Abstract
We prove that each sub-Riemannian manifold can be embedded in some Euclidean space preserving the length of all the curves in the manifold. The result is an extension of Nash C 1 Embedding Theorem. For more general metric spaces the same result is false, e.g., for Finsler non-Riemannian manifolds. However, we also show that any metric space of finite Hausdorff dimension can be embedded in some Euclidean space via a Lipschitz map.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Burago, D., Burago, Y., Ivanov, S.: A course in metric geometry. In: Graduate Studies in Mathematics, vol. 33. American Mathematical Society, Providence, RI (2001)
Bellaïche, A.: The tangent space in sub-Riemannian geometry Sub-Riemannian geometry. Progr. Math. 144, Birkhäuser, Basel, 1996, pp. 1–78. MR MR1421822 (98a:53108)
Buliga, M.: Sub-Riemannian geometry and Lie groups. Part I, Seminar Notes, DMA-EPFL, Preprint on Arxiv (2002)
D’Ambra G.: Nash C 1-embedding theorem for Carnot-Carathéodory metrics. Differ. Geom. Appl. 5(2), 105–119 (1995)
Federer H.: Curvature measures. Trans. Am. Math. Soc. 93, 418–491 (1959)
Gromov, M.: Partial differential relations, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 9. Springer, Berlin (1986)
Gromov, M.: Metric structures for Riemannian and non-Riemannian spaces. In: Progress in Mathematics, vol. 152. Birkhäuser Boston Inc., Boston (1999). Based on the 1981 French original, With appendices by M. Katz, P. Pansu and S. Semmes, Translated from the French by Sean Michael Bates
Kuiper, N.H.: On C 1-isometric imbeddings. I, II. In: Nederl. Akad. Wetensch. Proc. Ser. A 58 = Indag. Math. 17, 545–556, 683–689 (1955)
Le Donne, E.: Lecture Notes on Sub-Riemannian Geometry. Preliminary version available at http://www.math.ethz.ch/ledonnee/sub-Riem_notes.pdf (2010)
Luukkainen J., Väisälä J.: Elements of Lipschitz topology. Ann. Acad. Sci. Fenn. Ser. A I Math. 3(1), 85–122 (1977)
Margulis G.A., Mostow G.D.: The differential of a quasi-conformal mapping of a Carnot-Carathéodory space. Geom. Funct. Anal. 5(2), 402–433 (1995)
Monti R., Morbidelli D.: Isoperimetric inequality in the Grushin plane. J. Geom. Anal. 14(2), 355–368 (2004)
Montgomery, R.: A tour of subriemannian geometries, their geodesics and applications. In: Mathematical Surveys and Monographs, vol. 91. American Mathematical Society, Providence, RI (2002)
Munkres J.R.: Topology: A First Course. Prentice-Hall Inc, Englewood Cliffs (1975)
Nash J.: C 1 isometric imbeddings. Ann. Math. 60(2), 383–396 (1954)
Pansu P.: Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un. Ann. Math. 129(1), 1–60 (1989)
Petrunin A.: Intrinsic isometries in Euclidean space. Algebra Anal. 22(5), 140–153 (2010)
Semmes S.: On the nonexistence of bi-Lipschitz parameterizations and geometric problems about A ∞-weights. Rev. Mat. Iberoamericana 12(2), 337–410 (1996)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Le Donne, E. Lipschitz and path isometric embeddings of metric spaces. Geom Dedicata 166, 47–66 (2013). https://doi.org/10.1007/s10711-012-9785-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10711-012-9785-2