Skip to main content
Log in

Solar Wind Conditions and Composition During the Genesis Mission as Measured by in situ Spacecraft

  • Special Communication
  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

We describe the Genesis mission solar-wind sample collection period and the solar wind conditions at the L1 point during this 2.3-year period. In order to relate the solar wind samples to solar composition, the conditions under which the samples were collected must be understood in the context of the long-term solar wind. We find that the state of the solar wind was typical of conditions over the past four solar cycles. However, Genesis spent a relatively large fraction of the time in coronal-hole flow as compared to what might have been expected for the declining phase of the solar cycle. Data from the Solar Wind Ion Composition Spectrometer (SWICS) on the Advanced Composition Explorer (ACE) are used to determine the effectiveness of the Genesis solar-wind regime selection algorithm. The data collected by SWICS confirm that the Genesis algorithm successfully separated and collected solar wind regimes having distinct solar origins, particularly in the case of the coronal hole sample. The SWICS data also demonstrate that the different regimes are elementally fractionated. When compared with Ulysses composition data from the previous solar cycle, we find a similar degree of fractionation between regimes as well as fractionation relative to the average photospheric composition.

The Genesis solar wind samples are under long-term curation at NASA Johnson Space Center so that as sample analysis techniques evolve, pristine solar wind samples will be available to the scientific community in the decades to come. This article and a companion paper (Wiens et al. 2013, this issue) provide post-flight information necessary for the analysis of the Genesis array and foil solar wind samples and the Genesis solar wind ion concentrator samples, and thus serve to complement the Space Science Review volume, The Genesis Mission (v. 105, 2003).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Notes

  1. These 35 intervals contain 51 entries from the R&C list. Due to the persistence condition of the Genesis regime algorithm (see Sect. 4.2.3), multiple CMEs were often collected during the same regime interval, in cases where CMEs followed in rapid succession.

Abbreviations

B:

Bulk collectors that were at the top of the stack and in the Canister lid. These were exposed continuously during the science collection period

E:

Collector array directly below the B array. This array was exposed to coronal mass ejection flows and questionable flows

H:

Collector array below the E array. This array was exposed to high-speed, or coronal hole flows

L:

Bottom collector array in the stack. This array was exposed to low-speed, or interstream wind

S:

Collectors in the SRC lid, primarily to investigate radioactive nuclei in the solar wind

CME:

Coronal mass ejections

CH:

Coronal hole, or fast wind

IS:

Insterstream, or slow wind

S/C:

Spacecraft

SRC:

Science return capsule

SKM:

Station keeping maneuvers, which occurred approximately every 2 months

LOI:

L1 orbit insertion, which occurred prior to the beginning of the science collection phase of the mission

L1:

The Lagrangian point between the Earth and the Sun

Unshaded position:

Rotational position of the deployable solar-wind collector arrays where individual, regime-specific arrays were exposed.

Deployed position:

Rotational position of the deployable solar-wind collector arrays where the B array remained during collection, and where the regime-specific arrays were positioned when they were not exposed or acting as a contamination barrier

References

  • M. Asplund, N. Grevesse, A.J. Sauval, The solar chemical composition. Astron. Soc. Pac. Conf. Ser. 336, 25–38 (2005)

    ADS  Google Scholar 

  • M. Asplund, N. Grevesse, A.J. Sauval, P. Scott, The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481–522 (2009). arXiv:0909.0948

    Article  ADS  Google Scholar 

  • B.L. Barraclough, E.E. Dors, R.A. Abeyta, J.F. Alexander, F.P. Ameduri, J.R. Baldonado, S.J. Bame, P.J. Casey, G. Dirks, D.T. Everett, J.T. Gosling, K.M. Grace, D.R. Guerrero, J.D. Kolar, J.L. Kroesche Jr., W.L. Lockhart, D.J. McComas, D.E. Mietz, J. Roese, J. Sanders, J. Steinberg, R.L. Tokar, C. Urdiales, R.C. Wiens, Genesis electron and ion spectrometers. Space Sci. Rev. 105, 627–660 (2003)

    Article  ADS  Google Scholar 

  • S. Bravo, G.A. Stuart, Fast and slow solar wind from solar coronal holes. Astrophys. J. 482, 992 (1997)

    Article  ADS  Google Scholar 

  • D.S. Burnett, B.L. Barraclough, R. Bennett, M. Neugebauer, L.P. Oldham, C.N. Sasaki, D. Sevilla, N. Smith, E. Stansbery, D. Sweetnam, R.C. Wiens, The genesis discovery mission: return of solar matter to Earth. Space Sci. Rev. 105, 509–534 (2003)

    Article  ADS  Google Scholar 

  • H.V. Cane, I.G. Richardson, Interplanetary coronal mass ejections in the near-Earth solar wind during 1996–2002. J. Geophys. Res. 108, 1156 (2003). doi:10.1029/2002JA009817

    Article  Google Scholar 

  • S.A. Crowther, J.D. Gilmour, Solar wind Xe composition measured in Si collectors from the Genesis mission, in 42nd Lunar and Planetary Science Conference (2011). LPI Contribution No. 1969

    Google Scholar 

  • R.W. Ebert, D.J. McComas, H.A. Elliott, R.J. Forsyth, J.T. Gosling, Bulk properties of the slow and fast solar wind and interplanetary coronal mass ejections measured by Ulysses: Three polar orbits of observations. J. Geophys. Res. 114, A01109 (2009). doi:10.1029/2008JA013631

    Article  ADS  Google Scholar 

  • W.C. Feldman, J.R. Asbridge, S.J. Bame, J.T. Gosling, Plasma and magnetic fields from the Sun, in The Solar Output and Its Variation, ed. by O.R. White (Colorado Associated University Press, Boulder, 1977), pp. 351–382

    Google Scholar 

  • P.R. Gazis, Solar cycle variation in the heliosphere. Rev. Geophys. 34, 379–402 (1996). doi:10.1029/96RG00892

    Article  ADS  Google Scholar 

  • J. Geiss, Processes affecting abundances in the solar wind. Space Sci. Rev. 33, 201 (1982)

    Article  ADS  Google Scholar 

  • G. Gloeckler, J. Cain, F.M. Ipavich, E.O. Turns, P. Bedini, L.A. Fisk, T.H. Zurbuchen, P. Bochsler, J. Fischer, R.F. Wimmer-Schweingruber, J. Geiss, R. Kallenbach, Investigation of the composition of solar and interstellar matter using solar wind and pickup ion measurements with SWICS and SWIMS on the ACE spacecraft. Space Sci. Rev. 86, 497–539 (1998)

    Article  ADS  Google Scholar 

  • G. Gloeckler, J. Geiss, The composition of the solar wind in polar coronal holes. Space Sci. Rev. 130, 139 (2007). doi:10.1007/s11214-007-9189-z

    Article  ADS  Google Scholar 

  • J.T. Gosling, R.M. Skoug, D.J. McComas, C.W. Smith, Direct evidence for magnetic reconnection in the solar wind near 1 AU. J. Geophys. Res. 110, A01107 (2005). doi:10.1029/2004JA010809

    Article  ADS  Google Scholar 

  • N. Grevesse, A.J. Sauval, Standard solar composition. Space Sci. Rev. 85, 161–174 (1998)

    Article  ADS  Google Scholar 

  • A. Grimberg, H. Baur, P. Bochsler, F. Bühler, D.S. Burnett, C.C. Hays, V.S. Heber, A.J.G. Jurewicz, R. Wieler, Solar wind neon from Genesis: implications from the lunar noble gas record. Science 314, 1133–1135 (2006)

    Article  ADS  Google Scholar 

  • A. Grimberg, H. Baur, F. Bühler, P. Bochsler, R. Wieler, Solar wind helium, neon, and argon isotopic and elemental composition: data from the metallic glass flown on NASA’s Genesis mission. Geochim. Cosmochim. Acta 72, 626–645 (2008)

    Article  ADS  Google Scholar 

  • V.S. Heber, H. Baur, R. Wieler, P. Bochsler, D.S. Burnett, D.B. Reisenfeld, R.C. Wiens, Fractionation processes in the solar wind detected by Genesis: He, Ne, and Ar isotopic and elemental composition of different solar wind regimes. Astrophys. J. (2012). doi:10.1088/0004-637X/759/2/121

    MATH  Google Scholar 

  • Hefti et al., Kinetic properties of solar wind minor ions and protons measured with SOHO/CELIAS. J. Geophys. Res. 103, 29697–29704 (1998)

    Article  ADS  Google Scholar 

  • M. Humayun, A.J.G. Jurewicz, D.S. Burnett, Preliminary Mg isotopic composition of solar wind from Genesis SoS, in 42nd Lunar and Planetary Science Conference (2011). LPI Contribution No. 1211

    Google Scholar 

  • G.R. Huss, K. Nagashima, D.S. Burnett, A.J.G. Jurewicz, C.T. Olinger, A new upper limit on the D/H ratio in the solar wind, in 43rd Lunar and Planetary Science Conference (2012). LPI Contribution No. 1659, id. 1709

    Google Scholar 

  • L. Jian, C.T. Russell, J.G. Kuhmann, R.G. Skoug, Properties of interplanetary coronal mass ejections at one AU during 1995–2004. Sol. Phys. 239, 393–436 (2006)

    Article  ADS  Google Scholar 

  • J.C. Kasper, A.J. Lazarus, J.T. Steinberg, K.W. Ogilvie, A. Szabo, Physics-based tests to identify the accuracy of solar wind ion measurements: a case study with the wind Faraday cups. J. Geophys. Res. 111, A03105 (2006). doi:10.1029/2005JA011442

    Article  ADS  Google Scholar 

  • J.C. Kasper, M.L. Stevens, A.J. Lazarus, J.T. Steinberg, K.W. Ogilvie, The solar wind helium abundance as a function of speed and heliographic latitude. Astrophys. J. 660, 901 (2007)

    Article  ADS  Google Scholar 

  • J.H. King, N.E. Papitashvili, Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data. J. Geophys. Res. 110, A02209 (2004). doi:10.1029/2004JA010804

    Google Scholar 

  • K. Kitts, Y. Choi, P.J. Eng, S.K. Ghose, S.R. Sutton, B. Rout, Application of grazing incidence X-ray fluorescence technique to discriminate and quantify implanted solar wind. J. Appl. Phys. 105, 64905–64908 (2009)

    Article  Google Scholar 

  • E. Landi, R.L. Alexander, J.R. Gruesbeck, J.A. Gilbert, S.T. Lepri, W.B. Manchester, T.H. Zurbuchen, Carbon ionization stages as a diagnostic of the solar wind. Astrophys. J. 744, 100 (2012). doi:10.1088/0004-637X/744/2/100

    Article  ADS  Google Scholar 

  • D.J. McComas, S.J. Bame, P. Barker, W.C. Feldman, J.L. Phillips, P. Riley, J.W. Griffee, Solar wind electron proton alpha monitor (SWEPAM) for the advanced composition explorer. Space Sci. Rev. 86, 563–612 (1998a)

    Article  ADS  Google Scholar 

  • D.J. McComas, S.J. Bame, B.L. Barraclough, W.C. Feldman, H.O. Funsten, J.T. Gosling, P. Riley, R. Skoug, A. Balogh, R. Forsyth, B.E. Goldstein, M. Neugebauer, Ulysses’ return to the slow solar wind. Geophys. Res. Lett. 25, 1–4 (1998b). doi:10.1029/97GL03444

    Article  ADS  Google Scholar 

  • D.J. McComas, B.L. Barraclough, H.O. Funsten, J.T. Gosling, E. Santiago-Munoz, R. Skoug, B.E. Goldstein, M. Neugebauer, P. Riley, A. Balogh, Solar wind observations over Ulysses’ first full polar orbit. J. Geophys. Res. 105, 10419–10433 (2000)

    Article  ADS  Google Scholar 

  • McComas et al., Solar wind observations over Ulysses’ first full polar orbit. J. Geophys. Res. 105, 10419–10433 (2001)

    Article  ADS  Google Scholar 

  • M. Maksimovic, J.L. Bougeret, C. Perch, J.T. Steinberg, A.J. Lazarus, A.F. Vinas, R.J. Fitzenreiter, Solar wind density intercomparisons on the WIND spacecraft using WAVES and SWE experiements. Geophys. Res. Lett. 25, 1265 (1998)

    Article  ADS  Google Scholar 

  • P.H. Mao, D.S. Burnett, C.D. Coath, G. Jarzebinski, T. Kunihiro, K.D. McKeegan, MegaSIMS: a SIMS/AMS hybrid for measurement of the sun’s oxygen isotopic composition. Appl. Surf. Sci. 255, 1461–1464 (2008)

    Article  ADS  Google Scholar 

  • B. Marty, M. Chaussidon, R.C. Wiens, A.J.G. Jurewicz, D.S. Burnett, A 15N-poor isotopic composition for the solar system as shown by Genesis solar wind samples. Science 332, 1533–1536 (2011). doi:10.1126/science.1204656

    Article  ADS  Google Scholar 

  • K.D. McKeegan, A.P.A. Kallio, V.S. Heber, G. Jarzebinski, P.H. Mao, C.D. Coath, T. Kunihiro, R.C. Wiens, J.E. Nordholt, R.W. Moses Jr., D.B. Reisenfeld, A.J.G. Jurewicz, D.S. Burnett, The oxygen isotopic composition of the Sun inferred from captured solar wind. Science 332, 1528–1532 (2011). doi:10.1126/science.1204636

    Article  ADS  Google Scholar 

  • A. Meshik, J. Mabry, C. Hohenberg, Y. Marrocchi, O. Pravdivtseva, D. Burnett, C. Olinger, R. Wiens, D. Reisenfeld, J. Alton, K. McNamara, E. Stansbery, A.J.G. Jurewicz, Constraints on neon and argon isotopic fractionation in solar wind. Science 318, 433 (2007)

    Article  ADS  Google Scholar 

  • M.P. Miralles, S.R. Cranmer, J.L. Kohl, Low-latitude coronal holes during solar maximum. Adv. Space Res. 33, 696 (2004). doi:10.1016/S0273-117(03)00239-4

    Article  ADS  Google Scholar 

  • M. Neugebauer, Observations of solar wind helium. Fundam. Cosm. Phys. 7, 131 (1981)

    ADS  Google Scholar 

  • M. Neugebauer, The quasi-stationary and transient states of the solar wind. Science 252, 404–409 (1991)

    Article  ADS  Google Scholar 

  • M. Neugebauer, P.C. Liewer, E.J. Smith, R.M. Skoug, T.H. Zurbuchen, Sources of the solar wind at solar activity maximum. J. Geophys. Res. 107, 1488 (2002). doi:10.1029/2001JA000306

    Article  Google Scholar 

  • M. Neugebauer, J.T. Steinberg, R.L. Tokar, B.L. Barraclough, E.E. Dors, R.C. Wiens, D.E. Gingerich, D. Luckey, D.B. Whiteaker, Genesis on-board determination of the solar wind flow regime. Space Sci. Rev. 105, 661–679 (2003)

    Article  ADS  Google Scholar 

  • K.W. Ogilvie, D.J. Chornay, R.J. Fritzenreiter, F. Husaker, J. Keller, J. Lobell, G. Miller, J.D. Scudder, E.C. Sittler, R.B. Torert, D. Bodet, G. Needell, A. Lazarus, J.T. Steinberg, J.H. Tappan, A. Mavertic, E. Gergin, SWE, a comprehensive plasma instrument for the wind spacecraft. Space Sci. Rev. 71, 55–77 (1995)

    Article  ADS  Google Scholar 

  • C.T. Olinger, R.C. Wiens, Interpreting measured solar wind implant profiles through simulation. Lunar Planet. Sci. XLII, 2219 (2010)

    Google Scholar 

  • R.O. Pepin, D.J. Schlutter, R.H. Becker, D.B. Reisenfeld, Helium, neon, and argon composition of the solar wind as recorded in gold and other Genesis collector materials. Geochim. Cosmochim. Acta 89, 62–80 (2012). doi:10.1016/j.gca.2012.04.024

    Article  ADS  Google Scholar 

  • J.M. Raines, S.T. Lepri, T.H. Zurbuchen, G. Gloeckler, L.A. Fisk, Heavy ions in the solar wind: a new dataset from ACE, in Solar Wind Eleven, ed. by B. Fleck, T.H. Zurbuchen. ESA Conf. Proc. SP-592, (2005), pp. 539–542

    Google Scholar 

  • D.B. Reisenfeld, J.T. Steinberg, B.L. Barraclough, E.E. Dors, R.C. Wiens, M. Neugebauer, A. Reinard, T. Zurbuchen, Comparison of the Genesis solar wind regime algorithm results with solar wind composition observed by ACE, in Solar Wind Ten, ed. by M. Velli, R. Bruno, F. Malara. AIP Conf. Proc., 679, (2003), p. 632

    Google Scholar 

  • D.B. Reisenfeld, R.C. Wiens, B.L. Barraclough, J.T. Steinberg, C. DeKoning, T. Zurbuchen, D.S. Burnett, The Genesis mission: solar wind conditions, and implications for the FIP fractionation of the solar wind, in Proc. Solar Wind 11 Conference SP592 (ESA, Noordwijk, 2005), pp. 187–190

    Google Scholar 

  • D.B. Reisenfeld, D.S. Burnett, R.H. Becker, A.G. Grimberg, V.S. Heber, C.M. Hohenberg, A.J.G. Jurewicz, A. Meshik, R.O. Pepin, J.M. Raines, D.J. Schlutter, R. Wieler, R.C. Wiens, T.H. Zurbuchen, Elemental abundances of the bulk solar wind: analyses from Genesis and ACE. Space Sci. Rev. 130, 79–86 (2007). doi:10.1007/s11214-007-9215-1

    Article  ADS  Google Scholar 

  • I.G. Richardson, H.V. Cane, Identification of interplanetary coronal mass ejections at 1 AU using multiple solar wind plasma composition anomalies. J. Geophys. Res. 109, A09104 (2004). doi:10:1029/2004JA010598

    Article  ADS  Google Scholar 

  • J.D. Richardson, C. Wang, K.I. Paularena, The solar wind: from solar minimum to solar maximum. Adv. Space Res. 27, 471–479 (2001)

    Article  ADS  Google Scholar 

  • P. Riley, C. Schatzman, H.V. Cane, I.G. Richardsion, N. Goplaswamy, On the rates of coronal mass ejections: remote solar and in situ observations. Astrophys. J. 647, 648 (2006)

    Article  ADS  Google Scholar 

  • R. Schwenn, Large-scale structure of the interplanetary medium, in Physics of the Inner Heliosphere I, ed. by R. Schwenn, E. Marsch (Springer, Berlin, 1990), pp. 99–180

    Chapter  Google Scholar 

  • SIDC-team, World Data Center for the Sunspot Index, Royal Observatory of Belgium, Monthly Report on the International Sunspot Number (2001–2004), online catalogue of the sunspot index. http://www.sidc.be/sunspot-data/

  • R.M. Skoug, J.T. Gosling, J.T. Steinberg, D.J. McComas, C.W. Smith, N.F. Ness, Q. Hu, L.F. Burlaga, Extremely high speed solar wind: 29–30 October 2003. J. Geophys. Res. 109, A09102 (2004). 2003. doi:10.1029/2004JA010494

    Article  ADS  Google Scholar 

  • J.T. Steinberg, J.T. Gosling, R.M. Skoug, R.C. Wiens, Suprathermal electrons in high-speed streams from coronal holes: counterstreaming on open field lines at 1 AU. J. Geophys. Res. 110, A06103 (2005)

    Article  ADS  Google Scholar 

  • E.C. Stone, A.M. Frandsen, R.A. Mewalt, E.R. Christian, D. Margolies, J.F. Ormes, F. Snow, The advanced composition explorer. Space Sci. Rev. 86, 1–22 (1998)

    Article  ADS  Google Scholar 

  • I.V. Veryovkin, W.F. Calaway, J.F. Moore, M.J. Pellin, D.S. Burnett, SARISA, a sputter atomized resonance ionization surface analysis instrument. Nucl. Instrum. Methods Phys. Res. B 19, 473–479 (2004)

    Article  ADS  Google Scholar 

  • N. Vogel, V.S. Heber, H. Baur, D.S. Burnett, R. Wieler, Argon, krypton, and xenon in the bulk solar wind as collected by the Genesis mission. Geochim. Cosmochim. Acta 75, 3057–3071 (2011). doi:10.1016/j.gca.2011.02.039

    Article  ADS  Google Scholar 

  • R. von Steiger, J. Geiss, Solar-wind composition and expectations for high solar latitudes. Adv. Space Res. 13, 63–74 (1993)

    Article  ADS  Google Scholar 

  • R. von Steiger, J. Geiss, G. Gloeckler, Composition of the solar wind, in Cosmic Winds and the Heliosphere, ed. by J.R. Jokipii, C.P. Sonett, M.S. Giampapa, Tuscon, Arizona (1997), p. 581

    Google Scholar 

  • R. von Steiger, N.A. Schwadron, L.A. Fisk, J. Geiss, G. Gloeckler, S. Hefti, B. Wilken, R.F. Wimmer-Schweingruber, T.H. Zurbuchen, Composition of quasi-stationary solar wind flows from Ulysses/solar wind ion composition spectrometer. J. Geophys. Res. 105, 27217–27238 (2000)

    Article  ADS  Google Scholar 

  • R. von Steiger, T.H. Zurbuchen, J. Geiss, G. Gloeckler, L.A. Fisk, N.A. Schwadron, The 3-D heliosphere from the Ulysses and ACE solar wind ion composition experiments. Space Sci. Rev. 97, 123–127 (2001)

    Article  ADS  Google Scholar 

  • R. von Steiger, T.H. Zurbuchen, Kinetic properties of heavy solar wind ions from Ulysses-SWICS. Geophys. Res. Lett. 33, L09103 (2006). doi:10.1029/2005GL24998

    Article  ADS  Google Scholar 

  • R. von Steiger, T.H. Zurbuchen, Polar coronal holes during the past solar cycle: Ulysses observations. J. Geophys. Res. 116, A01105 (2011). doi:10.1029/2010JA015835

    Article  ADS  Google Scholar 

  • R.C. Wiens, M. Neugebauer, D.B. Reisenfeld, R.W. Moses Jr., J.E. Nordholt, Genesis solar wind concentrator: computer simulations of performance under solar wind conditions. Space Sci. Rev. 105, 601–626 (2003)

    Article  ADS  Google Scholar 

  • R.C. Wiens, D.B. Reisenfeld, C. Olinger, P. Wurz, V. Heber, D.S. Burnett, The Genesis solar wind concentrator: flight and post-flight conditions and modeling of instrumental fractionation. Space Sci. Rev. (2013, this issue). doi:10.1007/s11214-013-9961-1

  • L. Zhao, T.H. Zurbuchen, L.A. Fisk, Global distribution of the solar wind during solar cycle 23: ACE observations. Geophys. Res. Lett. 36, L14104 (2009). doi:10.1029/2009GL039181

    Article  ADS  Google Scholar 

  • T.H. Zurbuchen, L.A. Fisk, G. Gloeckler, von R. Steiger, The solar wind composition throughout the solar cycle: a continuum of dynamic states. Geophys. Res. Lett. 29, 1352–1355 (2002)

    Article  ADS  Google Scholar 

  • T.H. Zurbuchen, I.G. Richardson, In-situ solar wind and magnetic field signatures for coronal mass ejections. Space Sci. Rev. 21, 31 (2006). doi:10.1007/978-0-387-45088-9_3

    Article  ADS  Google Scholar 

  • T.H. Zurbuchen, R. von Steiger, J. Gruesbeck, E. Landi, S.T. Lepri, L. Zhao, V. Hansteen, Sources of solar wind at solar minimum: constraints from composition data. Space Sci. Rev. (2012). doi:10.1007/s11214-012-9881-5

    Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the NASA Laboratory Analysis of Returned Samples (LARS) program (Grants NNX10AH57G and NNH10A046I) and the International Space Science Institute (ISSI) for supporting this work. The OMNI data were obtained from the GSFC/SPDF OMNIWeb interface at http://omniweb.gsfc.nasa.gov. The authors thank the ACE science team for making their data available for this study. T.H.Z. and J.R. were supported in part by NASA grant NNX08AI11G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel B. Reisenfeld.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(PDF 136 kB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reisenfeld, D.B., Wiens, R.C., Barraclough, B.L. et al. Solar Wind Conditions and Composition During the Genesis Mission as Measured by in situ Spacecraft. Space Sci Rev 175, 125–164 (2013). https://doi.org/10.1007/s11214-013-9960-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-013-9960-2

Keywords