Anderson, P.M., Lozhkin, A.V. & Brubaker, L.B. Implications of a 24,000-yr palynological record for a Younger Dryas cooling and for boreal forest development in Northeastern Siberia. Quaternary Research. 2002. Vol. 57. P. 325–333.
Google Scholar
Andreev, A.A., Klimanov, V.A. & Sulerzhitsky, L.D. Younger Dryas pollen records from central and southern Yakutia. Quaternary International. 1997. Vol. 41/42. P. 111–117.
Google Scholar
Bazylinski, D.A. Controlled biomineralization of minerals by magnetotactic bacteria. Chemical Geology. 1996. Vol. 132. P. 191–198.
Google Scholar
Blaauw, M. and Christen, J.A. Bacon Manual. 2011. Vol. 2.2. http://www.chron.qub.ac.uk/blaauw/bacon.html.
Borkhodoev, V. Ya. Accuracy of the fundamental parameter method for x-ray fluorescence analysis of rocks. X-Ray Spectrom. 2002. Vol. 31. P. 209–218.
Google Scholar
Boyle, J. F. Inorganic geochemical methods in paleolimnology, in: Tracking Environmental Change Using Lake Sediments Volume 2: Physical and Geochemical Methods, edited by: Last, W. M. and Smol, J. P., Springer, Berlin, 2002. P. 83–141.
Google Scholar
Burov, B.V., Nurgaliev, D.K., and Yasonov, P.G., Paleomagnitnyi analiz (Paleomagnetic Analysis), Kazan: KGU, 1986 (in Russian).
Google Scholar
Davison, W. Iron and manganese in lakes. Earth Sci. Rev. 1993. Vol. 34. P. 119–163.
Google Scholar
Day, R., Fuller, M., and Schmidt, V.A. Hysteresis Properties of Titanomagnetites: Grain_Size and Compositional Dependence. Phys. Earth Planet. Inter. 1977. Vol. 13. P. 260–267.
Google Scholar
Dunlop, D.J. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data. J. Geophys. Res. 2002. Vol. 107. P.56–60.
Google Scholar
Evans, M.E. and Heller, F. Environmental Magnetism. Principles and Applications of Enviromagnetics, edited by Dmowska R., Holton J.R., and Rossby H.T. Academic Press. 2003. 299 p.
Google Scholar
Fabian, K., Shcherbakov, V.P., and McEnroe, S.A. Measuring the Curie temperature. Geochem. Geophys. Geosyst. 2013. Vol. 14. P. 947–961.
Google Scholar
Fralick, P.W., Kronberg, B.I. Geochemical discrimination of elastic sedimentary rock sources. Sedimentary Geology. 1997. Vol. 113. P. 111–124.
Google Scholar
Gehring, A.U. and Hofmeister, A.M. The Transformation of Lepidocrocite during Heating: a Magnetic and Spectroscopic Study. Clays Clay Miner. 1994. Vol. 42. P. 409–415.
Google Scholar
Gehring, A.U., Karthein, R., and Reller, A. Activated State in the Lepidocrocite Structure during Thermal Treatment. Naturwissenschaften. 1990. Vol. 77. P. 177–179.
Google Scholar
Gendler, T.S., Shcherbakov, V.P., Dekkers, M.J., Gapeev, A.K., Gribov, S.K., and McClelland, E. The Lepidocrocite-Maghemite-Haematite Reaction Chain: I. Acquisition of Chemical Remanent Magnetization by Maghemite, Its Magnetic Properties and Thermal Stability. Geophys. J. Int. 2005. Vol. 160. P. 815–832.
Google Scholar
Hammer, Ø., Harper, D. A. T., and Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis Palaeontol. Electron. 2001. Vol. 4. 9 pp.
Google Scholar
Hanesch, M., Stanjek, H., and Petersen, N. Thermomagnetic Measurements of Soil Iron Minerals: the Role of Organic Carbon. Geophys. J. Int. 2006. Vol. 165. P. 53–61.
Google Scholar
Heiri, O., Lotter, A. F., and Lemcke, G. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J. Paleolimnol. 2001. Vol. 25. P. 101–110.
Google Scholar
Just, J. and Kontny, A. Thermally induced alterations of minerals during measurements of the temperature dependence of magnetic susceptibility: a case study from the hydrothermally altered Soultz-sous-Forêts granite, France. Int. J. Earth Sci. 2012. Vol. 101. P. 819–839.
Google Scholar
Karavaev, M.N. Synopsisof the Flora of Yakutia. USSRAcademy of Sciences, Moscow-Leningrad, 1958 (In Russian).
Google Scholar
King, J and Peck, J. Use of palaeomagnetism in studies of lake sediments. In Tracking Environmental Change Using Lake Sediments Volume 1: Basin Analysis, Coring, and Chronological Techniques, edited by: Last, W. M. and Smol, J. P., Springer, Berlin, 2002. P. 371–389.
Google Scholar
Korzun, Ju. A Palynological analysis of glacial lake sediments from the upper basin of the Indigirka River. Bulletin of the North-East Scientific Center, RussianAcademy of Sciences Far East Branch. 2017. Vol. 1. P. 24–31 (In Russian).
Google Scholar
Lattard, D., Engelmann, R., Kontny A. and Sauerzapf, U. 2006. Curie temperatures of synthetic titanomagnetites in the Fe-Ti-O system. Reassessment of some methodological and crystal chemical effects. J. Geophys. Res. 2006. Vol. 111, B12S28.
Google Scholar
Li, J., Benzerara, K., Bernard, S., Beyssac, O. The link between biomineralization and fossilization of bacteria: Insights from field and experimental studies. Chemical Geology. 2013. Vol. 359. P. 49–69.
Google Scholar
Minyuk, P. S. and Borkhodoev, V. Ya. Geochemistry of Sediments from Lake Grand, Northeast Russia. Geochemistry International. 2016. Vol. 54 (9). P. 807–816.
Google Scholar
Minyuk, P. S., Borkhodoev, V. Y., and Wennrich, V. Inorganic geochemistry data from Lake El’gygytgyn sediments: marine isotope stages 6-11. Climate of the Past. 2014. Vol. 10. P. 467–485.
Google Scholar
Minyuk, P.S., Subbotnikova, T.V., and Plyashkevich, A.A. Measurements of Thermal Magnetic Susceptibility of Hematite and Goethite. Izvestiya, Physics of the Solid Earth. 2011. Vol. 47 (9). P. 762–774.
Google Scholar
PALE, 1994. Research Protocols for PALE: Paleoclimates of Arctic Lakes and Estuaries. 53 pp. PAGES Workshop Report Series, Bern, Switzerland.
Google Scholar
Petrovský, E. and Kapička, A. On determination of the Curie point from thermomagnetic curves. J. Geophys. Res. 2006. Vol. 111. B12S27, https://doi.org/10.1029/2006jb004507.
Ponomareva, V.V., Kyle, P.R., Melekestsev, I.V., Rinkleff, P.G., Dirksen, O.V., Sulerzhitsky, L.D., Zaretskaia, N.E., and Rourke, R., The 7600 (14C) Year BP Kurile Lake Caldera_Forming Eruption, Kamchatka, Russia: Stratigraphy and Field Relationships. J. Volcanol. Geotherm. Res. 2004. Vol. 136. P. 199–222.
Google Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronch Ramsey, C., Buck, C.E., Cheng, H., Edwards, R.I., Friedrich, M., Grootes, P.M., Guilderson, T.P., Halidasson, H., Hajdas, I., Hatte, C., Heaton, T.J., Hoffman, D.I., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., Manning, S.W., Niu, M., Reimer, R.W., Richards, D.A., Scott, E.M., Southon, J.R., Staff, R.A., Turney, C.A. & van der Plicht, J. IntCal13 and marine13 radiocarbon age calibration curves 0-50,000 years cal BP. Radiocarbon. 2013. Vol. 55. P. 1869–1887.
Google Scholar
Sevast’tyanova, E. S. Behavior of phosphorus in oceanic ferromanganese micro and macronodules. Lithol. Polezn. Iskop. 1981. Vol. 6. P. 96–101 (in Russian).
Google Scholar
Sevast’tyanova, E. S. Correlation of phosphorus and tetravalent manganese contents in pelagic oxidized clays. Okeanologiya. 1982. Vol. 32(6). P. 970–974 (in Russian).
Google Scholar
Sharma, S., Joachimski, M., Sharma, M., Tobschall, H. J., Singh, I. B., Sharma, C., Chauhan, M. S., and Morgenroth, G. Late glacial and Holocene environmental changes in Ganga plain, Northern India. Quaternary Sci. Rev. 2004. Vol. 23. P. 145–159.
Google Scholar
Song, J., Jia, S.-Y., Yu,B., Wu,S.-H., Han,X. Formation of iron (hydr)oxides during the abiotic oxidation of Fe(II) in the presence of arsenate. Journal of Hazardous Materials. 2015. Vol. 294.P. 70–79.
Google Scholar
Webster, N.A.S., Loan, M.J., Madsen, I.C., Knott, R.B., Brodie, G. M., Kimpton, J. A. An in situ synchrotron X-ray diffraction investigation of lepidocrocite and ferrihydrite-seeded Al(OH)3 crystallisation from supersaturated sodium aluminate liquor. Journal of Crystal Growth. 2012. Vol. 340. P. 112–117.
Google Scholar
Wright, H.E., Jr., Mann, D.H., and Glaser, P.H. Piston Corers for Peat and Lake Sediments. Ecology. 1984. Vol. 65. P. 657–659.
Google Scholar
Yudovich, Ya.E., Ketris, M.P. Geochemical indicators of Lithogenesis. (Ed. Tkachev Yu. A.). Syktytvkar, 2011. 742 p (in Russian).
Google Scholar