Skip to main content
Log in

Lipschitz and path isometric embeddings of metric spaces

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We prove that each sub-Riemannian manifold can be embedded in some Euclidean space preserving the length of all the curves in the manifold. The result is an extension of Nash C 1 Embedding Theorem. For more general metric spaces the same result is false, e.g., for Finsler non-Riemannian manifolds. However, we also show that any metric space of finite Hausdorff dimension can be embedded in some Euclidean space via a Lipschitz map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Burago, D., Burago, Y., Ivanov, S.: A course in metric geometry. In: Graduate Studies in Mathematics, vol. 33. American Mathematical Society, Providence, RI (2001)

  2. Bellaïche, A.: The tangent space in sub-Riemannian geometry Sub-Riemannian geometry. Progr. Math. 144, Birkhäuser, Basel, 1996, pp. 1–78. MR MR1421822 (98a:53108)

  3. Buliga, M.: Sub-Riemannian geometry and Lie groups. Part I, Seminar Notes, DMA-EPFL, Preprint on Arxiv (2002)

  4. D’Ambra G.: Nash C 1-embedding theorem for Carnot-Carathéodory metrics. Differ. Geom. Appl. 5(2), 105–119 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Federer H.: Curvature measures. Trans. Am. Math. Soc. 93, 418–491 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gromov, M.: Partial differential relations, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 9. Springer, Berlin (1986)

  7. Gromov, M.: Metric structures for Riemannian and non-Riemannian spaces. In: Progress in Mathematics, vol. 152. Birkhäuser Boston Inc., Boston (1999). Based on the 1981 French original, With appendices by M. Katz, P. Pansu and S. Semmes, Translated from the French by Sean Michael Bates

  8. Kuiper, N.H.: On C 1-isometric imbeddings. I, II. In: Nederl. Akad. Wetensch. Proc. Ser. A 58 = Indag. Math. 17, 545–556, 683–689 (1955)

  9. Le Donne, E.: Lecture Notes on Sub-Riemannian Geometry. Preliminary version available at http://www.math.ethz.ch/ledonnee/sub-Riem_notes.pdf (2010)

  10. Luukkainen J., Väisälä J.: Elements of Lipschitz topology. Ann. Acad. Sci. Fenn. Ser. A I Math. 3(1), 85–122 (1977)

    MathSciNet  MATH  Google Scholar 

  11. Margulis G.A., Mostow G.D.: The differential of a quasi-conformal mapping of a Carnot-Carathéodory space. Geom. Funct. Anal. 5(2), 402–433 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Monti R., Morbidelli D.: Isoperimetric inequality in the Grushin plane. J. Geom. Anal. 14(2), 355–368 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Montgomery, R.: A tour of subriemannian geometries, their geodesics and applications. In: Mathematical Surveys and Monographs, vol. 91. American Mathematical Society, Providence, RI (2002)

  14. Munkres J.R.: Topology: A First Course. Prentice-Hall Inc, Englewood Cliffs (1975)

    MATH  Google Scholar 

  15. Nash J.: C 1 isometric imbeddings. Ann. Math. 60(2), 383–396 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pansu P.: Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un. Ann. Math. 129(1), 1–60 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Petrunin A.: Intrinsic isometries in Euclidean space. Algebra Anal. 22(5), 140–153 (2010)

    MathSciNet  Google Scholar 

  18. Semmes S.: On the nonexistence of bi-Lipschitz parameterizations and geometric problems about A -weights. Rev. Mat. Iberoamericana 12(2), 337–410 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Le Donne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Donne, E. Lipschitz and path isometric embeddings of metric spaces. Geom Dedicata 166, 47–66 (2013). https://doi.org/10.1007/s10711-012-9785-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-012-9785-2

Keywords

Mathematics Subject Classification (2010)