Skip to main content
Log in

Repurposing Ammi visnaga Furanocoumarins as Potent Squalene Epoxidase Inhibitors to Disrupt Lipid Metabolism: An Integrated Phytochemical, In Vitro, and In Silico Study

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Herein, nine coumarins were isolated and characterized from Ammi visnaga, prompting a comprehensive evaluation of their pharmacological potential. An in silico target selection approach was initially employed to identify plausible protein targets, which, combined with a repurposing rationale, prioritized squalene epoxidase (SQLE) for detailed investigation. The in vitro SQLE inhibition assay demonstrated that khellin, khellol, and visnagin exhibited low‐micromolar IC50 values (3.48 ± 0.23, 2.83 ± 0.18, and 2.74 ± 0.15µM, respectively), rivaling the reference inhibitor (2.75 ± 0.20µM). Enzyme‐ kinetic studies confirmed a competitive inhibition mechanism, with Ki values in the low micromolar range. Subsequent docking and molecular dynamics simulations corroborated these findings, revealing that each active coumarin remains stably engaged within the SQLE active site. Free‐energy analyses (MM/PBSA) further underscored their favorable binding energetics, while free‐energy landscape (FEL) calculations indicated well‐defined and energetically accessible conformations for the inhibitor–enzyme complexes. Moreover, key structural and energetic MD parameters collectively demonstrated stable interactions and minimal perturbations to the enzyme’s global fold. An ADMET assessment revealed high oral absorption potential, no immediate concerns regarding P‐glycoprotein efflux, and generally favorable physicochemical characteristics, despite some predicted inhibitory activity against specific cytochromeP450 isoforms. Overall, these data suggest that naturally derived coumarins from Ammi visnaga—especially khellol, khellin, and visnagin—can effectively target SQLE, highlighting their potential for antifungal and possibly anticancer applications. This study illustrates the value of integrating phytochemical isolation, in silico repurposing, enzyme‐based screening, and advanced MD simulation workflows to accelerate the discovery of promising new inhibitors from medicinal plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Chua, N. K., Coates, H. W., & Brown, A. J. (2020). Squalene monooxygenase: A journey to the heart of cholesterol synthesis. Progress in Lipid Research, 79, Article 101033.

    Article  CAS  PubMed  Google Scholar 

  2. Malwal, S. R., Shang, N., Liu, W., Li, X., Zhang, L., Chen, C.-C., Guo, R.-T., & Oldfield, E. (2022). A structural and bioinformatics investigation of a fungal squalene synthase and comparisons with other membrane proteins. ACS Omega, 7, 22601–22612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang, L., Cao, Z., Hong, Y., He, H., Chen, L., Yu, Z., & Gao, Y. (2024). Squalene epoxidase: Its regulations and links with cancers. International Journal of Molecular Sciences, 25, 3874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lee, J., & Roh, J.-L. (2024). Cholesterol-ferroptosis nexus: Unveiling novel cancer therapeutic avenues. Cancer Letters, 597, Article 217046.

    Article  CAS  PubMed  Google Scholar 

  5. Zhu, J., Wang, Y., Zhu, K., & Zhang, C. (2025). Advances in understanding the role of squalene epoxidase in cancer prognosis and resistance. Molecular Biology Reports, 52, 162.

    Article  CAS  PubMed  Google Scholar 

  6. Kamel, E. M., Othman, S. I., Aba Alkhayl, F. F., Rudayni, H. A., Allam, A. A., & Lamsabhi, A. M. (2025). Mechanistic insights into alkaloid-based inhibition of squalene epoxidase: A combined in silico and experimental approach for targeting cholesterol biosynthesis. International Journal of Biological Macromolecules, 302, Article 140609.

    Article  CAS  PubMed  Google Scholar 

  7. Luo, P., Feng, X., Liu, S., & Jiang, Y. (2024). Traditional uses, phytochemistry, pharmacology and toxicology of Ruta graveolens L.: A critical review and future perspectives. Drug Design, Development and Therapy, 18, 6459–6485.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Elachouri, M. and Idrissi, A. (2024) Ammi majus L. Visnaga daucoides Gaertn. Ethnobotany of Northern Africa and Levant, 253.

  9. Aziz, I. M., Alshalan, R. M., Rizwana, H., Alkhelaiwi, F., Almuqrin, A. M., Aljowaie, R. M., & Alkubaisi, N. A. (2024). Chemical composition, antioxidant, anticancer, and antibacterial activities of roots and seeds of Ammi visnaga L. methanol extract. Pharmaceuticals, 17, Article 121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vaglica, A., Cerulli, A., Piacente, S., Bruno, M., Badalamenti, N., Pavela, R., & Maggi, F. (2024). Phytochemical investigation and evaluation of acaricidal activity of Ammi crinitum Guss. against the two-spotted spider mite Tetranychus urticae Koch. Crop Protection, 184, Article 106791.

    Article  CAS  Google Scholar 

  11. D’Agostino, G., Adele, C., Alessandro, V., Vincenzo, I., & Bruno, M. (2024). The chemical composition of the aerial parts essential oil of Ammi crinitum Guss. (Apiaceae) endemic of Sicily (Italy). Natural Product Research, 38, 354–358.

    Article  PubMed  Google Scholar 

  12. Ndayambaje, M., Hicham, W., Marieme, S., Oumaima, C., Thierry, H., Mehdi, K., Youness, L., Abdallah, N., & Oudghiri, M. (2024). Exploring the multifaceted effects of Ammi visnaga: Subchronic toxicity, antioxidant capacity, immunomodulatory, and anti-inflammatory activities. Journal of Toxicology and Environmental Health, Part A, 87, 150–165.

    Article  CAS  PubMed  Google Scholar 

  13. Celiński, R., Krzemińska, B., Grzywa-Celińska, A., Szewczyk, G., & Szewczyk, K. D. S. (2024). A review on the potential use of medicinal plants from the Apiaceae and the Rosaceae families in cardiovascular diseases—experimental evidence and traditional applications. Applied Sciences, 14, 3728.

    Article  Google Scholar 

  14. El-Ahmady, S., Ibrahim, N., Farag, N. and Gabr, S. (2021) Apiaceae plants growing in the East: Centuries of healing traditions and culture, in Ethnopharmacology of Wild Plants, CRC Press: pp. 246–300.

  15. Alqhtani, H. A., Othman, S. I., Aba Alkhayl, F. F., Altoom, N. G., Lamsabhi, A. M., & Kamel, E. M. (2024). Unraveling the mechanism of carbonic anhydrase IX inhibition by alkaloids from Ruta chalepensis: A synergistic analysis of in vitro and in silico data. Biochemical and Biophysical Research Communications, 733, Article 150685.

    Article  CAS  PubMed  Google Scholar 

  16. Alqhtani, H. A., Othman, S. I., Alkhayl, F. F. A., Altoom, N. G., Lamsabhi, A. M., & Kamel, E. M. (2025). Inhibitory mechanisms of β-glucuronidase by Hibiscus syriacus phenolics: Integrating computational and experimental approaches. ChemistrySelect, 10, Article e202402984.

    Article  CAS  Google Scholar 

  17. Alruhaimi, R. S., Mahmoud, A. M., Elbagory, I., Ahmeda, A. F., El-Bassuony, A. A., Lamsabhi, A. M., & Kamel, E. M. (2024). Unveiling the tyrosinase inhibitory potential of phenolics from Centaurium spicatum: Bridging in silico and in vitro perspectives. Bioorganic Chemistry, 147, Article 107397.

    Article  CAS  PubMed  Google Scholar 

  18. Yan, Z., Yu, B., Lan, X., Cui, X., Zhao, D., Qiu, L., Wang, H., Wang, W., Chen, L., Jin, L., & Li, K. (2024). Synthesis, bioactivity evaluation and theoretical study of nicotinamide derivatives containing diphenyl ether fragments as potential succinate dehydrogenase inhibitors. Journal of Molecular Structure, 1308, Article 138331.

    Article  CAS  Google Scholar 

  19. Alruhaimi, R. S., Mahmoud, A. M., Alnasser, S. M., Alotaibi, M. F., Elbagory, I., El-Bassuony, A. A., Lamsabhi, A. M., & Kamel, E. M. (2024). Integrating computational modeling and experimental validation to unveil tyrosinase inhibition mechanisms of flavonoids from Alhagi graecorum. ACS Omega, 9, 47167–47179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Alwaili, M. A., Aba Alkhayl, F. F., Rudayni, H. A., Allam, A. A., Altoom, N. G., Lamsabhi, A. M., & Kamel, E. M. (2024). Unraveling molecular mechanisms of β-glucuronidase inhibition by flavonoids from Centaurea scoparia: Integrated in silico and in vitro insights. New Journal of Chemistry, 48, 14236–14252.

    Article  CAS  Google Scholar 

  21. Alwaili, M. A., Alkhayl, F. F. A., Rudayni, H. A., Allam, A. A., Lamsabhi, A. M., & Kamel, E. M. (2025). Mechanistic insights into β-glucuronidase inhibition by isoprenylated flavonoids from Centaurea scoparia: Bridging experimental and computational approaches. Journal of Molecular Structure, 1322, Article 140354.

    Article  CAS  Google Scholar 

  22. Kamel, E. M., Aba Alkhayl, F. F., Alqhtani, H. A., Bin-Jumah, M., & Lamsabhi, A. M. (2024). Dynamic interactions and inhibitory mechanisms of Artemisia annua terpenoids with carbonic anhydrase IX. International Journal of Biological Macromolecules, 282, Article 136982.

    Article  CAS  PubMed  Google Scholar 

  23. Kamel, E. M., Aba Alkhayl, F. F., Alqhtani, H. A., Bin-Jumah, M., Rudayni, H. A., & Lamsabhi, A. M. (2024). Bridging in silico and in vitro perspectives to unravel molecular mechanisms underlying the inhibition of β-glucuronidase by coumarins from Hibiscus trionum. Biophysical Chemistry, 313, Article 107304.

    Article  CAS  PubMed  Google Scholar 

  24. Kamel, E. M., Ahmed, N. A., El-Bassuony, A. A., Hussein, O. E., Alrashdi, B., Ahmed, S. A., Lamsabhi, A. M., Arab, H. H., & Mahmoud, A. M. (2022). Xanthine oxidase inhibitory activity of Euphorbia peplus L. phenolics. Combinatorial Chemistry & High Throughput Screening, 25, 1336–1344.

    Article  CAS  Google Scholar 

  25. Wang, Z., Jiang, Y., Ge, C., Wang, Y., He, J., Chen, J., & Hou, X. (2024). Anti-inflammatory activity evaluation and molecular docking analysis of four new compounds isolated from M. oleifera seeds. Journal of Molecular Structure, 1318, Article 139269.

    Article  CAS  Google Scholar 

  26. Kamel, E. M., Alkhayl, F. F. A., Alqhtani, H. A., Bin-Jumah, M., Rudayni, H. A., & Lamsabhi, A. M. (2024). Dissecting molecular mechanisms underlying the inhibition of β-glucuronidase by alkaloids from Hibiscus trionum: Integrating in vitro and in silico perspectives. Computers in Biology and Medicine, 180, Article 108969.

    Article  CAS  PubMed  Google Scholar 

  27. Kamel, E. M., Alqhtani, H. A., Bin-Jumah, M., Rudayni, H. A., El-Bassuony, A. A., & Mokhtar Lamsabhi, A. (2024). Deciphering molecular mechanisms underlying the inhibition of β-glucuronidase by xanthones from Centaurium spicatum. Bioorganic Chemistry, 150, Article 107609.

    Article  CAS  PubMed  Google Scholar 

  28. Kamel, E. M., Alwaili, M. A., Rudayni, H. A., Allam, A. A., & Lamsabhi, A. M. (2024). Deciphering the molecular mechanisms of reactive metabolite formation in the mechanism-based inactivation of cytochrome P450 1B1 by 8-methoxypsoralen and assessing the driving effect of phe268. Molecules, 29, 1433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kamel, E. M., Abdelrheem, D. A., Salah, B., & Lamsabhi, A. M. (2025). Phytochemical inhibitors of squalene epoxidase: Integrated in silico and in vitro mechanistic insights for targeting cholesterol biosynthesis. Archives of Biochemistry and Biophysics, 768, Article 110372.

    Article  CAS  PubMed  Google Scholar 

  30. Kamel, E. M., Maodaa, S., Al-Shaebi, E. M., & Lamsabhi, A. M. (2024). Mechanistic insights into the metabolic pathways of vanillin: Unraveling cytochrome P450 interaction mechanisms and implications for food safety. Organic & Biomolecular Chemistry, 22, 6561–6574.

    Article  CAS  Google Scholar 

  31. Kamel, E. M., Othman, S. I., Rudayni, H. A., Allam, A. A., & Lamsabhi, A. M. (2025). Multi-pronged molecular insights into flavonoid-mediated inhibition of squalene epoxidase: A pathway to novel therapeutics. RSC Advances, 15, 3829–3848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kamel, E. M., Tawfeek, A. M., El-Bassuony, A. A., & Lamsabhi, A. M. (2023). Mechanistic insights into chloramphenicol-mediated inactivation of cytochrome P450 enzymes and their active site mutants. New Journal of Chemistry, 47, 16429–16443.

    Article  CAS  Google Scholar 

  33. Kamel, E. M., Tawfeek, A. M., El-Bassuony, A. A., & Lamsabhi, A. M. (2023). Mechanistic aspects of reactive metabolite formation in clomethiazole catalyzed biotransformation by cytochrome P450 enzymes. Organic & Biomolecular Chemistry, 21, 7158–7172.

    Article  CAS  Google Scholar 

  34. Daina, A., Michielin, O., & Zoete, V. (2019). SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Research, 47, W357–W364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Philippe, N., Rivron, L., De Bruin, B., Schofield, J., & Roy, S. (2018). Two new convenient syntheses of 14C-squalene from turbinaric acid. Journal of Labelled Compounds and Radiopharmaceuticals, 61, 878–884.

    Article  CAS  PubMed  Google Scholar 

  36. Abe, I., Seki, T., & Noguchi, H. (2000). Potent and selective inhibition of squalene epoxidase by synthetic galloyl esters. Biochemical and Biophysical Research Communications, 270, 137–140.

    Article  CAS  PubMed  Google Scholar 

  37. Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37, 785.

    Article  CAS  Google Scholar 

  38. Becke, A. D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38, 3098.

    Article  CAS  Google Scholar 

  39. Hehre, W. J., Radom, L., Schleyer, Pv. R., Pople, J. A., et al. (1986). Ab initio molecular orbital theory. Wiley.

    Google Scholar 

  40. Guex, N., & Peitsch, M. C. (1997). SWISS-MODEL and the Swiss-Pdb viewer: An environment for comparative protein modeling. Electrophoresis, 18, 2714–2723.

    Article  CAS  PubMed  Google Scholar 

  41. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF chimera—a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25, 1605–1612.

    Article  CAS  PubMed  Google Scholar 

  42. Trott, O., & Olson, A. J. (2010). AutoDock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31, 455–461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams, Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery Jr., J. A., Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. and Fox, D. J. (2016) Gaussian 16 Rev. C.01, Wallingford, CT.

  44. Bauer, P., Hess, B. and Lindahl, E. (2022) GROMACS 2022.4 Manual. November 16, 2022.

  45. Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25.

    Article  Google Scholar 

  46. MacKerell, A. D., Jr., Bashford, D., Bellott, M., Dunbrack, R. L., Jr., Evanseck, J. D., Field, M. J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F. T. K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D. T., Prodhom, B., … Karplus, M. (1998). All-atom empirical potential for molecular modeling and dynamics studies of proteins. The Journal of Physical Chemistry B, 102, 3586–3616.

    Article  CAS  PubMed  Google Scholar 

  47. Hess, B., Kutzner, C., Van Der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4, 435–447.

    Article  CAS  PubMed  Google Scholar 

  48. Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52, 7182–7190.

    Article  CAS  Google Scholar 

  49. Valdés-Tresanco, M. S., Valdés-Tresanco, M. E., Valiente, P. A., & Moreno, E. (2021). gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. Journal of Chemical Theory and Computation, 17, 6281–6291.

    Article  PubMed  Google Scholar 

  50. Daina, A., Michielin, O., & Zoete, V. (2017). Swissadme: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, Article 42717.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Fu, L., Shi, S., Yi, J., Wang, N., He, Y., Wu, Z., Peng, J., Deng, Y., Wang, W., Wu, C., Lyu, A., Zeng, X., Zhao, W., Hou, T., & Cao, D. (2024). ADMETlab 3.0: An updated comprehensive online ADMET prediction platform enhanced with broader coverage, improved performance, API functionality and decision support. Nucleic Acids Research, 52, W422–W431.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Erdogdu, Y. (2013). Investigations of FT-IR, FT-Raman, FT-NMR spectra and quantum chemical computations of esculetin molecule. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 106, 25–33.

    Article  CAS  PubMed  Google Scholar 

  53. Travaini, M. L., Sosa, G. M., Ceccarelli, E. A., Walter, H., Cantrell, C. L., Carrillo, N. J., Dayan, F. E., Meepagala, K. M., & Duke, S. O. (2016). Khellin and visnagin, furanochromones from Ammi visnaga (L.) Lam., as potential bioherbicides. Journal of Agricultural and Food Chemistry, 64, 9475–9487.

    Article  CAS  PubMed  Google Scholar 

  54. Jain, P. G., & Surana, S. J. (2016). Isolation, characterization and hypolipidemic activity of ferulic acid in high-fat-diet-induced hyperlipidemia in laboratory rats. EXCLI Journal, 15, 599–613.

    PubMed  PubMed Central  Google Scholar 

  55. Świsłocka, R., Kowczyk-Sadowy, M., Kalinowska, M., & Lewandowski, W. (2012). Spectroscopic (FT-IR, FT-Raman, 1H and 13C NMR) and theoretical studies of p-coumaric acid and alkali metal p-coumarates. Journal of Spectroscopy, 27, Article 546146.

    Google Scholar 

  56. Adhami, H.-R., Zehl, M., Dangl, C., Dorfmeister, D., Stadler, M., Urban, E., Hewitson, P., Ignatova, S., & Krenn, L. (2015). Preparative isolation of oleocanthal, tyrosol, and hydroxytyrosol from olive oil by HPCCC. Food Chemistry, 170, 154–159.

    Article  CAS  PubMed  Google Scholar 

  57. Tjarks, L. W., Spencer, G. F., & Seest, E. P. (1989). Isolation and 1H and 13C NMR of ammiol and khellol glucosides. Journal of Natural Products, 52, 655–656.

    Article  CAS  Google Scholar 

  58. Chen, Y., Chen, M., Zhang, W., Zhang, S., Su, X., Zhao, T., Chen, Y., Su, X., Zeng, J., Cao, J., Liu, Z., Zhong, L., & Wang, G. (2024). Large-scale isolation of scopoletin from Nicotiana tabacum. Biomass Conversion and Biorefinery, 14, 16273–16283.

    Article  CAS  Google Scholar 

  59. Agarwal, U., Pannu, A., Tonk, R. K., Jaiswal, P., & Jain, K. (2024). The potential of xanthotoxin in the treatment of cognitive disorders: Current insights and future perspectives. Future Journal of Pharmaceutical Sciences, 10, 147.

    Article  Google Scholar 

  60. Morris, G. M., & Lim-Wilby, M. (2008). Molecular Docking. Molecular Modeling of Proteins, (A (Kukol, pp. 365–382). Humana Press.

    Chapter  Google Scholar 

  61. Shukla, R. and Tripathi, T. (2020) Molecular Dynamics Simulation of Protein and Protein–Ligand Complexes, in Computer-Aided Drug Design, (D. B. Singh ed, Springer Singapore, Singapore: pp. 133–161.

  62. Åqvist, J., Luzhkov, V. B., & Brandsdal, B. O. (2002). Ligand binding affinities from MD simulations. Accounts of Chemical Research, 35, 358–365.

    Article  PubMed  Google Scholar 

  63. Maruyama, Y., Igarashi, R., Ushiku, Y., & Mitsutake, A. (2023). Analysis of protein folding simulation with moving root mean square deviation. Journal of Chemical Information and Modeling, 63, 1529–1541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. da Fonseca, A. M., Caluaco, B. J., Madureira, J. M. C., Cabongo, S. Q., Gaieta, E. M., Djata, F., Colares, R. P., Neto, M. M., Fernandes, C. F. C., Marinho, G. S., dos Santos, H. S., & Marinho, E. S. (2024). Screening of potential inhibitors targeting the main protease structure of SARS-CoV-2 via molecular docking, and approach with molecular dynamics, RMSD, RMSF, H-bond, SASA and MMGBSA. Molecular Biotechnology, 66, 1919–1933.

    Article  PubMed  Google Scholar 

  65. Chen, H., & Panagiotopoulos, A. Z. (2019). Molecular modeling of surfactant micellization using solvent-accessible surface area. Langmuir, 35, 2443–2450.

    Article  CAS  PubMed  Google Scholar 

  66. Papaleo, E., Mereghetti, P., Fantucci, P., Grandori, R., & De Gioia, L. (2009). Free-energy landscape, principal component analysis, and structural clustering to identify representative conformations from molecular dynamics simulations: The myoglobin case. Journal of Molecular Graphics and Modelling, 27, 889–899.

    Article  CAS  PubMed  Google Scholar 

  67. Moradi, S., Nowroozi, A., Aryaei Nezhad, M., Jalali, P., Khosravi, R., & Shahlaei, M. (2024). A review on description dynamics and conformational changes of proteins using combination of principal component analysis and molecular dynamics simulation. Computers in Biology and Medicine, 183, Article 109245.

    Article  CAS  PubMed  Google Scholar 

  68. Laitinen, T., Kankare, J. A., & Peräkylä, M. (2004). Free energy simulations and MM–PBSA analyses on the affinity and specificity of steroid binding to antiestradiol antibody. Proteins: Structure, Function, and Bioinformatics, 55, 34–43.

    Article  CAS  Google Scholar 

  69. Gupta, A., Chaudhary, N., & Aparoy, P. (2018). MM-pbsa and per-residue decomposition energy studies on 7-phenyl-imidazoquinolin-4(5H)-one derivatives: Identification of crucial site points at microsomal prostaglandin E synthase-1 (mPGES-1) active site. International Journal of Biological Macromolecules, 119, 352–359.

    Article  CAS  PubMed  Google Scholar 

  70. Sargsyan, K., Grauffel, C., & Lim, C. (2017). How molecular size impacts RMSD applications in molecular dynamics simulations. Journal of Chemical Theory and Computation, 13, 1518–1524.

    Article  CAS  PubMed  Google Scholar 

  71. Durrant, J. D., & McCammon, J. A. (2011). Hbonanza: A computer algorithm for molecular-dynamics-trajectory hydrogen-bond analysis. Journal of Molecular Graphics and Modelling, 31, 5–9.

    Article  CAS  PubMed  Google Scholar 

  72. Deng, Y., Luo, W., Zheng, Z., Wei, G., Liu, S., Jiang, Y., & Yang, H. (2023). Prediction of co-amorphous formation using non-bonded interaction energy: Molecular dynamic simulation and experimental validation. Chemical Engineering Science, 272, Article 118618.

    Article  CAS  Google Scholar 

  73. Eastman, P., & Pande, V. S. (2010). Efficient nonbonded interactions for molecular dynamics on a graphics processing unit. Journal of Computational Chemistry, 31, 1268–1272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Norinder, U., & Bergström, C. A. S. (2006). Prediction of ADMET properties. ChemMedChem, 1, 920–937.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported from the project with Ref: PID2023-150717NB-I00 (MICINN) of the Ministerio de Ciencia, Innovación y Universidades of Spain. The authors would also like to thank the Centro de Computación Científica of the UAM (CCC-UAM) for the generous allocation of computer time and for their continued technical support. The authors acknowledge Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2025R227), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Funding

This work was supported from the project with Ref: PID2023-150717NB-I00 (MICINN) of the Ministerio de Ciencia, Innovación y Universidades of Spain. The authors would also like to thank the Centro de Computación Científica of the UAM (CCC-UAM) for the generous allocation of computer time and for their continued technical support. The authors acknowledge Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2025R227), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

Emadeldin M. Kamel: conceptualization, methodology, investigation, writing—original draft, and supervision. Doaa A. Abdelrheem: formal analysis, data curation, visualization, and investigation. Fahad M. Alshabrmi: resources, funding acquisition, project administration. Maha A. Alwaili: software, validation, methodology, and investigation. Faris F. Aba Alkhayl: investigation, in vitro experiments, data interpretation, investigation. Al Mokhtar Lamsabhi: supervision, methodology, writing—review and editing, and computational chemistry oversight.

Corresponding author

Correspondence to Emadeldin M. Kamel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamel, E.M., Abdelrheem, D.A., Alshabrmi, F.M. et al. Repurposing Ammi visnaga Furanocoumarins as Potent Squalene Epoxidase Inhibitors to Disrupt Lipid Metabolism: An Integrated Phytochemical, In Vitro, and In Silico Study. Mol Biotechnol (2025). https://doi.org/10.1007/s12033-025-01524-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1007/s12033-025-01524-3

Keywords