Skip to main content
Log in

Healthy diet and slower biological aging as protective factors against microvascular complications in type 2 diabetes

  • ORIGINAL ARTICLE
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

This study aimed to evaluate the independent and joint effects of adherence to healthy dietary patterns and slower biological aging on the incidence of diabetic microvascular complications in individuals with type 2 diabetes mellitus (T2DM), and to assess the mediating role of biological aging. In a prospective cohort of 13,294 T2DM participants without baseline DMCs, dietary quality was assessed using a validated 10-point score, while biological aging was calculated from nine biomarkers and chronological age. Cox regression models were used to assess associations, and mediation analysis was performed to estimate the mediating effects of biological aging. Over a mean follow-up of 11.9 years, 3197 participants developed DMCs, including 1392 cases of diabetic retinopathy (DR), 1908 of diabetic nephropathy (DN), and 598 of diabetic neuropathy (DPN). Higher dietary scores (6–10) were associated with reduced risks of composite DMCs (HR 0.845; 95% CI 0.742–0.962), DR (0.804; 0.659–0.981), and DN (0.766; 0.643–0.911), but not DPN. Phenotypic age acceleration (PhenoAgeAccel) ≤ 0 was also linked to a reduced risk of DMCs. In addition, biologically younger with higher dietary score (6–10 points) had 39.4%, 30.8%, 53.6%, and 41.9% lower risk of composite DMCs, DR, DN, and DPN, respectively. Mediation analysis revealed that PhenoAgeAccel accounted for 43.0%, 29.8%, and 33.5% of the diet association with composite DMCs, DR, and DN, respectively. The results suggest that healthier dietary patterns and slower biological aging can reduce the risk of DMCs in T2DM patients, with a substantial portion of the dietary benefits mediated through slower aging. Integrating dietary and aging-targeted interventions may offer a promising method to reduce DMC risk in T2DM.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

This study has been conducted using the UK Biobank Resource under Application Number 107451. The code, models, algorithms, protocols, methods, and other useful materials related to the project are available upon reasonable request to the corresponding authors.

References

  1. Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183.

    Article  PubMed  Google Scholar 

  2. Teo ZL, Tham YC, Yu M, Chee ML, Rim TH, Cheung N, et al. Global prevalence of diabetic retinopathy and projection of burden through 2045: systematic review and meta-analysis. Ophthalmology. 2021;128(11):1580–91.

    Article  PubMed  Google Scholar 

  3. Hu Q, Jiang L, Yan Q, Zeng J, Ma X, Zhao Y. A natural products solution to diabetic nephropathy therapy. Pharmacol Ther. 2023;241.

    Article  CAS  PubMed  Google Scholar 

  4. Feldman EL, Callaghan BC, Pop-Busui R, Zochodne DW, Wright DE, Bennett DL, et al. Diabetic neuropathy. Nat Rev Dis Primers. 2019;5(1).

    Article  PubMed  Google Scholar 

  5. Lyssenko V, Vaag A. Genetics of diabetes-associated microvascular complications. Diabetologia. 2023;66(9):1601–13.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bellary S, Kyrou I, Brown JE, Bailey CJ. Type 2 diabetes mellitus in older adults: clinical considerations and management. Nat Rev Endocrinol. 2021;17(9):534–48.

    Article  PubMed  Google Scholar 

  7. Geng T, Zhu K, Lu Q, Wan Z, Chen X, Liu L, et al. Healthy lifestyle behaviors, mediating biomarkers, and risk of microvascular complications among individuals with type 2 diabetes: a cohort study. PLoS Med. 2023;20(1).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mozaffarian D. Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: a comprehensive review. Circulation. 2016;133(2):187–225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. He P, Li H, Ye Z, Liu M, Zhou C, Wu Q, et al. Association of a healthy lifestyle, life’s essential 8 scores with incident macrovascular and microvascular disease among individuals with type 2 diabetes. J Am Heart Assoc. 2023;12(17).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bloom SI, Islam MT, Lesniewski LA, Donato AJ. Mechanisms and consequences of endothelial cell senescence. Nat Rev Cardiol. 2023;20(1):38–51.

    Article  PubMed  Google Scholar 

  11. Augustin HG, Koh GY. A systems view of the vascular endothelium in health and disease. Cell. 2024;187(18):4833–58.

    Article  CAS  PubMed  Google Scholar 

  12. Seals DR, Jablonski KL, Donato AJ. Aging and vascular endothelial function in humans. Clin Sci Lond. 2011;120(9):357–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rossman MJ, Kaplon RE, Hill SD, McNamara MN, Santos-Parker JR, Pierce GL, et al. Endothelial cell senescence with aging in healthy humans: prevention by habitual exercise and relation to vascular endothelial function. Am J Physiol Heart Circ Physiol. 2017;313(5):H890–5.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Elliott ML, Caspi A, Houts RM, Ambler A, Broadbent JM, Hancox RJ, et al. Disparities in the pace of biological aging among midlife adults of the same chronological age have implications for future frailty risk and policy. Nat Aging. 2021;1(3):295–308.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Pugashetti JV, Kim JS, Bose S, Adegunsoye A, Linderholm AL, Chen CH, et al. Biological age, chronological age, and survival in pulmonary fibrosis: a causal mediation analysis. Am J Respir Crit Care Med. 2024;210(5):639–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu Z, Kuo PL, Horvath S, Crimmins E, Ferrucci L, Levine M. A new aging measure captures morbidity and mortality risk across diverse subpopulations from NHANES IV: a cohort study. PLoS Med. 2018;15(12).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wang T, Duan W, Jia X, Huang X, Liu Y, Meng F, et al. Associations of combined phenotypic ageing and genetic risk with incidence of chronic respiratory diseases in the UK Biobank: a prospective cohort study. Eur Respir J. 2024;63(2).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li X, Cao X, Zhang J, Fu J, Mohedaner M, Danzengzhuoga, et al. Accelerated aging mediates the associations of unhealthy lifestyles with cardiovascular disease, cancer, and mortality. J Am Geriatr Soc. 2024;72(1):181–93.

  19. Duan S, Wu Y, Zhu J, Wang X, Fang Y. Associations of polycyclic aromatic hydrocarbons mixtures with cardiovascular diseases mortality and all-cause mortality and the mediation role of phenotypic ageing: a time-to-event analysis. Environ Int. 2024;186.

    Article  CAS  PubMed  Google Scholar 

  20. Chen L, Yin X, Zhao Y, Chen H, Tan T, Yao P, et al. Biological ageing and the risks of all-cause and cause-specific mortality among people with diabetes: a prospective cohort study. J Epidemiol Community Health. 2022;76(9):771–8.

    Article  PubMed  Google Scholar 

  21. Yang G, Cao X, Li X, Zhang J, Ma C, Zhang N, et al. Association of unhealthy lifestyle and childhood adversity with acceleration of aging among UK Biobank participants. JAMA Netw Open. 2022;5(9).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dominguez LJ, Veronese N, Barbagallo M. Dietary patterns and healthy or unhealthy aging. Gerontology. 2024;70(1):15–36.

    Article  PubMed  Google Scholar 

  23. Caleyachetty R, Littlejohns T, Lacey B, Bešević J, Conroy M, Collins R, et al. United Kingdom Biobank (UK Biobank): JACC Focus Seminar 6/8. J Am Coll Cardiol. 2021;78(1):56–65.

    Article  PubMed  Google Scholar 

  24. Said MA, Verweij N, van der Harst P. Associations of combined genetic and lifestyle risks with incident cardiovascular disease and diabetes in the UK Biobank study. JAMA Cardiol. 2018;3(8):693–702.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14(2):88–98.

    Article  PubMed  Google Scholar 

  26. Tada H, Takamura M, Kawashiri MA. The effect of diet on cardiovascular disease, heart disease, and blood vessels. Nutrients. 2022;14(2).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Santos-Pujol E, Noguera-Castells A, Casado-Pelaez M, García-Prieto CA, Vasallo C, Campillo-Marcos I, et al. The multiomics blueprint of the individual with the most extreme lifespan. Cell Rep Med. 2025;6(10).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tingö L, Bergh C, Rode J, Rubio MFR, Persson J, Johnson LB, et al. The effect of whole-diet interventions on memory and cognitive function in healthy older adults-a systematic review. Adv Nutr. 2024;15(9).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Granic A, Sayer AA, Cooper R, Robinson SM. Nutrition in the prevention and treatment of skeletal muscle ageing and sarcopenia: a single nutrient, a whole food and a whole diet approach. Proc Nutr Soc. 2024:1–16.

  30. Liu W, Wang J, Wang M, Hou H, Ding X, Ma L, et al. Oxidative stress factors mediate the association between life’s essential 8 and accelerated phenotypic aging: NHANES 2005–2018. J Gerontol A Biol Sci Med Sci. 2024;79(1).

    Article  PubMed  Google Scholar 

  31. Hu Z, Xu J, Shen R, Lin L, Su Y, Xie C, et al. Combination of biological aging and genetic susceptibility helps identifying at-risk population of venous thromboembolism: a prospective cohort study of 394 041 participants. Am J Hematol. 2025;100(4):575–83.

    Article  CAS  PubMed  Google Scholar 

  32. Aleksandrova K, Koelman L, Rodrigues CE. Dietary patterns and biomarkers of oxidative stress and inflammation: a systematic review of observational and intervention studies. Redox Biol. 2021;42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Frazier K, Kambal A, Zale EA, Pierre JF, Hubert N, Miyoshi S, et al. High-fat diet disrupts REG3γ and gut microbial rhythms promoting metabolic dysfunction. Cell Host Microbe. 2022;30(6):809-23.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sinha SK, Nicholas SB, Sung JH, Correa A, Rajavashisth TB, Norris KC, et al. Hs-CRP is associated with incident diabetic nephropathy: findings from the jackson heart study. Diabetes Care. 2019;42(11):2083–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vestweber D. How leukocytes cross the vascular endothelium. Nat Rev Immunol. 2015;15(11):692–704.

    Article  CAS  PubMed  Google Scholar 

  36. González P, Lozano P, Ros G, Solano F. Hyperglycemia and oxidative stress: an integral, updated and critical overview of their metabolic interconnections. Int J Mol Sci. 2023;24(11).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wautier JL, Wautier MP, Schmidt AM, Anderson GM, Hori O, Zoukourian C, et al. Advanced glycation end products (AGEs) on the surface of diabetic erythrocytes bind to the vessel wall via a specific receptor inducing oxidant stress in the vasculature: a link between surface-associated AGEs and diabetic complications. Proc Natl Acad Sci USA. 1994;91(16):7742–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kang Q, Yang C. Oxidative stress and diabetic retinopathy: molecular mechanisms, pathogenetic role and therapeutic implications. Redox Biol. 2020;37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cai YW, Zhang HF, Gao JW, Cai ZX, Cai JW, Gao QY, et al. Serum albumin and risk of incident diabetes and diabetic microvascular complications in the UK Biobank cohort. Diabetes Metab. 2023;49(5).

    Article  CAS  PubMed  Google Scholar 

  40. Soeters PB, Wolfe RR, Shenkin A. Hypoalbuminemia: pathogenesis and clinical significance. JPEN J Parenter Enteral Nutr. 2019;43(2):181–93.

    Article  CAS  PubMed  Google Scholar 

  41. Kim DW, Hwang SY, Nam YJ, Kim D, Shin SJ, et al. The combined prognostic significance of alkaline phosphatase and vascular calcification in patients with end-stage kidney disease. Nutr Metab Cardiovasc Dis. 2020;30(9):1476–83.

    Article  CAS  PubMed  Google Scholar 

  42. Romanul FC, Bannister RG. Localized areas of high alkaline phosphatase activity in endothelium of arteries. Nature. 1962;195:611–2.

    Article  CAS  PubMed  Google Scholar 

  43. Hausladen A, Qian Z, Zhang R, Premont RT, Stamler JS. Optimized S-nitrosohemoglobin synthesis in red blood cells to preserve hypoxic vasodilation via βCys93. J Pharmacol Exp Ther. 2022;382(1):1–10.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ebrahimi S, Bagchi P. A computational study of red blood cell deformability effect on hemodynamic alteration in capillary vessel networks. Sci Rep. 2022;12(1).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cunha RSD, Santos AF, Barreto FC, Stinghen AEM. How do uremic toxins affect the endothelium? Toxins (Basel). 2020;12(6).

    Article  PubMed  Google Scholar 

  46. He D, Gao B, Wang J, Yang C, Zhao MH, Zhang L. The difference between cystatin c- and creatinine-based estimated glomerular filtration rate and risk of diabetic microvascular complications among adults with diabetes: a population-pased cohort study. Diabetes Care. 2024;47(5):873–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rutledge J, Oh H, Wyss-Coray T. Measuring biological age using omics data. Nat Rev Genet. 2022;23(12):715–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cohen AA, Kennedy BK, Anglas U, Bronikowski AM, Deelen J, Dufour F, et al. Lack of consensus on an aging biology paradigm? A global survey reveals an agreement to disagree, and the need for an interdisciplinary framework. Mech Ageing Dev. 2020;191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tessier AJ, Wang F, Korat AA, Eliassen AH, Chavarro J, Grodstein F, et al. Optimal dietary patterns for healthy aging. Nat Med. 2025;31(5):1644–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Abbad-Gomez D, Carballo-Casla A, Beridze G, Lopez-Garcia E, Rodríguez-Artalejo F, Sala M, et al. Dietary patterns and accelerated multimorbidity in older adults. Nat Aging. 2025;5(8):1481–90.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to all the participants of UK Biobank and all the people involved in building the UK Biobank study.

Funding

This study was supported by the Shanghai Municipal Health Commission Collaborative Innovation Cluster Project (2024CXJQ02 to BY) and the Fundamental Research Funds for the Central Universities (YG2025ZD04 to BY and YG2025QNA43 to HZ).

Author information

Authors and Affiliations

Contributions

Study conception and design: H.Z, K.L, N.L, and B.Y; data curation: H.Z, S.B, Q.M, RK.Y, XY.Y, and J.L; formal analysis: H.Z, B.S, Q.M, and RK.Y; interpretation of data: Z.H, RK. Y, J.X, XY. Y, J.L, Q.L; writing: Z.H, S.B, Q.L, JY.Z, and Z.Y; reviewing: H.Z, Q.L, Z.Y, K.L, N.L, and B.Y. All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Na Li, Kun Liu or Biao Yan.

Ethics declarations

Ethics approval and consent to participate

Not applicable. UK Biobank has full ethical approval from the NHS National Research Ethics Service (16/NW/0274). All participants gave written informed consent.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

ESM 1

(PDF 687 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Ben, S., Ma, Q. et al. Healthy diet and slower biological aging as protective factors against microvascular complications in type 2 diabetes. GeroScience (2025). https://doi.org/10.1007/s11357-025-02002-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1007/s11357-025-02002-z

Keywords

Profiles

  1. Biao Yan