Skip to main content

Weak Convergence of Probability Measures on Metric Spaces

  • Chapter
  • First Online:
A Basic Course in Probability Theory

Part of the book series: Universitext ((UTX))

  • 5477 Accesses

Abstract

Let \((S,\rho )\) be a metric space and let \(\mathcal {P}(S)\) be the set of all probability measures on \((S, \mathcal {B}(S)).\) In this chapter we consider a general formulation of convergence in \(\mathcal {P}(S)\), referred to as weak convergence or convergence in distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

eBook
USD 23.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 23.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

') var buybox = document.querySelector("[data-id=id_"+ timestamp +"]").parentNode var buyingOptions = buybox.querySelectorAll(".buying-option") ;[].slice.call(buyingOptions).forEach(initCollapsibles) var buyboxMaxSingleColumnWidth = 480 function initCollapsibles(subscription, index) { var toggle = subscription.querySelector(".buying-option-price") subscription.classList.remove("expanded") var form = subscription.querySelector(".buying-option-form") var priceInfo = subscription.querySelector(".price-info") var buyingOption = toggle.parentElement if (toggle && form && priceInfo) { toggle.setAttribute("role", "button") toggle.setAttribute("tabindex", "0") toggle.addEventListener("click", function (event) { var expandedBuyingOptions = buybox.querySelectorAll(".buying-option.expanded") var buyboxWidth = buybox.offsetWidth ;[].slice.call(expandedBuyingOptions).forEach(function(option) { if (buyboxWidth <= buyboxMaxSingleColumnWidth && option != buyingOption) { hideBuyingOption(option) } }) var expanded = toggle.getAttribute("aria-expanded") === "true" || false toggle.setAttribute("aria-expanded", !expanded) form.hidden = expanded if (!expanded) { buyingOption.classList.add("expanded") } else { buyingOption.classList.remove("expanded") } priceInfo.hidden = expanded }, false) } } function hideBuyingOption(buyingOption) { var toggle = buyingOption.querySelector(".buying-option-price") var form = buyingOption.querySelector(".buying-option-form") var priceInfo = buyingOption.querySelector(".price-info") toggle.setAttribute("aria-expanded", false) form.hidden = true buyingOption.classList.remove("expanded") priceInfo.hidden = true } function initKeyControls() { document.addEventListener("keydown", function (event) { if (document.activeElement.classList.contains("buying-option-price") && (event.code === "Space" || event.code === "Enter")) { if (document.activeElement) { event.preventDefault() document.activeElement.click() } } }, false) } function initialStateOpen() { var buyboxWidth = buybox.offsetWidth ;[].slice.call(buybox.querySelectorAll(".buying-option")).forEach(function (option, index) { var toggle = option.querySelector(".buying-option-price") var form = option.querySelector(".buying-option-form") var priceInfo = option.querySelector(".price-info") if (buyboxWidth > buyboxMaxSingleColumnWidth) { toggle.click() } else { if (index === 0) { toggle.click() } else { toggle.setAttribute("aria-expanded", "false") form.hidden = "hidden" priceInfo.hidden = "hidden" } } }) } initialStateOpen() if (window.buyboxInitialised) return window.buyboxInitialised = true initKeyControls() })()

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Billingsley (1968) provides a detailed exposition and comprehensive account of the weak convergence theory. From the point of view of functional analysis, weak convergence is actually convergence in the weak* topology. However the abuse of terminology has become the convention in this context.

  2. 2.

    A non-Fourier analytic proof was found by Guenther Walther (1997): On a conjecture concerning a theorem of Cramér and Wold, J. Multivariate Anal., 63, 313–319, resolving some serious doubts about whether it would be possible.

  3. 3.

    See Parthasarathy, K.R. (1967), Theorem 6.5, pp. 46–47, or Bhattacharya and Majumdar (2007), Theorem C11.6, p. 237.

  4. 4.

    The notations \(X_t\), \(B_t\), X(t), B(t) are all common and used freely in this text.

  5. 5.

    While the result here is merely that convergence in the bounded-Lipschitz metric implies weak convergence, the converse is also true. For a proof of this more general result see Bhattacharya and Majumdar (2007), pp. 232–234. This metric was originally studied by Dudley, R.M. (1968): Distances of probability measures and random variables, Ann. Math. 39, 15563–1572.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabi Bhattacharya .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Bhattacharya, R., Waymire, E.C. (2016). Weak Convergence of Probability Measures on Metric Spaces. In: A Basic Course in Probability Theory. Universitext. Springer, Cham. https://doi.org/10.1007/978-3-319-47974-3_7

Download citation

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Publish with us

Policies and ethics