Hoebe K, Janssen E, Beutler B (2004) The interface between innate and adaptive immunity. Nat Immunol 5:971–974
Article
CAS
PubMed
Google Scholar
Babior BM, Kipnes RS, Curnutte JT (1973) Biological defense mechanisms: production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest 52:741–744
Article
CAS
PubMed Central
PubMed
Google Scholar
Klebanoff SJ (1967) Iodination of bacteria: a bactericidal mechanism. J Exp Med 126:1063–1078
Article
CAS
PubMed Central
PubMed
Google Scholar
Lehrer RI, Hanifin J, Cline MJ (1969) Defective bactericidal activity in myeloperoxidase-deficient human neutrophils. Nature 223:78–79
Article
CAS
PubMed
Google Scholar
Bainton DF, Ullyot JL, Farquhar MG (1971) The development of neutrophilic polymorphonuclear leukocytes in human bone marrow. J Exp Med 134:907–934
Article
CAS
PubMed Central
PubMed
Google Scholar
Bainton DF, Farquhar MG (1968) Differences in enzyme content of azurophil and specific granules of polymorphonuclear leukocytes. I. Histochemical staining of bone marrow smears. J Cell Biol 39:286–298
Article
CAS
PubMed
Google Scholar
Borregaard N, Cowland JB (1997) Granules of the human neutrophilic polymorphonuclear leukocyte. Blood 89:3503–3521
CAS
PubMed
Google Scholar
Segal AW, Abo A (1993) The biochemical basis of the NADPH oxidase of phagocytes. Trends Biochem Sci 18:43–47
Article
CAS
PubMed
Google Scholar
Babior BM (1999) NADPH oxidase: an update. Blood 93:1464–1476
CAS
PubMed
Google Scholar
Clark RA (1990) The human neutrophil respiratory burst oxidase. J Infect Dis 161:1140–1147
Article
CAS
PubMed
Google Scholar
Zigmond SH (1978) Chemotaxis by polymorphonuclear leukocytes. J Cell Biol 77:269–287
Article
CAS
PubMed
Google Scholar
Southwick FS, Stossel TP (1983) Contractile proteins in leukocyte function. Semin Hematol 20:305–321
CAS
PubMed
Google Scholar
Fliedner TM, Cronkite EP, Robertson JS (1964) Granulocytopoiesis. I. Senescence and random loss of neutrophilic granulocytes in human beings. Blood 24:402–414
CAS
PubMed
Google Scholar
Athens JW, Haab OP, Raab SO et al (1961) Leukokinetic studies. IV. The total blood, circulating and marginal granulocyte pools and the granulocyte turnover rate in normal subjects. J Clin Invest 40:989–995
Article
CAS
PubMed Central
PubMed
Google Scholar
Rossi F, Zatti M (1964) Changes in the metabolic pattern of polymorphonuclear leukocytes during phagocytosis. Br J Exp Pathol 45:548–559
CAS
PubMed Central
PubMed
Google Scholar
Nauseef WM, Clark RA (2000) Granulocytic phagocytes. In: Mandell GL, Bennett JP, Dolin R (eds) Basic principles in the diagnosis and management of infectious diseases, 5th edn. Churchill Livingstone, New York, pp 89–112
Google Scholar
Kobayashi SD, Voyich JM, Buhl CL, Stahl RM, DeLeo FR (2002) Global changes in gene expression by human polymorphonuclear leukocytes during receptor-mediated phagocytosis: cell fate is regulated at the level of gene expression. Proc Natl Acad Sci U S A 99:6901–6906
Article
CAS
PubMed Central
PubMed
Google Scholar
Theilgaard-Mönch K, Knudsen S, Follin P, Borregaard N (2004) The transcriptional activation program of human neutrophils in skin lesions supports their important role in wound healing. J Immunol 172:7684–7693
PubMed
Google Scholar
Zhang XQ, Kluger Y, Nakayama Y et al (2004) Gene expression in mature neutrophils: early responses to inflammatory stimuli. J Leukoc Biol 75:358–372
Article
CAS
PubMed
Google Scholar
Strieter RM, Kasahara K, Allen RM et al (1992) Cytokine-induced neutrophil-derived interleukin-8. Am J Pathol 141:397–407
CAS
PubMed
Google Scholar
Schiffmann E, Corcoran BA, Wahl SM (1975) N-formylmethionyl peptides as chemoattractants for leucocytes. Proc Natl Acad Sci U S A 72:1059–1062
Article
CAS
PubMed Central
PubMed
Google Scholar
Snyderman R, Goetzl EJ (1981) Molecular and cellular mechanisms of leukocyte chemotaxis. Science 213:830–835
Article
CAS
PubMed
Google Scholar
Allen RA, Jesaitis AJ, Cochrane CG (1990) The N-formyl peptide receptor. In: Cochrane CG, Gimbrone MA (eds) Cellular and molecular mechanisms of inflammation: receptors of inflammatory cells, structure–-function relationships. Academic, San Diego, pp 83–112
Chapter
Google Scholar
O'Flaherty JT, Showell HJ, Ward PA (1977) Influence of extracellular Ca2+ and Mg2+ on chemotactic factor-induced neutrophil aggregation. Inflammation 2:265–276
Article
PubMed
Google Scholar
Serhan CN, Broekman MJ, Korchak HM, Smolen JE, Marcus AJ, Weissmann G (1983) Changes in phosphatidylinositol and phosphatidic acid in stimulated human neutrophils. Relationship to calcium mobilization, aggregation and superoxide radical generation. Biochim Biophys Acta 762:420–428
Article
CAS
PubMed
Google Scholar
McPhail LC, Clayton CC, Snyderman R (1984) A potential second messenger role for unsaturated fatty acids: activation of Ca++-dependent protein kinase. Science 224:622–625
Article
CAS
PubMed
Google Scholar
Aharoni I, Pick E (1990) Activation of the superoxide-generating NADPH oxidase of macrophages by sodium dodecyl sulfate in a soluble cell-free system: evidence for involvement of a G protein. J Leukoc Biol 48:107–115
CAS
PubMed
Google Scholar
Quinn MT, Parkos CA, Walker L, Orkin SH, Dinauer MC, Jesaitis AJ (1989) Association of a ras-related protein with cytochrome b of human neutrophils. Nature 342:198–200
Article
CAS
PubMed
Google Scholar
Abo A, Pick E, Hall A, Totty N, Teahan CG, Segal AW (1991) Activation of the NADPH oxidase involves the small GTP-binding protein p21rac1. Nature 353:668–670
Article
CAS
PubMed
Google Scholar
Knaus UG, Heyworth PG, Evans T, Curnutte JT, Bokoch GM (1991) Regulation of phagocyte oxygen radical production by the GTP-binding protein Rac2. Science 254:1512–1515
Article
CAS
PubMed
Google Scholar
Serhan CN, Savill J (2005) Resolution of inflammation: the beginning programs the end. Nat Immunol 6:1191–1197
Article
CAS
PubMed
Google Scholar
Savill JS, Wyllie AH, Henson JE, Walport MJ, Henson PM, Haslett C (1989) Macrophage phagocytosis of aging neutrophils in inflammation. Programmed cell death in the neutrophil leads to its recognition by macrophages. J Clin Invest 83:865–875
Article
CAS
PubMed Central
PubMed
Google Scholar
Whyte MK, Meagher LC, MacDermot J, Haslett C (1993) Impairment of function in aging neutrophils is associated with apoptosis. J Immunol 150:5124–5134
CAS
PubMed
Google Scholar
DeLeo FR (2004) Modulation of phagocyte apoptosis by bacterial pathogens. Apoptosis 9:399–413
Article
CAS
PubMed
Google Scholar
Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A (2004) Neutrophil extracellular traps kill bacteria. Science 303:1532–1535
Article
CAS
PubMed
Google Scholar
Tobias JD, Schleien C (1991) Granulocyte transfusions – a review for the intensive care physician. Anaesth Intensive Care 19:512–520
CAS
PubMed
Google Scholar
Froland SS (1984) Bacterial infections in the compromised host. Scand J Infect Dis Suppl 43:7–16
CAS
PubMed
Google Scholar
Bodey GP, Buckley M, Sathe YS, Freireich EJ (1966) Quantitative relationships between circulating leukocytes and infection in patients with acute leukemia. Ann Intern Med 64:328–340
Article
CAS
PubMed
Google Scholar
Dale DC, Guerry D, Wewerka JR, Bull JM, Chusid MJ (1979) Chronic neutropenia. Medicine (Baltimore) 58:128–144
Article
CAS
Google Scholar
Kobayashi SD, Voyich JM, Braughton KR et al (2004) Gene expression profiling provides insight into the pathophysiology of chronic granulomatous disease. J Immunol 172:636–643
CAS
PubMed
Google Scholar
Bunting M, Harris ES, McIntyre TM, Prescott SM, Zimmerman GA (2002) Leukocyte adhesion deficiency syndromes: adhesion and tethering defects involving beta 2 integrins and selectin ligands. Curr Opin Hematol 9:30–35
Article
PubMed
Google Scholar
Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247
Article
CAS
PubMed
Google Scholar
Rahman I, Biswas SK, Kode A (2006) Oxidant and antioxidant balance in the airways and airway diseases. Eur J Pharmacol 533:222–239
Article
CAS
PubMed
Google Scholar
Temple MD, Perrone GG, Dawes IW (2005) Complex cellular responses to reactive oxygen species. Trends Cell Biol 15:319–326
Article
CAS
PubMed
Google Scholar
Weiss SJ (1989) Tissue destruction by neutrophils. N Engl J Med 320:365–376
Article
CAS
PubMed
Google Scholar
Altieri DC (1995) Proteases and protease receptors in modulation of leukocyte effector functions. J Leukoc Biol 58:120–127
CAS
PubMed
Google Scholar
Zaidi SH, You XM, Ciura S, Husain M, Rabinovitch M (2002) Overexpression of the serine elastase inhibitor elafin protects transgenic mice from hypoxic pulmonary hypertension. Circulation 105:516–521
Article
CAS
PubMed
Google Scholar
Zeiher BG, Matsuoka S, Kawabata K, Repine JE (2002) Neutrophil elastase and acute lung injury: prospects for sivelestat and other neutrophil elastase inhibitors as therapeutics. Crit Care Med 30:S281–S287
Article
CAS
PubMed
Google Scholar
Ganz T (2004) Antimicrobial polypeptides. J Leukoc Biol 75:34–38
Article
CAS
PubMed
Google Scholar