Inzucchi SE, Sherwin RS (2011) Type 1 diabetes mellitus, Cecil Med. 24th Ed Phila. Pa Saunders Elsevier
Google Scholar
Shaw JE, Sicree RA, Zimmet PZ (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 87(1):4–14
Article
CAS
PubMed
Google Scholar
Mokdad AH et al (Jan. 2003) Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. JAMA 289(1):76–79
Article
PubMed
Google Scholar
Cecil RLF, Goldman L, Schafer AI (2012) Goldman’s cecil medicine, expert consult premium edition—enhanced online features and print, single volume, 24: Goldman’s cecil medicine. Elsevier Health Sciences, Amsterdam
Google Scholar
Dokken BB (2008) The pathophysiology of cardiovascular disease and diabetes: beyond blood pressure and lipids. Diabetes Spectr 21(3):160–165
Article
Google Scholar
Kolfschoten IGM, Roggli E, Nesca V, Regazzi R (2009) Role and therapeutic potential of microRNAs in diabetes. Diabetes Obes Metab 11:118–129
Article
CAS
PubMed
Google Scholar
John B, Sander C, Marks DS (2006) Prediction of human microRNA targets. Methods Mol Biol 342:101–113. Clifton, NJ
CAS
PubMed
Google Scholar
Guay C, Roggli E, Nesca V, Jacovetti C, Regazzi R (2011) Diabetes mellitus, a microRNA-related disease? Transl Res 157(4):253–264
Article
CAS
PubMed
Google Scholar
Poy MN et al (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432(7014):226–230
Article
CAS
PubMed
Google Scholar
Avnit-Sagi T, Kantorovich L, Kredo-Russo S, Hornstein E, Walker MD (2009) The promoter of the pri-miR-375 gene directs expression selectively to the endocrine pancreas. PLoS One 4(4):e5033
Article
PubMed
PubMed Central
Google Scholar
Joglekar MV, Joglekar VM, Hardikar AA (2009) Expression of islet-specific microRNAs during human pancreatic development. Gene Expr Patterns 9(2):109–113
Article
CAS
PubMed
Google Scholar
Poy MN et al (2009) miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc Natl Acad Sci U S A 106(14):5813–5818
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Y et al (2010) miR-375 enhances palmitate-induced lipoapoptosis in insulin-secreting NIT-1 cells by repressing myotrophin (V1) protein expression. Int J Clin Exp Pathol 3(3):254–264
CAS
PubMed
PubMed Central
Google Scholar
El Ouaamari A, Baroukh N, Martens GA, Lebrun P, Pipeleers D, van Obberghen E (2008) miR-375 targets 3′-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells. Diabetes 57(10):2708–2717
Article
PubMed Central
Google Scholar
Kloosterman WP, Lagendijk AK, Ketting RF, Moulton JD, Plasterk RHA (2007) Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development. PLoS Biol 5(8):e203
Article
PubMed
PubMed Central
Google Scholar
Lynn FC, Skewes-Cox P, Kosaka Y, McManus MT, Harfe BD, German MS (2007) MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes 56(12):2938–2945
Article
CAS
PubMed
Google Scholar
Baroukh N et al (2007) MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic beta-cell lines. J Biol Chem 282(27):19575–19588
Article
CAS
Google Scholar
Joglekar MV, Parekh VS, Mehta S, Bhonde RR, Hardikar AA (2007) MicroRNA profiling of developing and regenerating pancreas reveal post-transcriptional regulation of neurogenin3. Dev Biol 311(2):603–612
Article
CAS
PubMed
Google Scholar
Krichevsky AM, Sonntag K-C, Isacson O, Kosik KS (2006) Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells 24(4):857–864
Article
CAS
PubMed
Google Scholar
Conaco C, Otto S, Han J-J, Mandel G (2006) Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci U S A 103(7):2422–2427
Article
CAS
PubMed Central
Google Scholar
Lovis P, Gattesco S, Regazzi R (2008) Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs. Biol Chem 389(3):305–312
Article
CAS
PubMed
Google Scholar
Cuellar TL, McManus MT (2005) MicroRNAs and endocrine biology. J Endocrinol 187(3):327–332
Article
CAS
PubMed
Google Scholar
Plaisance V, Abderrahmani A, Perret-Menoud V, Jacquemin P, Lemaigre F, Regazzi R (2006) MicroRNA-9 controls the expression of granuphilin/Slp4 and the secretory response of insulin-producing cells. J Biol Chem 281(37):26932–26942
Article
CAS
PubMed
Google Scholar
Ramachandran D, Roy U, Garg S, Ghosh S, Pathak S, Kolthur-Seetharam U (2011) Sirt1 and mir-9 expression is regulated during glucose-stimulated insulin secretion in pancreatic β-islets. FEBS J 278(7):1167–1174
Article
CAS
PubMed
Google Scholar
Sun L-L, Jiang B-G, Li W-T, Zou J-J, Shi Y-Q, Liu Z-M (2011) MicroRNA-15a positively regulates insulin synthesis by inhibiting uncoupling protein-2 expression. Diabetes Res Clin Pract 91(1):94–100
Article
CAS
PubMed
Google Scholar
Roggli E et al (2010) Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells. Diabetes 59(4):978–986
Article
CAS
PubMed
PubMed Central
Google Scholar
Lovis P et al (2008) Alterations in microRNA expression contribute to fatty acid-induced pancreatic beta-cell dysfunction. Diabetes 57(10):2728–2736
Article
CAS
PubMed
PubMed Central
Google Scholar
Ortega FJ et al (2010) MiRNA expression profile of human subcutaneous adipose and during adipocyte differentiation. PloS ONE 5(2):e9022
Article
PubMed
PubMed Central
Google Scholar
Stump CS, Henriksen EJ, Wei Y, Sowers JR (2006) The metabolic syndrome: role of skeletal muscle metabolism. Ann Med 38(6):389–402
Article
CAS
PubMed
Google Scholar
Granjon A et al (2009) The microRNA signature in response to insulin reveals its implication in the transcriptional action of insulin in human skeletal muscle and the role of a sterol regulatory element-binding protein-1c/myocyte enhancer factor 2C pathway. Diabetes 58(11):2555–2564
Article
CAS
PubMed
PubMed Central
Google Scholar
He A, Zhu L, Gupta N, Chang Y, Fang F (2007) Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes. Mol Endocrinol 21(11):2785–2794
Article
CAS
PubMed
Google Scholar
Gallagher IJ et al (2010) Integration of microRNA changes in vivo identifies novel molecular features of muscle insulin resistance in type 2 diabetes. Genome Med 2(2):9
Article
PubMed
PubMed Central
Google Scholar
Yu X-Y et al (2008) Glucose induces apoptosis of cardiomyocytes via microRNA-1 and IGF-1. Biochem Biophys Res Commun 376(3):548–552
Article
CAS
PubMed
Google Scholar
Elia L et al (Dec. 2009) Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions. Circulation 120(23):2377–2385
Article
CAS
PubMed
PubMed Central
Google Scholar
Sandhu MS, Heald AH, Gibson JM, Cruickshank JK, Dunger DB, Wareham NJ (2002) Circulating concentrations of insulin-like growth factor-I and development of glucose intolerance: a prospective observational study. Lancet 359(9319):1740–1745. Lond Engl
Article
CAS
PubMed
Google Scholar
Horie T et al (2009) MicroRNA-133 regulates the expression of GLUT4 by targeting KLF15 and is involved in metabolic control in cardiac myocytes. Biochem Biophys Res Commun 389(2):315–320
Article
CAS
PubMed
Google Scholar
Zampetaki A et al (2010) Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res 107(6):810–817
Article
CAS
PubMed
Google Scholar
Huang B et al (2009) MicroRNA expression profiling in diabetic GK rat model. Acta Biochim Biophys Sin 41(6):472–477
Article
CAS
PubMed
Google Scholar
Kiriakidou M et al (2004) A combined computational-experimental approach predicts human microRNA targets. Genes Dev 18(10):1165–1178
Article
CAS
PubMed
PubMed Central
Google Scholar
Niu W et al (2003) Maturation of the regulation of GLUT4 activity by p38 MAPK during L6 cell myogenesis. J Biol Chem 278(20):17953–17962
Article
CAS
PubMed
Google Scholar
Karolina DS et al (2011) MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus. PloS One 6(8):e22839
Article
CAS
PubMed
PubMed Central
Google Scholar
Samuel VT, Shulman GI (2012) Mechanisms for insulin resistance: common threads and missing links. Cell 148(5):852–871
Article
CAS
PubMed
PubMed Central
Google Scholar
Raghow R, Yellaturu C, Deng X, Park EA, Elam MB (2008) SREBPs: the crossroads of physiological and pathological lipid homeostasis. Trends Endocrinol Metab 19(2):65–73
Article
CAS
PubMed
Google Scholar
Sacco J, Adeli K (2012) MicroRNAs: emerging roles in lipid and lipoprotein metabolism. Curr Opin Lipidol 23(3):220–225
Article
CAS
PubMed
Google Scholar
Rayner KJ et al (2010) MiR-33 contributes to the regulation of cholesterol homeostasis. Science 328(5985):1570–1573
Article
CAS
PubMed
PubMed Central
Google Scholar
Gerin I et al (2010) Expression of miR-33 from an SREBP2 intron inhibits cholesterol export and fatty acid oxidation. J Biol Chem 285(44):33652–33661
Article
CAS
PubMed
PubMed Central
Google Scholar
Horie T et al (2010) MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo. Proc Natl Acad Sci U S A 107(40):17321–17326
Article
CAS
PubMed
PubMed Central
Google Scholar
Wijesekara N et al (2012) miR-33a modulates ABCA1 expression, cholesterol accumulation, and insulin secretion in pancreatic islets. Diabetes 61(3):653–658
Article
CAS
PubMed
PubMed Central
Google Scholar
Kahn SE, Hull RL, Utzschneider KM (2006) Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444(7121):840–846
Article
CAS
PubMed
Google Scholar
Xie H, Lim B, Lodish HF (May 2009) MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes 58(5):1050–1057
Article
CAS
PubMed
PubMed Central
Google Scholar
Esau C et al (2004) MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 279(50):52361–52365
Article
CAS
PubMed
Google Scholar
Kajimoto K, Naraba H, Iwai N (2006) MicroRNA and 3T3-L1 pre-adipocyte differentiation. RNA 12(9):1626–1632. N. Y. N
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu P, Vernooy SY, Guo M, Hay BA (2003) The drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol 13(9):790–795
Article
CAS
PubMed
Google Scholar
Teleman AA, Cohen SM (2006) Drosophila lacking microRNA miR-278 are defective in energy homeostasis. Genes Dev 20(4):417–422
Article
CAS
PubMed
PubMed Central
Google Scholar
Adler S (2004) Diabetic nephropathy: linking histology, cell biology, and genetics. Kidney Int 66(5):2095–2106
Article
PubMed
Google Scholar
Krupa A, Jenkins R, Luo DD, Lewis A, Phillips A, Fraser D (2010) Loss of MicroRNA-192 promotes fibrogenesis in diabetic nephropathy. J Am Soc Nephrol 21(3):438–447
Article
CAS
PubMed
PubMed Central
Google Scholar
Kato M et al (2007) MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-β-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci U S A 104(9):3432–3437
Article
CAS
PubMed
PubMed Central
Google Scholar
Putta S, Lanting L, Sun G, Lawson G, Kato M, Natarajan R (2012) Inhibiting microRNA-192 ameliorates renal fibrosis in diabetic nephropathy. J Am Soc Nephrol 23(3):458–469
Article
CAS
PubMed
PubMed Central
Google Scholar
Chung ACK, Huang XR, Meng X, Lan HY (2010) miR-192 mediates TGF-beta/Smad3-driven renal fibrosis. J Am Soc Nephrol 21(8):1317–1325
Article
CAS
PubMed
PubMed Central
Google Scholar
Du B et al (2010) High glucose down-regulates miR-29a to increase collagen IV production in HK-2 cells. FEBS Lett 584(4):811–816
Article
CAS
PubMed
Google Scholar
Wang Q et al (2008) MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy. FASEB J 22(12):4126–4135. Off Publ Fed Am Soc Exp Biol
Article
CAS
PubMed
PubMed Central
Google Scholar
Schena FP, Gesualdo L (2005) Pathogenetic mechanisms of diabetic nephropathy. J Am Soc Nephrol 16(3 suppl 1):S30–S33
Article
CAS
PubMed
Google Scholar
van Hoeven KH, Factor SM (1990) A comparison of the pathological spectrum of hypertensive, diabetic, and hypertensive-diabetic heart disease. Circulation 82(3):848–855
Article
PubMed
Google Scholar
Tang X, Tang G, Özcan S (2008) Role of MicroRNAs in diabetes. Biochim Biophys Acta 1779(11):697–701
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y et al (2007) Ionic mechanisms underlying abnormal QT prolongation and the associated arrhythmias in diabetic rabbits: a role of rapid delayed rectifier K+ current. Cell Physiol Biochem 19(5–6):225–238. Int J Exp Cell Physiol Biochem Pharmacol
Article
CAS
PubMed
Google Scholar
Carè A et al (2007) MicroRNA-133 controls cardiac hypertrophy. Nat Med 13(5):613–618
Article
PubMed
Google Scholar
Collins KK, Van Hare GF (2006) Advances in congenital long QT syndrome. Curr Opin Pediatr 18(5):497–502
Article
PubMed
Google Scholar
Mizusawa Y, Horie M, Wilde AAM (2014) Genetic and clinical advances in congenital long QT syndrome. Circ J 78(12):2827–2833
Article
PubMed
Google Scholar
Paulussen A et al (2000) Analysis of the human KCNH2(HERG) gene: identification and characterization of a novel mutation Y667X associated with long QT syndrome and a non-pathological 9 bp insertion. Hum Mutat 15(5):483
Article
CAS
PubMed
Google Scholar
Shan H et al (2013) Upregulation of microRNA-1 and microRNA-133 contributes to arsenic-induced cardiac electrical remodeling. Int J Cardiol 167(6):2798–2805
Article
PubMed
Google Scholar
Xiao J et al (2007) MicroRNA miR-133 represses HERG K+ channel expression contributing to QT prolongation in diabetic hearts. J Biol Chem 282(17):12363–12367
Article
CAS
PubMed
Google Scholar
Xiao J et al (2011) MicroRNA miR-133 represses HERG K+ channel expression contributing to QT prolongation in diabetic hearts. J Biol Chem 286(32):28656–28656
Article
CAS
Google Scholar
Shen E, Diao X, Wang X, Chen R, Hu B (2011) MicroRNAs involved in the mitogen-activated protein kinase cascades pathway during glucose-induced cardiomyocyte hypertrophy. Am J Pathol 179(2):639–650
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu H, Buchan RJ, Cook SA (2010) MicroRNA-223 regulates Glut4 expression and cardiomyocyte glucose metabolism. Cardiovasc Res 86(3):410–420
Article
CAS
PubMed
Google Scholar
Chen X et al (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18(10):997–1006
Article
CAS
PubMed
Google Scholar
Fichtlscherer S et al (2010) Circulating microRNAs in patients with coronary artery disease. Circ Res 107(5):677–684
Article
CAS
PubMed
Google Scholar
Wang C et al (2016) Increased serum microRNAs are closely associated with the presence of microvascular complications in type 2 diabetes mellitus. Sci Rep 6:20032
Article
CAS
PubMed
PubMed Central
Google Scholar
Chien H-Y et al (2015) Circulating microRNA as a diagnostic marker in populations with type 2 diabetes mellitus and diabetic complications. J Chin Med Assoc 78(4):204–211
Article
PubMed
Google Scholar
Pescador N, Pérez-Barba M, Ibarra JM, Corbatón A, Martínez-Larrad MT, Serrano-Ríos M (2013) Serum circulating microRNA profiling for identification of potential type 2 diabetes and obesity biomarkers. PloS One 8(10):e77251
Article
CAS
PubMed
PubMed Central
Google Scholar
Hutvágner G, Simard MJ, Mello CC, Zamore PD (2004) Sequence-specific inhibition of small RNA function. PLoS Biol 2(4):E98
Article
PubMed
PubMed Central
Google Scholar
Krützfeldt J et al (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438(7068):685–689
Article
PubMed
Google Scholar
Lanford RE et al (2010) Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327(5962):198–201
Article
CAS
PubMed
Google Scholar
Frost RJA, Olson EN (2011) Control of glucose homeostasis and insulin sensitivity by the let-7 family of microRNAs. Proc Natl Acad Sci U S A 108(52):21075–21080
Article
CAS
PubMed Central
Google Scholar
Merrins MJ, Stuenkel EL (2008) Kinetics of Rab27a-dependent actions on vesicle docking and priming in pancreatic beta-cells. J Physiol 586(22):5367–5381
Article
CAS
PubMed
PubMed Central
Google Scholar