Skip to main content
Log in

Inhibition of MID1IP1 induces ferroptosis and suppresses c-Myc expression in colorectal cancer cell

  • Original Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Background

Colorectal cancer (CRC) is the third most diagnosed cancer worldwide. Despite treatment advances, CRC still requires novel strategies to overcome drug resistance and metastasis. Midline 1 Interacting Protein 1 (MID1IP1) is highly expressed in cancers and promotes tumor growth through c-Myc-mediated ribosomal protein regulation. We hypothesized that MID1IP1 contributes to CRC progression via c-Myc and ferroptosis.

Objective

To investigate how MID1IP1 affects metabolic reprogramming, ferroptosis, and migration in CRC.

Methods

MID1IP1 was silenced in HCT116 cells using siRNA. Colony formation assays evaluated growth. Western blotting assessed c-Myc, ferroptosis-related proteins, glycolytic enzymes, and EMT markers. Intracellular ROS was measured with a fluorescence probe, and a ferroptosis inhibitor confirmed ferroptotic cell death. Immunofluorescence detected c-Myc and PKM2, while wound healing assays evaluated migration.

Results

MID1IP1 knockdown reduced cell growth and c-Myc stability, lowering glycolysis-related protein expression. GPX4 and other ferroptosis-protective proteins decreased, resulting in ROS accumulation and ferroptosis. Migration was inhibited, with altered EMT marker expression.

Conclusion

MID1IP1 promotes CRC cell survival by stabilizing c-Myc and preventing ferroptosis, while also influencing migration. These findings suggest that MID1IP1 may serve as a novel biomarker and therapeutic target in CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aipoalani DL, O’Callaghan BL, Mashek DG, Mariash CN, Towle HC (2010) Overlapping roles of the glucose-responsive genes, S14 and S14R, in hepatic lipogenesis. Endocrinology 151:2071–2077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao Z, Zeng W, Zhang D, Wang L, Deng X, Lai J, Li J, Gong J, Xiang G (2022) SNAIL induces EMT and lung metastasis of tumours secreting CXCL2 to promote the invasion of M2-type immunosuppressed macrophages in colorectal cancer. Int J Biol Sci 18:2867–2881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Battaglia AM, Chirillo R, Aversa I, Sacco A, Costanzo F, Biamonte F (2020) Ferroptosis and cancer: mitochondria meet the “Iron maiden” cell death. Cells. https://doi.org/10.3390/cells9061505

    Article  PubMed  PubMed Central  Google Scholar 

  • Bose S, Zhang C, Le A (2021) Glucose metabolism in cancer: the Warburg effect and beyond. Adv Exp Med Biol 1311:3–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks TA, Hurley LH (2010) Targeting MYC expression through G-quadruplexes. Genes Cancer 1:641–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaffer CL, San Juan BP, Lim E, Weinberg RA (2016) EMT, cell plasticity and metastasis. Cancer Metastasis Rev 35:645–654

    Article  PubMed  Google Scholar 

  • Chen H, Liu H, Qing G (2018) Targeting oncogenic Myc as a strategy for cancer treatment. Signal Transduct Target Ther 3:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Criscuolo D, Morra F, Celetti A (2022) A xCT role in tumour-associated ferroptosis shed light on novel therapeutic options. Explor Target Antitumor Ther 3:570–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeHart DN, Fang D, Heslop K, Li L, Lemasters JJ, Maldonado EN (2018) Opening of voltage dependent anion channels promotes reactive oxygen species generation, mitochondrial dysfunction and cell death in cancer cells. Biochem Pharmacol 148:155–162

    Article  CAS  PubMed  Google Scholar 

  • Ding L, Ni W, Ma Y, Xu L, Zhang Z, Liao K, Li J, Mei X, Wang Z, Ge H et al (2025) PDCD11 stabilizes C-MYC oncoprotein by hindering C-MYC-SKP2 negative feedback loop to facilitate progression of p53-mutant breast and colon malignancies. Adv Sci Weinh 12:e2502416

    Article  PubMed  Google Scholar 

  • Dixon SJ, Stockwell BR (2014) The role of iron and reactive oxygen species in cell death. Nat Chem Biol 10:9–17

    Article  CAS  PubMed  Google Scholar 

  • Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dongre A, Weinberg RA (2019) New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol 20:69–84

    Article  CAS  PubMed  Google Scholar 

  • Endale HT, Tesfaye W, Mengstie TA (2023) ROS induced lipid peroxidation and their role in ferroptosis. Front Cell Dev Biol 11:1226044

    Article  PubMed  PubMed Central  Google Scholar 

  • Fatma H, Maurya SK, Siddique HR (2022) Epigenetic modifications of c-MYC: role in cancer cell reprogramming, progression and chemoresistance. Semin Cancer Biol 83:166–176

    Article  CAS  PubMed  Google Scholar 

  • Golshani G, Zhang Y (2020) Advances in immunotherapy for colorectal cancer: a review. Therap Adv Gastroenterol 13:1756284820917527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo J, Zhou Y, Liu D, Wang M, Wu Y, Tang D, Liu X (2022) Mitochondria as multifaceted regulators of ferroptosis. Life Metab 1:134–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jing Z, Liu Q, He X, Jia Z, Xu Z, Yang B, Liu P (2022) NCAPD3 enhances Warburg effect through c-myc and E2F1 and promotes the occurrence and progression of colorectal cancer. J Exp Clin Cancer Res 41:198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung JH, Lee HJ, Kim JH, Sim DY, Im E, Kim S, Chang S, Kim SH (2020) Colocalization of MID1IP1 and c-Myc is critically involved in liver cancer growth via regulation of ribosomal protein L5 and L11 and CNOT2. Cells. https://doi.org/10.3390/cells9040985

    Article  PubMed  PubMed Central  Google Scholar 

  • Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim CW, Moon YA, Park SW, Cheng D, Kwon HJ, Horton JD (2010) Induced polymerization of mammalian acetyl-CoA carboxylase by MIG12 provides a tertiary level of regulation of fatty acid synthesis. Proc Natl Acad Sci U S A 107:9626–9631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King CE, Cuatrecasas M, Castells A, Sepulveda AR, Lee JS, Rustgi AK (2011) LIN28B promotes colon cancer progression and metastasis. Cancer Res 71:4260–4268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ko HM, Jee W, Park DI, Kim KI, Jung JH, Jang HJ (2022) The antitumor effect of Timosaponin A3 through c-Myc inhibition in colorectal cancer cells and combined treatment effect with 5-FU or doxorubicin. Int J Mol Sci. https://doi.org/10.3390/ijms231911900

    Article  PubMed  PubMed Central  Google Scholar 

  • Kopetz S, Yoshino T, Van Cutsem E, Eng C, Kim TW, Wasan HS, Desai J, Ciardiello F, Yaeger R, Maughan TS et al (2025) Encorafenib, cetuximab and chemotherapy in BRAF-mutant colorectal cancer: a randomized phase 3 trial. Nat Med 31:901–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koppenol WH, Bounds PL, Dang CV (2011) Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer 11:325–337

    Article  CAS  PubMed  Google Scholar 

  • Koppula P, Zhang Y, Zhuang L, Gan B (2018) Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer. Cancer Commun Lond 38:12

    PubMed  PubMed Central  Google Scholar 

  • Koppula P, Zhuang L, Gan B (2021) Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell 12:599–620

    Article  CAS  PubMed  Google Scholar 

  • Lee JE, Seo SH, Ham DW, Shin EH (2025) Toxoplasma gondii GRA16 suppresses aerobic glycolysis by downregulating c-Myc and TERT expressions in colorectal cancer cells. Biomol Ther (Seoul) 33:621–635

    Article  CAS  PubMed  Google Scholar 

  • Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N, Sun B, Wang G (2020) Ferroptosis: past, present and future. Cell Death Dis 11:88

    Article  PubMed  PubMed Central  Google Scholar 

  • Li FJ, Long HZ, Zhou ZW, Luo HY, Xu SG, Gao LC (2022) System X(c) (-)/GSH/GPX4 axis: an important antioxidant system for the ferroptosis in drug-resistant solid tumor therapy. Front Pharmacol 13:910292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Lin Y, Li R, Shen X, Xiang M, Xiong G, Zhang K, Xia T, Guo J, Miao Z et al (2023) Molecular targeted therapy for metastatic colorectal cancer: current and evolving approaches. Front Pharmacol 14:1165666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang J, Cao R, Zhang Y, Xia Y, Zheng Y, Li X, Wang L, Yang W, Lu Z (2016) PKM2 dephosphorylation by Cdc25A promotes the Warburg effect and tumorigenesis. Nat Commun 7:12431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Wang X, Zhang J, Tian T, Ning Y, Chen Y, Li G, Cui Z (2024) Myc-mediated inhibition of HIF1a degradation promotes M2 macrophage polarization and impairs CD8 T cell function through lactic acid secretion in ovarian cancer. Int Immunopharmacol 141:112876

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Kornmann M, Traub B (2023) Role of epithelial to mesenchymal transition in colorectal cancer. Int J Mol Sci. https://doi.org/10.3390/ijms241914815

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma T, Du J, Zhang Y, Wang Y, Wang B, Zhang T (2022) GPX4-independent ferroptosis—a new strategy in disease’s therapy. Cell Death Discov 8:434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller DM, Thomas SD, Islam A, Muench D, Sedoris K (2012) c-Myc and cancer metabolism. Clin Cancer Res 18:5546–5553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller KD, Nogueira L, Devasia T, Mariotto AB, Yabroff KR, Jemal A, Kramer J, Siegel RL (2022) Cancer treatment and survivorship statistics, 2022. CA Cancer J Clin 72:409–436

    PubMed  Google Scholar 

  • Morgan E, Arnold M, Gini A, Lorenzoni V, Cabasag CJ, Laversanne M, Vignat J, Ferlay J, Murphy N, Bray F (2023) Global burden of colorectal cancer in 2020 and 2040: incidence and mortality estimates from GLOBOCAN. Gut 72:338–344

    Article  PubMed  Google Scholar 

  • Moug SJ, Bryce A, Mutrie N, Anderson AS (2017) Lifestyle interventions are feasible in patients with colorectal cancer with potential short-term health benefits: a systematic review. Int J Colorectal Dis 32:765–775

    Article  PubMed  PubMed Central  Google Scholar 

  • Nie F, Sun X, Sun J, Zhang J, Wang Y (2025) Epithelial-mesenchymal transition in colorectal cancer metastasis and progression: molecular mechanisms and therapeutic strategies. Cell Death Discov 11:336

    Article  PubMed  PubMed Central  Google Scholar 

  • Okamoto T, Natsume Y, Doi M, Nosato H, Iwaki T, Yamanaka H, Yamamoto M, Kawachi H, Noda T, Nagayama S et al (2022) Integration of human inspection and artificial intelligence-based morphological typing of patient-derived organoids reveals interpatient heterogeneity of colorectal cancer. Cancer Sci 113:2693–2703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang B, Wu H (2025) Metabolic reprogramming in colorectal cancer: a review of aerobic glycolysis and its therapeutic implications for targeted treatment strategies. Cell Death Discov 11:321

    Article  PubMed  PubMed Central  Google Scholar 

  • Potter M, Newport E, Morten KJ (2016) The Warburg effect: 80 years on. Biochem Soc Trans 44:1499–1505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu B, Zandkarimi F, Bezjian CT, Reznik E, Soni RK, Gu W, Jiang X, Stockwell BR (2024) Phospholipids with two polyunsaturated fatty acyl tails promote ferroptosis. Cell 187:1177-1190.e1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saeed H, Leibowitz BJ, Zhang L, Yu J (2023) Targeting myc-driven stress addiction in colorectal cancer. Drug Resist Updat 69:100963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiliro C, Firestein BL (2021) Mechanisms of metabolic reprogramming in cancer cells supporting enhanced growth and proliferation. Cells. https://doi.org/10.3390/cells10051056

    Article  PubMed  PubMed Central  Google Scholar 

  • Sreekumar R, Al-Saihati H, Emaduddin M, Moutasim K, Mellone M, Patel A, Kilic S, Cetin M, Erdemir S, Navio MS et al (2021) The ZEB2-dependent EMT transcriptional programme drives therapy resistance by activating nucleotide excision repair genes ERCC1 and ERCC4 in colorectal cancer. Mol Oncol 15:2065–2083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su LJ, Zhang JH, Gomez H, Murugan R, Hong X, Xu D, Jiang F, Peng ZY (2019) Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid Med Cell Longev 2019:5080843

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun N, Wang J, Qin J, Ma S, Luan J, Hou G, Zhang W, Gao M (2024) Oncogenic RTKs sensitize cancer cells to ferroptosis via c-Myc mediated upregulation of ACSL4. Cell Death Dis 15:861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sütcüoğlu O, Yıldırım H, Almuradova E, Günenç D, Yalçın Ş (2025) RAS mutations in advanced colorectal cancer: mechanisms, clinical implications, and novel therapeutic approaches. Med Kaunas. https://doi.org/10.3390/medicina61071202

    Article  Google Scholar 

  • Tang D, Chen X, Kang R, Kroemer G (2021) Ferroptosis: molecular mechanisms and health implications. Cell Res 31:107–125

    Article  CAS  PubMed  Google Scholar 

  • Tauriello DVF, Palomo-Ponce S, Stork D, Berenguer-Llergo A, Badia-Ramentol J, Iglesias M, Sevillano M, Ibiza S, Cañellas A, Hernando-Momblona X et al (2018) Tgfβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 554:538–543

    Article  CAS  PubMed  Google Scholar 

  • Toné S, Sugimoto K, Tanda K, Suda T, Uehira K, Kanouchi H, Samejima K, Minatogawa Y, Earnshaw WC (2007) Three distinct stages of apoptotic nuclear condensation revealed by time-lapse imaging, biochemical and electron microscopy analysis of cell-free apoptosis. Exp Cell Res 313:3635–3644

    Article  PubMed  PubMed Central  Google Scholar 

  • Ursini F, Maiorino M (2020) Lipid peroxidation and ferroptosis: the role of GSH and GPx4. Free Radic Biol Med 152:175–185

    Article  CAS  PubMed  Google Scholar 

  • Wagle NS, Nogueira L, Devasia TP, Mariotto AB, Yabroff KR, Islami F, Jemal A, Alteri R, Ganz PA, Siegel RL (2025) Cancer treatment and survivorship statistics, 2025. CA Cancer J Clin 75:308–340

    PubMed  PubMed Central  Google Scholar 

  • Wang M, Ying Q, Xing Y, Dai S, Wang J, Liu Z (2025) Metabolic reprogramming and prognostic insights in molecular landscapes driven by glycolysis in ovarian cancer. Sci Rep 15:26956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, Kang R, Tang D (2016) Ferroptosis: process and function. Cell Death Differ 23:369–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu H, Liu L, Li W, Zou D, Yu J, Wang L, Wong CC (2021) Transcription factors in colorectal cancer: molecular mechanism and therapeutic implications. Oncogene 40:1555–1569

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Antin P, Berx G, Blanpain C, Brabletz T, Bronner M, Campbell K, Cano A, Casanova J, Christofori G et al (2020) Guidelines and definitions for research on epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 21:341–352

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang JH, Xu M (2000) DNA fragmentation in apoptosis. Cell Res 10:205–211

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Meng R, Sha D, Gao H, Wang S, Zhou J, Wang X, Li F, Li X, Song W (2024) Advances in the application of colorectal cancer organoids in precision medicine. Front Oncol 14:1506606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Zhu L, Lin X, Li B, Miu B, Qiu J, Gao S, Liu J (2025) JS-K induces ferroptosis in renal carcinoma cells by regulating the c-Myc-GSTP1 axis. Sci Rep 15:15987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MIST) (No. RS-2023-00209169).

Author information

Authors and Affiliations

Authors

Contributions

J.J.O., Y.J.L. and Y.J.H. performed experiments; J.J.O., Y.J.L. and Y.J.H contributed to data analysis; J.H.J. and J.J.O. Y.J.L., Y.J.H. conceived and designed experiments; J.J.O., Y.J.L., Y.J.H. and J.H.J. wrote and edited the paper; J.H.J, J.J.O., Y.J.L., Y.J.H., S-Y.L. and J.C reviewed and edited the paper; all authors read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Ji Hoon Jung.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, J.J., Lee, Y.J., Han, Y.J. et al. Inhibition of MID1IP1 induces ferroptosis and suppresses c-Myc expression in colorectal cancer cell. Genes Genom (2025). https://doi.org/10.1007/s13258-025-01717-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1007/s13258-025-01717-9

Keywords