Skip to main content
Log in

Chemoimmunotherapy in Non-small Cell Lung Cancer Control

  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The term cancer is generally used to refer to a large group of diseases. Neoplastic or cancerous cells grow and divide in an uncontrolled manner and, as a result, form tumours that progressively increase in size. There are different types of cancer which are categorised according to the type of tissue or fluid originated from inside the body. We incorporate chemotherapeutic agents into a mathematical model of non-small cell lung cancer interacting with immune cells. The immune system cells included in the model are composed of macrophages and cytotoxic lymphocytes. In our model, tumour infiltrating lymphocyte therapy is also considered. In this work, we show how pulsed chemotherapy combined with immunotherapy, known as chemoimmunotherapy, can improve survival outcomes in the treatment of non-small cell lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. D.M. Hausman, What is cancer? Perspect. Biol. Med. 62, 778–784 (2019)

    Article  Google Scholar 

  2. R.L. Siegel, A.N. Giaquinto, A. Jemal, Cancer statistics, 2024. CA Cancer J. Clin. 74, 12–49 (2024)

    Google Scholar 

  3. W.D. Travis, Pathology of lung cancer. Clin. Chest Med. 32, 669–692 (2011)

    Article  Google Scholar 

  4. R. Sulimanov, K. Koshelev, V. Makarov, A. Mezentsev, M. Durymanov, L. Ismail, K. Zahid, Y. Rumyantsev, I. Laskov, Mathematical modeling of non-small-cell lung cancer biology through the experimental data on cell composition and growth of patient-derived organoids. Life 13, 2228 (2023)

    Article  ADS  Google Scholar 

  5. E. Lourenço, D.S. Rodrigues, M.E. Antunes, P.F.A. Mancera, G. Rodrigues, A simple mathematical model of non-small cell lung cancer involving macrophages and CD8+ T cells. J. Biol. Syst. 31, 1407–1431 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  6. B. Stankovic, H.A.K. Bjorhovde, R. Skarshaug, H. Aamodt, A. Frafjord, E. Müller, C. Hammarström, K. Beraki, E.S. Baekkevold, P.R. Woldbaek, A. Helland, O.T. Brustugun, I. Oynebraten, A. Corthay, Immune cell composition in human non-small cell lung cancer. Front. Immunol. 9, 3101 (2019)

    Article  Google Scholar 

  7. M. Qomlaqi, F. Bahrami, M. Ajami, J. Hajati, An extended mathematical model of tumor growth and its interaction with the immune system, to be used for developing an optimized immunotherapy treatment protocol. Math. Biosci. 292, 1–9 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. J.A. McKnight, Principles of chemotherapy. Clin. Tech. Small Anim. Pract. 18, 67–72 (2003)

    Article  Google Scholar 

  9. Z. Zhang, S. Li, P. Si, X. Li, X. He, A tumor-immune model with mixed immunotherapy and chemotherapy: qualitative analysis and optimal control. J. Biol. Syst. 30, 339–364 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  10. C. Letellier, S.K. Sasmal, C. Draghi, F. Denis, D. Ghosh, A chemotherapy combined with an anti-angiogenic drug applied to a cancer model including angiogenesis. Chaos Soliton Fract. 99, 297–311 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  11. W. Liu, T. Hillen, H.I. Freedman, A mathematical model for M-phase specific chemotherapy including the G0 -phase and immunoresponse. Math. Biosci. Eng. 4, 239–259 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. F.S. Borges, K.C. Iarosz, H.P. Ren, A.M. Batista, M.S. Baptista, R.L. Viana, S.R. Lopes, C. Grebogi, Model for tumour growth with treatment by continuous and pulsed chemotherapy. Biosyst. 116, 43–48 (2014)

    Article  Google Scholar 

  13. J.Y. Douillard, R. Rosell, M. De Lena, F. Carpagnano, R. Ramlau, J.L. Gonzáles-Larriba, T. Grodzki, J.R. Pereira, A. Le Groumellec, V. Lorusso, C. Clary, Adjuvant vinorelbine plus cisplatin versus observation in patients with completely resected stage IB-IIIA non-small-cell lung cancer (Adjuvant Navelbine International Trialist Association [ANITA]): a randomised controlled trial. Lancet Oncol. 7, 719–727 (2006)

    Article  Google Scholar 

  14. J.Y. Douillard, R. Rosell, M. De Lena, M. Riggi, P. Hurteloup, M.A. Mahe, Adjuvant Navelbine International Trialist Association, Impact of postoperative radiation therapy on survival in patients with complete resection and stage I, II, or IIIA non–small-cell lung cancer treated with adjuvant chemotherapy: the adjuvant Navelbine International Trialist Association (ANITA) randomized trial. Int. J. Radiat. Oncol. Biol. Phys. 72, 695–701 (2008)

    Article  Google Scholar 

  15. J.H. Schiller, D. Harrington, C.P. Belani, C. Langer, A. Sandler, J. Krook, J. Zhu, D.H. Johnson, Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N. Engl. J. Med. 346, 92–98 (2002)

    Article  Google Scholar 

  16. F.V. Fossella, Second-line chemotherapy for non-small-cell lung cancer. Curr. Oncol. Rep. 2, 96–101 (2000)

    Article  Google Scholar 

  17. A. Inoue, N. Saijo, Recent advances in the chemotherapy of non-small cell lung cancer. Jpn. J. Clin. Oncol. 31, 299–304 (2001)

    Article  Google Scholar 

  18. R.N. Younes, J.R. Pereira, A.L. Fares, J.L. Gross, Chemotherapy beyond first-line in stage IV metastatic non-small cell lung cancer. Rev. Assoc. Med. Bras. 57, 686–691 (2011)

    Article  Google Scholar 

  19. A. Chang, Chemotherapy, chemoresistance and the changing treatment landscape for NSCLC. Lung Cancer 71, 3–10 (2011)

    Article  Google Scholar 

  20. S.E. Rebuzzi, R. Alfieri, S. La Monica, R. Minari, P.G. Petronini, M. Tiseo, Combination of EGFR-TKIs and chemotherapy in advanced EGFR mutated NSCLC: review of the literature and future perspectives. Crit. Rev. Oncol. Hematol. 146, 102820 (2020)

    Article  Google Scholar 

  21. J. Kaur, J. Elms, A.L. Munn, D. Good, M.Q. Wei, Immunotherapy for non-small cell lung cancer (NSCLC), as a stand-alone and in combination therapy. Crit. Rev. Oncol. Hematol. 164, 103417 (2021)

    Article  Google Scholar 

  22. A.D. Waldman, J.M. Fritz, M.J. Lenardo, A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol. 20, 651–668 (2020)

    Article  Google Scholar 

  23. E. Brambilla, G. Le Teuff, S. Marguet, S. Lantuejoul, A. Dunant, S. Graziano, R. Pirker, J.Y. Douillard, T. Le Chevalier, M. Filipits, R. Rosell, R. Kratzke, H. Popper, J.C. Soria, F.A. Shepherd, L. Seymour, M.S. Tsao, Prognostic effect of tumor lymphocytic infiltration in resectable non–small-cell lung cancer. J. Clin. Oncol. 34, 1223–1230 (2016)

    Article  Google Scholar 

  24. A.P.S. Koltun, J. Trobia, A.M. Batista, E.K. Lenzi, M.S. Santos, F.S. Borges, K.C. Iarosz, I.L. Caldas, E.C. Gabrick, Fractional tumour-immune model with drug resistance. Braz. J. Phys. 54, 41 (2024)

    Article  ADS  Google Scholar 

  25. J. Trobia, K. Tian, A.M. Batista, C. Grebogi, H.P. Ren, M.S. Santos, P.R. Protachevicz, F.S. Borges, J.D. Szezech Jr., R.L. Viana, I.L. Caldas, K.C. Iarosz, Mathematical model of brain tumour growth with drug resistance. Commun. Nonlinear Sci. Numer. Simul. 103, 106013 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  26. J. Trobia, E.C. Gabrick, E.G. Seifert, F.S. Borges, P.R. Protachevicz, J.D. Szezech Jr., K.C. Iarosz, M.S. Santos, I.L. Caldas, K. Tian, H.P. Ren, C. Grebogi, A.M. Batista, Effects of drug resistance in the tumour-immune system with chemotherapy treatment. Indian Acad. Sci. Conf. Ser. 3, 1–6 (2020)

    Google Scholar 

  27. K.C. Iarosz, F.S. Borges, A.M. Batista, M.S. Baptista, R.A.N. Siqueira, R.L. Viana, S.R. Lopes, Mathematical model of brain tumour with glia–neuron interactions and chemotherapy treatment. J. Theor. Biol. 368, 113–121 (2015)

    Article  ADS  MATH  Google Scholar 

  28. G.E. Mahlbacher, K.C. Reihmer, H.B. Frieboes, Mathematical modeling of tumor-immune cell interactions. J. Theor. Biol. 469, 47–60 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. A.R. Anderson, V. Quaranta, Integrative mathematical oncology. Nat. Rev. Cancer 8, 227–234 (2008)

    Article  Google Scholar 

  30. S. Das, G. Mandal, S. Dutta, L.N. Guin, K. Chakravarty, Analysis and regulation of chaos dynamics in a cancer model through chemotherapeutic intervention and immune system augmentation. Int. J. Dynam. Control 12, 3884–3907 (2024)

    Article  MathSciNet  Google Scholar 

  31. R. Eftimie, C. Barelle, Mathematical investigation of innate immune responses to lung cancer: the role of macrophages with mixed phenotypes. J. Theor. Biol. 524, 110739 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  32. I. Diaz-Cano, L. Paz-Ares, I. Otano, Adoptive tumor infiltrating lymphocyte transfer as personalized immunotherapy. in International Review of Cell and Molecular Biology, (Academic Press 2022), 370, 163–192

  33. M. Reis-Sobreiro, A.T. Da Mota, C. Jardim, K. Serre, Bringing macrophages to the frontline against cancer: current immunotherapies targeting macrophages. Cells 10, 2364 (2021)

    Article  Google Scholar 

  34. T. Hirabayashi, K. Sonehara, T. Tsutsui, S. Nozawa, T. Agatsuma, M. Yamamoto, A. Matsuo, M. Nakanishi, T. Chiaki, A. Kato, T. Miyahara, T. Hachiya, S. Kanda, K. Yanagisawa, T. Araki, K. Tateishi, M. Hanaoka, Real-world data after introduction of chemoimmunotherapy in patients with extensive-disease small cell lung cancer: a multicenter retrospective study. Respir. Investig. 63, 928–933 (2025)

    Article  Google Scholar 

Download references

Acknowledgements

This work was possible by partial financial support from the following Brazilian government agencies: CNPq, CAPES, Fundação Araucária and FAPESP (2024/05700-5, 2025/02318-5). E.C.G. received partial financial support from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 88881.846051/2023-01. We would like to thank www.105groupscience.com.

Author information

Authors and Affiliations

Authors

Contributions

Ana P.S. Koltun, Moises S. Santos, José Trobia, Fernando S. Borges, Kelly C. Iarosz, Iberê L. Caldas, Enrique C. Gabrick, Diogo L. M. Souza, Fátima E. Cruziniani and Antonio M. Batista contributed equally to this work.

Corresponding author

Correspondence to Ana P. S. Koltun.

Ethics declarations

Conflicts of Interest

The authors declare no conflict of interest. None of the authors hold any editorial role within the journal, ensuring an unbiased and independent research process.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koltun, A.P.S., Santos, M.S., Trobia, J. et al. Chemoimmunotherapy in Non-small Cell Lung Cancer Control. Braz J Phys 56, 38 (2026). https://doi.org/10.1007/s13538-025-01963-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1007/s13538-025-01963-y

Keywords