Skip to main content

Kolmogorov’s Extension Theorem and Brownian Motion

  • Chapter
  • First Online:
A Basic Course in Probability Theory

Part of the book series: Universitext ((UTX))

  • 5608 Accesses

Abstract

Suppose a probability measure Q is given on a product space \(\varOmega = \mathop {\prod }_{t\in \varLambda } S_{t}\) with the product \(\sigma \)-field \(\mathcal {F}= \otimes _{t \in \varLambda } \mathcal {S}_t\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

eBook
USD 23.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 23.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

') var buybox = document.querySelector("[data-id=id_"+ timestamp +"]").parentNode var buyingOptions = buybox.querySelectorAll(".buying-option") ;[].slice.call(buyingOptions).forEach(initCollapsibles) var buyboxMaxSingleColumnWidth = 480 function initCollapsibles(subscription, index) { var toggle = subscription.querySelector(".buying-option-price") subscription.classList.remove("expanded") var form = subscription.querySelector(".buying-option-form") var priceInfo = subscription.querySelector(".price-info") var buyingOption = toggle.parentElement if (toggle && form && priceInfo) { toggle.setAttribute("role", "button") toggle.setAttribute("tabindex", "0") toggle.addEventListener("click", function (event) { var expandedBuyingOptions = buybox.querySelectorAll(".buying-option.expanded") var buyboxWidth = buybox.offsetWidth ;[].slice.call(expandedBuyingOptions).forEach(function(option) { if (buyboxWidth <= buyboxMaxSingleColumnWidth && option != buyingOption) { hideBuyingOption(option) } }) var expanded = toggle.getAttribute("aria-expanded") === "true" || false toggle.setAttribute("aria-expanded", !expanded) form.hidden = expanded if (!expanded) { buyingOption.classList.add("expanded") } else { buyingOption.classList.remove("expanded") } priceInfo.hidden = expanded }, false) } } function hideBuyingOption(buyingOption) { var toggle = buyingOption.querySelector(".buying-option-price") var form = buyingOption.querySelector(".buying-option-form") var priceInfo = buyingOption.querySelector(".price-info") toggle.setAttribute("aria-expanded", false) form.hidden = true buyingOption.classList.remove("expanded") priceInfo.hidden = true } function initKeyControls() { document.addEventListener("keydown", function (event) { if (document.activeElement.classList.contains("buying-option-price") && (event.code === "Space" || event.code === "Enter")) { if (document.activeElement) { event.preventDefault() document.activeElement.click() } } }, false) } function initialStateOpen() { var buyboxWidth = buybox.offsetWidth ;[].slice.call(buybox.querySelectorAll(".buying-option")).forEach(function (option, index) { var toggle = option.querySelector(".buying-option-price") var form = option.querySelector(".buying-option-form") var priceInfo = option.querySelector(".price-info") if (buyboxWidth > buyboxMaxSingleColumnWidth) { toggle.click() } else { if (index === 0) { toggle.click() } else { toggle.setAttribute("aria-expanded", "false") form.hidden = "hidden" priceInfo.hidden = "hidden" } } }) } initialStateOpen() if (window.buyboxInitialised) return window.buyboxInitialised = true initKeyControls() })()

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This proof is due to Edward Nelson (1959), Regular Probability Measures on Function Spaces, Ann. of Math. 69, 630–643.

  2. 2.

    See Appendix B for a proof of Tychonoff’s theorem for the case of countable \(\varLambda \). For uncountable \(\varLambda \), see Folland (1984).

  3. 3.

    For general locally compact Hausdorff spaces see Folland (1984), or Royden (1988).

  4. 4.

    For a proof of Tulcea’s theorem see Ethier and Kurtz (1986), or Neveu (1965).

  5. 5.

    See e.g., Bhattacharya, R. N. and Waymire E.C. (2016), Stationary Processes and Discrete Parameter Markov Processes, Chapter I, Sec 2, Springer (to appear).

  6. 6.

    This construction originated in Ciesielski, Z. (1961): Hölder condition for realization of Gaussian processes, Trans. Amer. Math. Soc. 99 403–413, based on a general approach of Lévy, P. (1948), p. 209.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabi Bhattacharya .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Bhattacharya, R., Waymire, E.C. (2016). Kolmogorov’s Extension Theorem and Brownian Motion. In: A Basic Course in Probability Theory. Universitext. Springer, Cham. https://doi.org/10.1007/978-3-319-47974-3_9

Download citation

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Publish with us

Policies and ethics