Skip to main content

SGAM: An Array-Based Approach for High-Resolution Genetic Mapping in Saccharomyces cerevisiae

  • Protocol
  • First Online:
Yeast Functional Genomics and Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 548))

  • 1695 Accesses

  • 16 Citations

Summary

The development of genome-scale resources and high-throughput methodologies has enabled systematic assessment of gene function in vivo. Synthetic genetic array (SGA) analysis automates yeast genetic manipulation, permitting diverse analysis of ∼5,000 viable deletion mutants in Saccharomyces cerevisiae. SGA methodology has enabled genome-wide synthetic lethal screening and construction of a large-scale genetic interaction network for yeast. Genetic networks often reveal new components of specific pathways and functional relationships between genes whose products buffer one another or impinge on a common essential pathway. Because SGA analysis can be used to manipulate any genetic element linked to a selectable marker, it is a highly versatile approach that can be adapted for a variety of different genetic screens, including synthetic lethality, dosage suppression, and dosage lethality. This chapter focuses on a specific SGA application for high-resolution genetic mapping, referred to as SGA mapping (SGAM), which enables the identification of suppressor mutations and thus provides a powerful means for interrogating gene function and pathway order.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Boone, C., Bussey, H., et al (2007). Exploring genetic interactions and networks with yeast. Nature Reviews Genetics 8, 437–449.

    Article  PubMed  Google Scholar 

  2. Giaever, G., Chu, A. M., et al (2002). Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391.

    Article  PubMed  Google Scholar 

  3. Winzeler, E., Shoemaker, D. D., et al (1999). Functional Characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906.

    Article  PubMed  Google Scholar 

  4. Kaelin, W. G. (2005). The concept of synthetic lethality in the context of anticancer therapy. Nature Reviews Cancer 5, 689–698.

    Article  PubMed  Google Scholar 

  5. Hartman, J. L., Garvik, B., et al (2001). Principles for the buffering of genetic variation. Science 291, 1001–1004.

    Article  PubMed  Google Scholar 

  6. Hartwell, L. (2004). Genetics. Robust interactions. Science 303, 774–775.

    Article  PubMed  Google Scholar 

  7. Tong, A., Lesage, G., et al (2004). Global mapping of the yeast genetic interaction network. Science 303, 808–813.

    Article  PubMed  Google Scholar 

  8. Tong, A. H. Y., Evangelista, M., et al (2001). Systematic genetic analysis with ordered 
arrays of yeast deletion mutants. Science 294, 2364–2368.

    Article  PubMed  Google Scholar 

  9. Jorgensen, P., Nelson, B., et al (2002). High-resolution genetic mapping with ordered arrays of Saccharomyces cerevisiae deletion mutants. Genetics 162, 1091–1099.

    PubMed  Google Scholar 

  10. Chang, M., Bellaoui, M., et al (2005). RMI1/NCE4, a suppressor of genome instability, encodes a member of the RecQ helicase TopoIII complex. EMBO J. 24, 2024–2033.

    Article  PubMed  Google Scholar 

  11. Menne, T. F., Goyenechea, B., et al (2007). The Shwachman-Bodian-Diamond syndrome 
protein mediates translation activation of ribosomes in yeast. Nature Genetics 39, 
486–495

    Article  PubMed  Google Scholar 

  12. Goldstein, A. L., McCusker, J. H. (1999). Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15, 1541–1553.

    Article  PubMed  Google Scholar 

  13. Cheng, T. H., Chang, C. R., et al (2000). Controlling gene expression in yeast by inducible site-specific recombination. Nucleic Acids Research 28, E108.

    Article  PubMed  Google Scholar 

  14. Tong, A., Boone, C. (2006). Synthetic genetic array analysis in Saccharomyces cerevisiae. In Xiao W (ed.) Yeast Protocols, 2nd edn. Humana, Totowa, NJ, pp. 171–191.

    Google Scholar 

Download references

Acknowledgments

We thank Anastasia Baryshnikova, Renee Brost, Julie Guzzo, and Corey Nislow for help with figures and comments on the manuscript. This work was supported by grants to CB from the Canadian Institutes for Health Research and Genome Canada through the Ontario Genomics Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Boone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Costanzo, M., Boone, C. (2009). SGAM: An Array-Based Approach for High-Resolution Genetic Mapping in Saccharomyces cerevisiae . In: Stagljar, I. (eds) Yeast Functional Genomics and Proteomics. Methods in Molecular Biology, vol 548. Humana Press. https://doi.org/10.1007/978-1-59745-540-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-540-4_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-71-8

  • Online ISBN: 978-1-59745-540-4

  • eBook Packages: Springer Protocols

Key words

Publish with us

Policies and ethics