estrada E, Keyner WT (1992) Arginine vasopressin V1 antagonist and atrial natriuretic peptide reduce hemorrhagic brain edema in rats. Stroke 23:1767–1774 - PubMed 
    CAS 
    
                    Google Scholar 
                 
- Serradeil-Le Gal C, Wagnon J, Garcia C, Lacour C, Guiraudou P, Christophe B, Villanova G, Nisato D, Maffrand JP, Fur GL, Guillon G, Cantau B, Barberies C, Trueba M, Ala Y, Jard S (1993) Biochemical and pharmacological properties of SR49059, a new, potent, nonpeptide antagonist of rat and human vasopressin V1a receptors. J Clin Invest 92:224–231 - Article 
    PubMed 
    CAS 
    
                    Google Scholar 
                 
- Shuaib A, Wang CX, Yang T, Noor R (2002) Effects of nonpeptide V1 vasopressin receptor antagonist SR49059 on infarction volume and recovery of function in a focal embolic stroke model. Stroke 33:3033–3037 - Article 
    PubMed 
    CAS 
    
                    Google Scholar 
                 
- Thibonnier M, Kilani A, Rahman M, DiBlasi TP, Warner K, Smith MC, Leenhardt AF, Brouard R (1999) Effects of the nonpeptide V1 vasopressin receptor antagonist SR49059 in hypertensive patients. Hypertension 34:1293–1300 - PubMed 
    CAS 
    
                    Google Scholar 
                 
- Tribollet E, Raufaste D, Maffrand JP, Serradeil-Le Gal C (1999) Binding of the non-peptide vasopressin V1a receptor antagonist SR49059 in te rat brain: an in vitro and in vivo autoradiographic study. Neuroendocrinology 69:113–120 - Article 
    PubMed 
    CAS 
    
                    Google Scholar 
                 
- Venero JL, Vizuete ML, Machado A, Cano J (2001) Aquaporins in the central nervous system. Prog Neurobiol 63:321–336 - Article 
    PubMed 
    CAS 
    
                    Google Scholar 
                 
- Verkman AS (2002) Physiological importance of aquaporin water channels. Ann Med 34:192–200 - Article 
    PubMed 
    CAS 
    
                    Google Scholar 
                 
- Zeuthen T (1994) Cotransport of K+,Cl− and H2O by membrane proteins from choroid plexus epithelium of Necturus maculosus. J Physiol 478:203–219 - PubMed 
    CAS 
    
                    Google Scholar 
                 
- Zeuthen T, Meinild AK, Klaerke DA, Loo DD, Wright EM, Belhage B, Litman T (1997) Water transport by the Na+/ glucose cotrans porter under isotonic conditions. Biol Cell 89:307–312 - Article 
    PubMed 
    CAS 
    
                    Google Scholar