Abstract
The term cancer is generally used to refer to a large group of diseases. Neoplastic or cancerous cells grow and divide in an uncontrolled manner and, as a result, form tumours that progressively increase in size. There are different types of cancer which are categorised according to the type of tissue or fluid originated from inside the body. We incorporate chemotherapeutic agents into a mathematical model of non-small cell lung cancer interacting with immune cells. The immune system cells included in the model are composed of macrophages and cytotoxic lymphocytes. In our model, tumour infiltrating lymphocyte therapy is also considered. In this work, we show how pulsed chemotherapy combined with immunotherapy, known as chemoimmunotherapy, can improve survival outcomes in the treatment of non-small cell lung cancer.






Similar content being viewed by others
Data Availability
No datasets were generated or analysed during the current study.
References
D.M. Hausman, What is cancer? Perspect. Biol. Med. 62, 778–784 (2019)
R.L. Siegel, A.N. Giaquinto, A. Jemal, Cancer statistics, 2024. CA Cancer J. Clin. 74, 12–49 (2024)
W.D. Travis, Pathology of lung cancer. Clin. Chest Med. 32, 669–692 (2011)
R. Sulimanov, K. Koshelev, V. Makarov, A. Mezentsev, M. Durymanov, L. Ismail, K. Zahid, Y. Rumyantsev, I. Laskov, Mathematical modeling of non-small-cell lung cancer biology through the experimental data on cell composition and growth of patient-derived organoids. Life 13, 2228 (2023)
E. Lourenço, D.S. Rodrigues, M.E. Antunes, P.F.A. Mancera, G. Rodrigues, A simple mathematical model of non-small cell lung cancer involving macrophages and CD8+ T cells. J. Biol. Syst. 31, 1407–1431 (2023)
B. Stankovic, H.A.K. Bjorhovde, R. Skarshaug, H. Aamodt, A. Frafjord, E. Müller, C. Hammarström, K. Beraki, E.S. Baekkevold, P.R. Woldbaek, A. Helland, O.T. Brustugun, I. Oynebraten, A. Corthay, Immune cell composition in human non-small cell lung cancer. Front. Immunol. 9, 3101 (2019)
M. Qomlaqi, F. Bahrami, M. Ajami, J. Hajati, An extended mathematical model of tumor growth and its interaction with the immune system, to be used for developing an optimized immunotherapy treatment protocol. Math. Biosci. 292, 1–9 (2017)
J.A. McKnight, Principles of chemotherapy. Clin. Tech. Small Anim. Pract. 18, 67–72 (2003)
Z. Zhang, S. Li, P. Si, X. Li, X. He, A tumor-immune model with mixed immunotherapy and chemotherapy: qualitative analysis and optimal control. J. Biol. Syst. 30, 339–364 (2022)
C. Letellier, S.K. Sasmal, C. Draghi, F. Denis, D. Ghosh, A chemotherapy combined with an anti-angiogenic drug applied to a cancer model including angiogenesis. Chaos Soliton Fract. 99, 297–311 (2017)
W. Liu, T. Hillen, H.I. Freedman, A mathematical model for M-phase specific chemotherapy including the G0 -phase and immunoresponse. Math. Biosci. Eng. 4, 239–259 (2007)
F.S. Borges, K.C. Iarosz, H.P. Ren, A.M. Batista, M.S. Baptista, R.L. Viana, S.R. Lopes, C. Grebogi, Model for tumour growth with treatment by continuous and pulsed chemotherapy. Biosyst. 116, 43–48 (2014)
J.Y. Douillard, R. Rosell, M. De Lena, F. Carpagnano, R. Ramlau, J.L. Gonzáles-Larriba, T. Grodzki, J.R. Pereira, A. Le Groumellec, V. Lorusso, C. Clary, Adjuvant vinorelbine plus cisplatin versus observation in patients with completely resected stage IB-IIIA non-small-cell lung cancer (Adjuvant Navelbine International Trialist Association [ANITA]): a randomised controlled trial. Lancet Oncol. 7, 719–727 (2006)
J.Y. Douillard, R. Rosell, M. De Lena, M. Riggi, P. Hurteloup, M.A. Mahe, Adjuvant Navelbine International Trialist Association, Impact of postoperative radiation therapy on survival in patients with complete resection and stage I, II, or IIIA non–small-cell lung cancer treated with adjuvant chemotherapy: the adjuvant Navelbine International Trialist Association (ANITA) randomized trial. Int. J. Radiat. Oncol. Biol. Phys. 72, 695–701 (2008)
J.H. Schiller, D. Harrington, C.P. Belani, C. Langer, A. Sandler, J. Krook, J. Zhu, D.H. Johnson, Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N. Engl. J. Med. 346, 92–98 (2002)
F.V. Fossella, Second-line chemotherapy for non-small-cell lung cancer. Curr. Oncol. Rep. 2, 96–101 (2000)
A. Inoue, N. Saijo, Recent advances in the chemotherapy of non-small cell lung cancer. Jpn. J. Clin. Oncol. 31, 299–304 (2001)
R.N. Younes, J.R. Pereira, A.L. Fares, J.L. Gross, Chemotherapy beyond first-line in stage IV metastatic non-small cell lung cancer. Rev. Assoc. Med. Bras. 57, 686–691 (2011)
A. Chang, Chemotherapy, chemoresistance and the changing treatment landscape for NSCLC. Lung Cancer 71, 3–10 (2011)
S.E. Rebuzzi, R. Alfieri, S. La Monica, R. Minari, P.G. Petronini, M. Tiseo, Combination of EGFR-TKIs and chemotherapy in advanced EGFR mutated NSCLC: review of the literature and future perspectives. Crit. Rev. Oncol. Hematol. 146, 102820 (2020)
J. Kaur, J. Elms, A.L. Munn, D. Good, M.Q. Wei, Immunotherapy for non-small cell lung cancer (NSCLC), as a stand-alone and in combination therapy. Crit. Rev. Oncol. Hematol. 164, 103417 (2021)
A.D. Waldman, J.M. Fritz, M.J. Lenardo, A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol. 20, 651–668 (2020)
E. Brambilla, G. Le Teuff, S. Marguet, S. Lantuejoul, A. Dunant, S. Graziano, R. Pirker, J.Y. Douillard, T. Le Chevalier, M. Filipits, R. Rosell, R. Kratzke, H. Popper, J.C. Soria, F.A. Shepherd, L. Seymour, M.S. Tsao, Prognostic effect of tumor lymphocytic infiltration in resectable non–small-cell lung cancer. J. Clin. Oncol. 34, 1223–1230 (2016)
A.P.S. Koltun, J. Trobia, A.M. Batista, E.K. Lenzi, M.S. Santos, F.S. Borges, K.C. Iarosz, I.L. Caldas, E.C. Gabrick, Fractional tumour-immune model with drug resistance. Braz. J. Phys. 54, 41 (2024)
J. Trobia, K. Tian, A.M. Batista, C. Grebogi, H.P. Ren, M.S. Santos, P.R. Protachevicz, F.S. Borges, J.D. Szezech Jr., R.L. Viana, I.L. Caldas, K.C. Iarosz, Mathematical model of brain tumour growth with drug resistance. Commun. Nonlinear Sci. Numer. Simul. 103, 106013 (2021)
J. Trobia, E.C. Gabrick, E.G. Seifert, F.S. Borges, P.R. Protachevicz, J.D. Szezech Jr., K.C. Iarosz, M.S. Santos, I.L. Caldas, K. Tian, H.P. Ren, C. Grebogi, A.M. Batista, Effects of drug resistance in the tumour-immune system with chemotherapy treatment. Indian Acad. Sci. Conf. Ser. 3, 1–6 (2020)
K.C. Iarosz, F.S. Borges, A.M. Batista, M.S. Baptista, R.A.N. Siqueira, R.L. Viana, S.R. Lopes, Mathematical model of brain tumour with glia–neuron interactions and chemotherapy treatment. J. Theor. Biol. 368, 113–121 (2015)
G.E. Mahlbacher, K.C. Reihmer, H.B. Frieboes, Mathematical modeling of tumor-immune cell interactions. J. Theor. Biol. 469, 47–60 (2019)
A.R. Anderson, V. Quaranta, Integrative mathematical oncology. Nat. Rev. Cancer 8, 227–234 (2008)
S. Das, G. Mandal, S. Dutta, L.N. Guin, K. Chakravarty, Analysis and regulation of chaos dynamics in a cancer model through chemotherapeutic intervention and immune system augmentation. Int. J. Dynam. Control 12, 3884–3907 (2024)
R. Eftimie, C. Barelle, Mathematical investigation of innate immune responses to lung cancer: the role of macrophages with mixed phenotypes. J. Theor. Biol. 524, 110739 (2021)
I. Diaz-Cano, L. Paz-Ares, I. Otano, Adoptive tumor infiltrating lymphocyte transfer as personalized immunotherapy. in International Review of Cell and Molecular Biology, (Academic Press 2022), 370, 163–192
M. Reis-Sobreiro, A.T. Da Mota, C. Jardim, K. Serre, Bringing macrophages to the frontline against cancer: current immunotherapies targeting macrophages. Cells 10, 2364 (2021)
T. Hirabayashi, K. Sonehara, T. Tsutsui, S. Nozawa, T. Agatsuma, M. Yamamoto, A. Matsuo, M. Nakanishi, T. Chiaki, A. Kato, T. Miyahara, T. Hachiya, S. Kanda, K. Yanagisawa, T. Araki, K. Tateishi, M. Hanaoka, Real-world data after introduction of chemoimmunotherapy in patients with extensive-disease small cell lung cancer: a multicenter retrospective study. Respir. Investig. 63, 928–933 (2025)
Acknowledgements
This work was possible by partial financial support from the following Brazilian government agencies: CNPq, CAPES, Fundação Araucária and FAPESP (2024/05700-5, 2025/02318-5). E.C.G. received partial financial support from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 88881.846051/2023-01. We would like to thank www.105groupscience.com.
Author information
Authors and Affiliations
Contributions
Ana P.S. Koltun, Moises S. Santos, José Trobia, Fernando S. Borges, Kelly C. Iarosz, Iberê L. Caldas, Enrique C. Gabrick, Diogo L. M. Souza, Fátima E. Cruziniani and Antonio M. Batista contributed equally to this work.
Corresponding author
Ethics declarations
Conflicts of Interest
The authors declare no conflict of interest. None of the authors hold any editorial role within the journal, ensuring an unbiased and independent research process.
Competing interests
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Koltun, A.P.S., Santos, M.S., Trobia, J. et al. Chemoimmunotherapy in Non-small Cell Lung Cancer Control. Braz J Phys 56, 38 (2026). https://doi.org/10.1007/s13538-025-01963-y
Received:
Accepted:
Published:
Version of record:
DOI: https://doi.org/10.1007/s13538-025-01963-y


