Abstract
We describe the Genesis mission solar-wind sample collection period and the solar wind conditions at the L1 point during this 2.3-year period. In order to relate the solar wind samples to solar composition, the conditions under which the samples were collected must be understood in the context of the long-term solar wind. We find that the state of the solar wind was typical of conditions over the past four solar cycles. However, Genesis spent a relatively large fraction of the time in coronal-hole flow as compared to what might have been expected for the declining phase of the solar cycle. Data from the Solar Wind Ion Composition Spectrometer (SWICS) on the Advanced Composition Explorer (ACE) are used to determine the effectiveness of the Genesis solar-wind regime selection algorithm. The data collected by SWICS confirm that the Genesis algorithm successfully separated and collected solar wind regimes having distinct solar origins, particularly in the case of the coronal hole sample. The SWICS data also demonstrate that the different regimes are elementally fractionated. When compared with Ulysses composition data from the previous solar cycle, we find a similar degree of fractionation between regimes as well as fractionation relative to the average photospheric composition.
The Genesis solar wind samples are under long-term curation at NASA Johnson Space Center so that as sample analysis techniques evolve, pristine solar wind samples will be available to the scientific community in the decades to come. This article and a companion paper (Wiens et al. 2013, this issue) provide post-flight information necessary for the analysis of the Genesis array and foil solar wind samples and the Genesis solar wind ion concentrator samples, and thus serve to complement the Space Science Review volume, The Genesis Mission (v. 105, 2003).

















Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Notes
These 35 intervals contain 51 entries from the R&C list. Due to the persistence condition of the Genesis regime algorithm (see Sect. 4.2.3), multiple CMEs were often collected during the same regime interval, in cases where CMEs followed in rapid succession.
Abbreviations
- B:
-
Bulk collectors that were at the top of the stack and in the Canister lid. These were exposed continuously during the science collection period
- E:
-
Collector array directly below the B array. This array was exposed to coronal mass ejection flows and questionable flows
- H:
-
Collector array below the E array. This array was exposed to high-speed, or coronal hole flows
- L:
-
Bottom collector array in the stack. This array was exposed to low-speed, or interstream wind
- S:
-
Collectors in the SRC lid, primarily to investigate radioactive nuclei in the solar wind
- CME:
-
Coronal mass ejections
- CH:
-
Coronal hole, or fast wind
- IS:
-
Insterstream, or slow wind
- S/C:
-
Spacecraft
- SRC:
-
Science return capsule
- SKM:
-
Station keeping maneuvers, which occurred approximately every 2 months
- LOI:
-
L1 orbit insertion, which occurred prior to the beginning of the science collection phase of the mission
- L1:
-
The Lagrangian point between the Earth and the Sun
- Unshaded position:
-
Rotational position of the deployable solar-wind collector arrays where individual, regime-specific arrays were exposed.
- Deployed position:
-
Rotational position of the deployable solar-wind collector arrays where the B array remained during collection, and where the regime-specific arrays were positioned when they were not exposed or acting as a contamination barrier
References
M. Asplund, N. Grevesse, A.J. Sauval, The solar chemical composition. Astron. Soc. Pac. Conf. Ser. 336, 25–38 (2005)
M. Asplund, N. Grevesse, A.J. Sauval, P. Scott, The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481–522 (2009). arXiv:0909.0948
B.L. Barraclough, E.E. Dors, R.A. Abeyta, J.F. Alexander, F.P. Ameduri, J.R. Baldonado, S.J. Bame, P.J. Casey, G. Dirks, D.T. Everett, J.T. Gosling, K.M. Grace, D.R. Guerrero, J.D. Kolar, J.L. Kroesche Jr., W.L. Lockhart, D.J. McComas, D.E. Mietz, J. Roese, J. Sanders, J. Steinberg, R.L. Tokar, C. Urdiales, R.C. Wiens, Genesis electron and ion spectrometers. Space Sci. Rev. 105, 627–660 (2003)
S. Bravo, G.A. Stuart, Fast and slow solar wind from solar coronal holes. Astrophys. J. 482, 992 (1997)
D.S. Burnett, B.L. Barraclough, R. Bennett, M. Neugebauer, L.P. Oldham, C.N. Sasaki, D. Sevilla, N. Smith, E. Stansbery, D. Sweetnam, R.C. Wiens, The genesis discovery mission: return of solar matter to Earth. Space Sci. Rev. 105, 509–534 (2003)
H.V. Cane, I.G. Richardson, Interplanetary coronal mass ejections in the near-Earth solar wind during 1996–2002. J. Geophys. Res. 108, 1156 (2003). doi:10.1029/2002JA009817
S.A. Crowther, J.D. Gilmour, Solar wind Xe composition measured in Si collectors from the Genesis mission, in 42nd Lunar and Planetary Science Conference (2011). LPI Contribution No. 1969
R.W. Ebert, D.J. McComas, H.A. Elliott, R.J. Forsyth, J.T. Gosling, Bulk properties of the slow and fast solar wind and interplanetary coronal mass ejections measured by Ulysses: Three polar orbits of observations. J. Geophys. Res. 114, A01109 (2009). doi:10.1029/2008JA013631
W.C. Feldman, J.R. Asbridge, S.J. Bame, J.T. Gosling, Plasma and magnetic fields from the Sun, in The Solar Output and Its Variation, ed. by O.R. White (Colorado Associated University Press, Boulder, 1977), pp. 351–382
P.R. Gazis, Solar cycle variation in the heliosphere. Rev. Geophys. 34, 379–402 (1996). doi:10.1029/96RG00892
J. Geiss, Processes affecting abundances in the solar wind. Space Sci. Rev. 33, 201 (1982)
G. Gloeckler, J. Cain, F.M. Ipavich, E.O. Turns, P. Bedini, L.A. Fisk, T.H. Zurbuchen, P. Bochsler, J. Fischer, R.F. Wimmer-Schweingruber, J. Geiss, R. Kallenbach, Investigation of the composition of solar and interstellar matter using solar wind and pickup ion measurements with SWICS and SWIMS on the ACE spacecraft. Space Sci. Rev. 86, 497–539 (1998)
G. Gloeckler, J. Geiss, The composition of the solar wind in polar coronal holes. Space Sci. Rev. 130, 139 (2007). doi:10.1007/s11214-007-9189-z
J.T. Gosling, R.M. Skoug, D.J. McComas, C.W. Smith, Direct evidence for magnetic reconnection in the solar wind near 1 AU. J. Geophys. Res. 110, A01107 (2005). doi:10.1029/2004JA010809
N. Grevesse, A.J. Sauval, Standard solar composition. Space Sci. Rev. 85, 161–174 (1998)
A. Grimberg, H. Baur, P. Bochsler, F. Bühler, D.S. Burnett, C.C. Hays, V.S. Heber, A.J.G. Jurewicz, R. Wieler, Solar wind neon from Genesis: implications from the lunar noble gas record. Science 314, 1133–1135 (2006)
A. Grimberg, H. Baur, F. Bühler, P. Bochsler, R. Wieler, Solar wind helium, neon, and argon isotopic and elemental composition: data from the metallic glass flown on NASA’s Genesis mission. Geochim. Cosmochim. Acta 72, 626–645 (2008)
V.S. Heber, H. Baur, R. Wieler, P. Bochsler, D.S. Burnett, D.B. Reisenfeld, R.C. Wiens, Fractionation processes in the solar wind detected by Genesis: He, Ne, and Ar isotopic and elemental composition of different solar wind regimes. Astrophys. J. (2012). doi:10.1088/0004-637X/759/2/121
Hefti et al., Kinetic properties of solar wind minor ions and protons measured with SOHO/CELIAS. J. Geophys. Res. 103, 29697–29704 (1998)
M. Humayun, A.J.G. Jurewicz, D.S. Burnett, Preliminary Mg isotopic composition of solar wind from Genesis SoS, in 42nd Lunar and Planetary Science Conference (2011). LPI Contribution No. 1211
G.R. Huss, K. Nagashima, D.S. Burnett, A.J.G. Jurewicz, C.T. Olinger, A new upper limit on the D/H ratio in the solar wind, in 43rd Lunar and Planetary Science Conference (2012). LPI Contribution No. 1659, id. 1709
L. Jian, C.T. Russell, J.G. Kuhmann, R.G. Skoug, Properties of interplanetary coronal mass ejections at one AU during 1995–2004. Sol. Phys. 239, 393–436 (2006)
J.C. Kasper, A.J. Lazarus, J.T. Steinberg, K.W. Ogilvie, A. Szabo, Physics-based tests to identify the accuracy of solar wind ion measurements: a case study with the wind Faraday cups. J. Geophys. Res. 111, A03105 (2006). doi:10.1029/2005JA011442
J.C. Kasper, M.L. Stevens, A.J. Lazarus, J.T. Steinberg, K.W. Ogilvie, The solar wind helium abundance as a function of speed and heliographic latitude. Astrophys. J. 660, 901 (2007)
J.H. King, N.E. Papitashvili, Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data. J. Geophys. Res. 110, A02209 (2004). doi:10.1029/2004JA010804
K. Kitts, Y. Choi, P.J. Eng, S.K. Ghose, S.R. Sutton, B. Rout, Application of grazing incidence X-ray fluorescence technique to discriminate and quantify implanted solar wind. J. Appl. Phys. 105, 64905–64908 (2009)
E. Landi, R.L. Alexander, J.R. Gruesbeck, J.A. Gilbert, S.T. Lepri, W.B. Manchester, T.H. Zurbuchen, Carbon ionization stages as a diagnostic of the solar wind. Astrophys. J. 744, 100 (2012). doi:10.1088/0004-637X/744/2/100
D.J. McComas, S.J. Bame, P. Barker, W.C. Feldman, J.L. Phillips, P. Riley, J.W. Griffee, Solar wind electron proton alpha monitor (SWEPAM) for the advanced composition explorer. Space Sci. Rev. 86, 563–612 (1998a)
D.J. McComas, S.J. Bame, B.L. Barraclough, W.C. Feldman, H.O. Funsten, J.T. Gosling, P. Riley, R. Skoug, A. Balogh, R. Forsyth, B.E. Goldstein, M. Neugebauer, Ulysses’ return to the slow solar wind. Geophys. Res. Lett. 25, 1–4 (1998b). doi:10.1029/97GL03444
D.J. McComas, B.L. Barraclough, H.O. Funsten, J.T. Gosling, E. Santiago-Munoz, R. Skoug, B.E. Goldstein, M. Neugebauer, P. Riley, A. Balogh, Solar wind observations over Ulysses’ first full polar orbit. J. Geophys. Res. 105, 10419–10433 (2000)
McComas et al., Solar wind observations over Ulysses’ first full polar orbit. J. Geophys. Res. 105, 10419–10433 (2001)
M. Maksimovic, J.L. Bougeret, C. Perch, J.T. Steinberg, A.J. Lazarus, A.F. Vinas, R.J. Fitzenreiter, Solar wind density intercomparisons on the WIND spacecraft using WAVES and SWE experiements. Geophys. Res. Lett. 25, 1265 (1998)
P.H. Mao, D.S. Burnett, C.D. Coath, G. Jarzebinski, T. Kunihiro, K.D. McKeegan, MegaSIMS: a SIMS/AMS hybrid for measurement of the sun’s oxygen isotopic composition. Appl. Surf. Sci. 255, 1461–1464 (2008)
B. Marty, M. Chaussidon, R.C. Wiens, A.J.G. Jurewicz, D.S. Burnett, A 15N-poor isotopic composition for the solar system as shown by Genesis solar wind samples. Science 332, 1533–1536 (2011). doi:10.1126/science.1204656
K.D. McKeegan, A.P.A. Kallio, V.S. Heber, G. Jarzebinski, P.H. Mao, C.D. Coath, T. Kunihiro, R.C. Wiens, J.E. Nordholt, R.W. Moses Jr., D.B. Reisenfeld, A.J.G. Jurewicz, D.S. Burnett, The oxygen isotopic composition of the Sun inferred from captured solar wind. Science 332, 1528–1532 (2011). doi:10.1126/science.1204636
A. Meshik, J. Mabry, C. Hohenberg, Y. Marrocchi, O. Pravdivtseva, D. Burnett, C. Olinger, R. Wiens, D. Reisenfeld, J. Alton, K. McNamara, E. Stansbery, A.J.G. Jurewicz, Constraints on neon and argon isotopic fractionation in solar wind. Science 318, 433 (2007)
M.P. Miralles, S.R. Cranmer, J.L. Kohl, Low-latitude coronal holes during solar maximum. Adv. Space Res. 33, 696 (2004). doi:10.1016/S0273-117(03)00239-4
M. Neugebauer, Observations of solar wind helium. Fundam. Cosm. Phys. 7, 131 (1981)
M. Neugebauer, The quasi-stationary and transient states of the solar wind. Science 252, 404–409 (1991)
M. Neugebauer, P.C. Liewer, E.J. Smith, R.M. Skoug, T.H. Zurbuchen, Sources of the solar wind at solar activity maximum. J. Geophys. Res. 107, 1488 (2002). doi:10.1029/2001JA000306
M. Neugebauer, J.T. Steinberg, R.L. Tokar, B.L. Barraclough, E.E. Dors, R.C. Wiens, D.E. Gingerich, D. Luckey, D.B. Whiteaker, Genesis on-board determination of the solar wind flow regime. Space Sci. Rev. 105, 661–679 (2003)
K.W. Ogilvie, D.J. Chornay, R.J. Fritzenreiter, F. Husaker, J. Keller, J. Lobell, G. Miller, J.D. Scudder, E.C. Sittler, R.B. Torert, D. Bodet, G. Needell, A. Lazarus, J.T. Steinberg, J.H. Tappan, A. Mavertic, E. Gergin, SWE, a comprehensive plasma instrument for the wind spacecraft. Space Sci. Rev. 71, 55–77 (1995)
C.T. Olinger, R.C. Wiens, Interpreting measured solar wind implant profiles through simulation. Lunar Planet. Sci. XLII, 2219 (2010)
R.O. Pepin, D.J. Schlutter, R.H. Becker, D.B. Reisenfeld, Helium, neon, and argon composition of the solar wind as recorded in gold and other Genesis collector materials. Geochim. Cosmochim. Acta 89, 62–80 (2012). doi:10.1016/j.gca.2012.04.024
J.M. Raines, S.T. Lepri, T.H. Zurbuchen, G. Gloeckler, L.A. Fisk, Heavy ions in the solar wind: a new dataset from ACE, in Solar Wind Eleven, ed. by B. Fleck, T.H. Zurbuchen. ESA Conf. Proc. SP-592, (2005), pp. 539–542
D.B. Reisenfeld, J.T. Steinberg, B.L. Barraclough, E.E. Dors, R.C. Wiens, M. Neugebauer, A. Reinard, T. Zurbuchen, Comparison of the Genesis solar wind regime algorithm results with solar wind composition observed by ACE, in Solar Wind Ten, ed. by M. Velli, R. Bruno, F. Malara. AIP Conf. Proc., 679, (2003), p. 632
D.B. Reisenfeld, R.C. Wiens, B.L. Barraclough, J.T. Steinberg, C. DeKoning, T. Zurbuchen, D.S. Burnett, The Genesis mission: solar wind conditions, and implications for the FIP fractionation of the solar wind, in Proc. Solar Wind 11 Conference SP592 (ESA, Noordwijk, 2005), pp. 187–190
D.B. Reisenfeld, D.S. Burnett, R.H. Becker, A.G. Grimberg, V.S. Heber, C.M. Hohenberg, A.J.G. Jurewicz, A. Meshik, R.O. Pepin, J.M. Raines, D.J. Schlutter, R. Wieler, R.C. Wiens, T.H. Zurbuchen, Elemental abundances of the bulk solar wind: analyses from Genesis and ACE. Space Sci. Rev. 130, 79–86 (2007). doi:10.1007/s11214-007-9215-1
I.G. Richardson, H.V. Cane, Identification of interplanetary coronal mass ejections at 1 AU using multiple solar wind plasma composition anomalies. J. Geophys. Res. 109, A09104 (2004). doi:10:1029/2004JA010598
J.D. Richardson, C. Wang, K.I. Paularena, The solar wind: from solar minimum to solar maximum. Adv. Space Res. 27, 471–479 (2001)
P. Riley, C. Schatzman, H.V. Cane, I.G. Richardsion, N. Goplaswamy, On the rates of coronal mass ejections: remote solar and in situ observations. Astrophys. J. 647, 648 (2006)
R. Schwenn, Large-scale structure of the interplanetary medium, in Physics of the Inner Heliosphere I, ed. by R. Schwenn, E. Marsch (Springer, Berlin, 1990), pp. 99–180
SIDC-team, World Data Center for the Sunspot Index, Royal Observatory of Belgium, Monthly Report on the International Sunspot Number (2001–2004), online catalogue of the sunspot index. http://www.sidc.be/sunspot-data/
R.M. Skoug, J.T. Gosling, J.T. Steinberg, D.J. McComas, C.W. Smith, N.F. Ness, Q. Hu, L.F. Burlaga, Extremely high speed solar wind: 29–30 October 2003. J. Geophys. Res. 109, A09102 (2004). 2003. doi:10.1029/2004JA010494
J.T. Steinberg, J.T. Gosling, R.M. Skoug, R.C. Wiens, Suprathermal electrons in high-speed streams from coronal holes: counterstreaming on open field lines at 1 AU. J. Geophys. Res. 110, A06103 (2005)
E.C. Stone, A.M. Frandsen, R.A. Mewalt, E.R. Christian, D. Margolies, J.F. Ormes, F. Snow, The advanced composition explorer. Space Sci. Rev. 86, 1–22 (1998)
I.V. Veryovkin, W.F. Calaway, J.F. Moore, M.J. Pellin, D.S. Burnett, SARISA, a sputter atomized resonance ionization surface analysis instrument. Nucl. Instrum. Methods Phys. Res. B 19, 473–479 (2004)
N. Vogel, V.S. Heber, H. Baur, D.S. Burnett, R. Wieler, Argon, krypton, and xenon in the bulk solar wind as collected by the Genesis mission. Geochim. Cosmochim. Acta 75, 3057–3071 (2011). doi:10.1016/j.gca.2011.02.039
R. von Steiger, J. Geiss, Solar-wind composition and expectations for high solar latitudes. Adv. Space Res. 13, 63–74 (1993)
R. von Steiger, J. Geiss, G. Gloeckler, Composition of the solar wind, in Cosmic Winds and the Heliosphere, ed. by J.R. Jokipii, C.P. Sonett, M.S. Giampapa, Tuscon, Arizona (1997), p. 581
R. von Steiger, N.A. Schwadron, L.A. Fisk, J. Geiss, G. Gloeckler, S. Hefti, B. Wilken, R.F. Wimmer-Schweingruber, T.H. Zurbuchen, Composition of quasi-stationary solar wind flows from Ulysses/solar wind ion composition spectrometer. J. Geophys. Res. 105, 27217–27238 (2000)
R. von Steiger, T.H. Zurbuchen, J. Geiss, G. Gloeckler, L.A. Fisk, N.A. Schwadron, The 3-D heliosphere from the Ulysses and ACE solar wind ion composition experiments. Space Sci. Rev. 97, 123–127 (2001)
R. von Steiger, T.H. Zurbuchen, Kinetic properties of heavy solar wind ions from Ulysses-SWICS. Geophys. Res. Lett. 33, L09103 (2006). doi:10.1029/2005GL24998
R. von Steiger, T.H. Zurbuchen, Polar coronal holes during the past solar cycle: Ulysses observations. J. Geophys. Res. 116, A01105 (2011). doi:10.1029/2010JA015835
R.C. Wiens, M. Neugebauer, D.B. Reisenfeld, R.W. Moses Jr., J.E. Nordholt, Genesis solar wind concentrator: computer simulations of performance under solar wind conditions. Space Sci. Rev. 105, 601–626 (2003)
R.C. Wiens, D.B. Reisenfeld, C. Olinger, P. Wurz, V. Heber, D.S. Burnett, The Genesis solar wind concentrator: flight and post-flight conditions and modeling of instrumental fractionation. Space Sci. Rev. (2013, this issue). doi:10.1007/s11214-013-9961-1
L. Zhao, T.H. Zurbuchen, L.A. Fisk, Global distribution of the solar wind during solar cycle 23: ACE observations. Geophys. Res. Lett. 36, L14104 (2009). doi:10.1029/2009GL039181
T.H. Zurbuchen, L.A. Fisk, G. Gloeckler, von R. Steiger, The solar wind composition throughout the solar cycle: a continuum of dynamic states. Geophys. Res. Lett. 29, 1352–1355 (2002)
T.H. Zurbuchen, I.G. Richardson, In-situ solar wind and magnetic field signatures for coronal mass ejections. Space Sci. Rev. 21, 31 (2006). doi:10.1007/978-0-387-45088-9_3
T.H. Zurbuchen, R. von Steiger, J. Gruesbeck, E. Landi, S.T. Lepri, L. Zhao, V. Hansteen, Sources of solar wind at solar minimum: constraints from composition data. Space Sci. Rev. (2012). doi:10.1007/s11214-012-9881-5
Acknowledgements
The authors wish to acknowledge the NASA Laboratory Analysis of Returned Samples (LARS) program (Grants NNX10AH57G and NNH10A046I) and the International Space Science Institute (ISSI) for supporting this work. The OMNI data were obtained from the GSFC/SPDF OMNIWeb interface at http://omniweb.gsfc.nasa.gov. The authors thank the ACE science team for making their data available for this study. T.H.Z. and J.R. were supported in part by NASA grant NNX08AI11G.
Author information
Authors and Affiliations
Corresponding author
Electronic Supplementary Material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Reisenfeld, D.B., Wiens, R.C., Barraclough, B.L. et al. Solar Wind Conditions and Composition During the Genesis Mission as Measured by in situ Spacecraft. Space Sci Rev 175, 125–164 (2013). https://doi.org/10.1007/s11214-013-9960-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11214-013-9960-2