Skip to main content
Log in

Permissive infection of murine osteoblastic MC3T3-E1 cells by goatpox virus: establishing a novel cell model for mechanistic studies of host-pathogen interactions

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

This article has been updated

Abstract

Goatpox is a highly contagious viral disease that poses a significant threat to the health of goats and other small ruminants. Here, we report for the first time that the murine osteoblastic cell line MC3T3-E1 supports productive GTPV infection, as demonstrated by Western blotting, indirect immunofluorescence assay, and flow cytometry. RNA sequencing revealed thousands of differentially expressed genes (DEGs). Signaling pathways and functions of the DEGs were analyzed using Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes. Real-time quantitative PCR further confirmed the expression of several DEGs. The present study extends the host range for GTPV replication and mechanistic investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Change history

  • 02 December 2025

    Typo in affiliation of author Huibao Wang updated.

References

  1. Babiuk S, Bowden TR, Boyle DB, Wallace DB, Kitching RP (2008) Capripoxviruses: an emerging worldwide threat to sheep, goats and cattle. Transbond Emerg Dis 55:263–272

    Article  CAS  Google Scholar 

  2. Zewdie G, Derese G, Getachew B, Belay H, Akalu M (2021) Review of sheep and goat pox disease: current updates on epidemiology, diagnosis, prevention and control measures in Ethiopia. Anim Dis 1:28

    Article  PubMed  PubMed Central  Google Scholar 

  3. Dutta TK, Roychoudhury P, Kawlni L, Lalmuanpuia J, Dey A, Muthuchelvan D, Mandakini R, Sarkar A, Ramakrishnan MA, Subudhi PK (2018) An outbreak of Goatpox virus infection in Wild Red Serow (Capricornis rubidus) in Mizoram, India. Transbond Emerg Dis 66:181–185

    Article  Google Scholar 

  4. Yan XM, Chu YF, Wu GH, Zhao ZX, Li J, Zhu HX, Zhang Q (2012) An outbreak of sheep pox associated with goat poxvirus in Gansu province of China. Vet Microbiol 156:425–428

    Article  PubMed  Google Scholar 

  5. Zhou T, Jia H, Chen G, He X, Fang Y, Wang X, Guan Q, Zeng S, Cui Q, Jing Z (2012) Phylogenetic analysis of Chinese sheeppox and goatpox virus isolates. Virol J 9:25

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kitching RP (2003) Vaccines for lumpy skin disease, sheep pox and goat pox. Dev Biol (Basel) 114:161–167

    CAS  PubMed  Google Scholar 

  7. Rhazi H, Safini N, Mikou K, Alhyane M, Lenk M, Tadlaoui KO, Elharrak M (2021) Comparative sensitivity study of primary cells, vero, OA3.Ts and ESH-L cell lines to lumpy skin disease, sheeppox, and goatpox viruses detection and growth. J Virol Methods 293:114164

    Article  CAS  PubMed  Google Scholar 

  8. Quarles LD, Yohay DA, Lever LW, Caton R, Wenstrup RJ (1992) Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: an in vitro model of osteoblast development. J Bone Miner Res 7:683–692

    Article  CAS  PubMed  Google Scholar 

  9. Sudo H, Kodama HA, Amagai Y, Yamamoto S, Kasai S (1983) In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J Cell Biol 96:191–198

    Article  CAS  PubMed  Google Scholar 

  10. You T, Wang M, Zhang H, Wang X, Gao X, Yin X, Sun Y, Wang G, Chen HT, Ren S (2024) Identification of the murine osteoblastic cell MC3T3-E1 as a permissive cell line in response to lumpy skin disease virus. J Virol Methods 326:114916

    Article  CAS  PubMed  Google Scholar 

  11. Babiuk S, Parkyn G, Copps J, Larence JE, Sabara MI, Bowden TR, Boyle DB, Kitching RP (2007) Evaluation of an ovine testis cell line (OA3.Ts) for propagation of capripoxvirus isolates and development of an immunostaining technique for viral plaque visualization. J Vet Diagn Invest 19:486–491

    Article  PubMed  Google Scholar 

  12. Zhang H, Wang F, Chen H, Wang S, Tong L, Wang H, Fan J, Yin X, Wang X, Sun Y, Gao X, Ren S (2025) Comparative RNA sequencing analysis of three Capripoxvirus infections in an immortalized hTERT-bOEC cell model. Virology 603:110352

    Article  CAS  PubMed  Google Scholar 

  13. Zhu Y, Li Y, Bai B, Fang J, Zhang K, Yin X, Li S, Li W, Ma Y, Cui Y, Wang J, Liu X, Li X, Sun L, Jin N (2018) Construction of an attenuated goatpox virus AV41 strain by deleting the TK gene and ORF8-18. Antiviral Res 157:111–119

    Article  CAS  PubMed  Google Scholar 

  14. Ren S, Zhang Y, Gao X, Wang X, Tong L, Wang S, Sun Y, Yin X, Chen H (2024) Platform establishment of the Cre-loxP recombination system for genetic manipulation of the Lumpy skin disease virus. Vet Microbiol 294:110122

    Article  CAS  PubMed  Google Scholar 

  15. Ren S, Yang X, Peng T, Qiu X, Wang X, Yin X, Wan X, Sun Y, Chen H (2022) Establishment of a fetal cow (Bos Borus) skin fibroblasts cell line with immortalized characterization through human telomerase reverse transcriptase (hTERT) ectopic expression. J Virol Methods 309:114605

    Article  CAS  PubMed  Google Scholar 

  16. Ren S, Chen H, Yuan L, Yang X, Afera TB, Rehman ZU, Wang H, Wang X, Ma C, Lin Y, Qiu X, Yin X, Sun Y (2023) Phylogenetic and pathogenic characterization of lumpy skin disease virus circulating in China. Virology 585:127–138

    Article  CAS  PubMed  Google Scholar 

  17. Schmid M, Speiseder T, Dobner T, Gonzalez RA (2014) DNA virus replication compartments. J Virol 88:1404–1420

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sonowal J, Lal Patel C, Kumar Gandham R, Sajjanar B, IshaqNabi Khan R, RanjanPraharaj M, AkramMalla W, Kumar D, Dev K, Barkathullah N, Bharali K, Dubey A, Lalita D, Zafir I, Mishra BP, Mishra B (2021) Genome-wide expression analysis reveal host genes involved in immediate-early infections of different sheeppox virus strains. Gene 801:145850

    Article  CAS  PubMed  Google Scholar 

  19. Dunn EF, HijAkt CJH (2012) The PI3K/Akt pathway in virus replication and pathogenesis. Prog Mol Biol Transl Sci 106:223–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang L, Lin N, Zhang Y, Guo S, Liu C, Lin C, Zeng Y, Wu W, Guo J, Zhu C, Zhan F, Ou Q, Xun Z (2023) A novel TRIM22 gene polymorphism promotes the response to PegIFNα therapy through cytokine-cytokine receptor interaction signaling pathway in chronic hepatitis B. Microbiol Spectr 11(6):e0224723

    Article  PubMed  Google Scholar 

  21. Vu TH, Hong Y, Truong AD, Lee J, Lee S, Song KD, Cha J, Dang HV, Tran HTT, Lillehoj HS, Hong YH (2022) Cytokine-cytokine receptor interactions in the highly pathogenic avian influenza H5N1 virus-infected lungs of genetically disparate Ri chicken lines. Anim Biosci 35:367–376

    Article  CAS  PubMed  Google Scholar 

  22. Hollinshead M, Rodger G, Van Eijl H, Law M, Hollinshead R, Vaux DJ, Smith GL (2001) Vaccinia virus utilizes microtubules for movement to the cell surface. J Cell Biol 154:389–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cabrero-de Las Heras S, Martínez-Balibrea E (2018) CXC family of chemokines as prognostic or predictive biomarkers and possible drug targets in colorectal cancer. World J Gastroenterol 24:4738–4749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhou C, Gao Y, Ding P, Wu T, Ji G (2023) The role of CXCL family members in different diseases. Cell Death Discov 9:212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu S, Liu J, Yang X, Jiang M, Wang Q, Zhang L, Ma Y, Shen Z, Tian Z, Cao X (2021) Cis-acting lnc-Cxcl2 restrains neutrophil-mediated lung inflammation by inhibiting epithelial cell CXCL2 expression in virus infection. Proc Natl Acad Sci U S A 118:e2108276118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kisilevsky R, Manley PN (2012) Acute-phase serum amyloid A: perspectives on its physiological and pathological roles. Amyloid 19:5–14

    Article  CAS  PubMed  Google Scholar 

  27. Urieli-Shoval S, Linke RP, Matzner Y (2000) Expression and function of serum amyloid A, a major acute-phase protein, in normal and disease states. Curr Opin Hematol 7:64–69

    Article  CAS  PubMed  Google Scholar 

  28. Huan B, Liu K, Li Y, Wei J, Shao D, Shi Y, Qiu Y, Li B, Ma Z (2018) Porcine serum amyloid A3 is expressed in extrahepatic tissues and facilitates viral replication during porcine respiratory and reproductive syndrome virus infection. Dev Comp Immunol 79:51–58

    Article  CAS  PubMed  Google Scholar 

  29. Zhang F, Yuan W, Li Z, Zhang Y, Ye Y, Li K, Ding Z, Chen Y, Cheng T, Wu Q, Tang Y, Song D (2020) RNA-Seq-Based Whole Transcriptome Analysis of IPEC-J2 Cells During Swine Acute Diarrhea Syndrome Coronavirus Infection. Front Vet Sci 7:492

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kjeldsen L, Cowland JB, Borregaard N (2000) Human neutrophil gelatinase-associated lipocalin and homologous proteins in rat and mouse. Biochim Biophys Acta 1482:272–283

    Article  CAS  PubMed  Google Scholar 

  31. Huang Z, Li H, Liu S, Jia J, Zheng Y, Cao B (2022) Identification of Neutrophil-Related Factor LCN2 for Predicting Severity of Patients With Influenza A Virus and SARS-CoV-2 Infection. Front Microbiol 13:854172

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Applied Basic Research Project of Qinghai Province, China (2024-ZJ-721), and the National Natural Science Foundation of China (32302850 and 32460876).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shanhui Ren or Xiaolong Gao.

Ethics declarations

Ethical approval

All viral infection experiments were performed in accordance with the guidelines of Qinghai University and the Lanzhou Veterinary Research Institute, CAAS.

Conflict of interest

The authors declare no competing financial interests.

Additional information

Handling editor Graciela Andrei.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 188 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Tong, L., Zhang, H. et al. Permissive infection of murine osteoblastic MC3T3-E1 cells by goatpox virus: establishing a novel cell model for mechanistic studies of host-pathogen interactions. Arch Virol 171, 9 (2026). https://doi.org/10.1007/s00705-025-06460-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1007/s00705-025-06460-w

Profiles

  1. Shanhui Ren