Skip to main content
Log in

Characterization and genome analysis of the Klebsiella webervirus vB_KpnS_2146−302

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

A novel phage specific for Klebsiella pneumoniae, named vB_KpnS_2146 − 302, was isolated from hospital wastewater. Through transmission electron microscopy observation and genomic analysis, this phage was found to belong to the genus Webervirus in the family Drexlerviridae. Biological studies showed that vB_KpnS_2146 − 302 has a narrow host range and exhibits specific lytic activity against K. pneumoniae. A one-step growth curve showed a latency period of 10 minutes and a burst size of 1125 PFU/cell. The phage remained stable within a pH range of 3–9 and a temperature range of 26–60°C. Whole-genome sequencing analysis showed that the double-stranded DNA genome of vB_KpnS_2146 − 302 is 50,299 bp in length and contains 76 open reading frames. Experiments in which cells were treated with proteinase K or periodate suggested that the carbohydrate structure of K. pneumoniae is involved in the adsorption of this phage. This study shows that phage vB_KpnS_2146 − 302 might be a new candidate for the development of phage therapy against K. pneumoniae infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Singh AN, Singh A, Singh SK, Nath G (2024) Klebsiella pneumoniae infections and phage therapy. Ind J Med Microbiol 52:100736

    Article  CAS  Google Scholar 

  2. Balcão VM, Moreli FC, Silva EC, Belline BG, Martins LF, Rossi FPN, Pereira C, Vila M, da Silva AM (2022) Isolation and Molecular Characterization of a Novel Lytic Bacteriophage That Inactivates MDR Klebsiella pneumoniae Strains. Pharmaceutics 14

  3. Mohammadi M, Saffari M, Siadat SD (2023) Phage therapy of antibiotic-resistant strains of Klebsiella pneumoniae, opportunities and challenges from the past to the future. Folia Microbiol 68:357–368

    Article  CAS  Google Scholar 

  4. Fang C, Dai X, Xiang L, Qiu Y, Yin M, Fu Y, Li Y, Zhang L (2023) Isolation and characterization of three novel lytic phages against K54 serotype carbapenem-resistant hypervirulent Klebsiella pneumoniae. Front Cell Infect Microbiol 13:1265011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Abedon ST (2022) Further Considerations on How to Improve Phage Therapy Experimentation, Practice, and Reporting: Pharmacodynamics Perspectives. PHAGE (New Rochelle NY) 3:98–111

    Google Scholar 

  6. Hudson CM, Bent ZW, Meagher RJ, Williams KP (2014) Resistance determinants and mobile genetic elements of an NDM-1-encoding Klebsiella pneumoniae strain. PLoS ONE 9:e99209

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kwon T, Jung YH, Lee S, Yun MR, Kim W, Kim DW (2016) Comparative genomic analysis of Klebsiella pneumoniae subsp. pneumoniae KP617 and PittNDM01, NUHL24835, and ATCC BAA-2146 reveals unique evolutionary history of this strain. Gut pathogens 8:34

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sambrook JF, Russell DW (2001) Molecular Cloning: A Laboratory Manual (3-Volume Set). CSH

  9. Adriaenssens EM, Sullivan MB, Knezevic P, van Zyl LJ, Sarkar BL, Dutilh BE, Alfenas-Zerbini P, Łobocka M, Tong Y, Brister JR, Moreno Switt AI, Klumpp J, Aziz RK, Barylski J, Uchiyama J, Edwards RA, Kropinski AM, Petty NK, Clokie MRJ, Kushkina AI, Morozova VV, Duffy S, Gillis A, Rumnieks J, Kurtböke İ, Chanishvili N, Goodridge L, Wittmann J, Lavigne R, Jang HB, Prangishvili D, Enault F, Turner D, Poranen MM, Oksanen HM, Krupovic M (2020) Taxonomy of prokaryotic viruses: 2018–2019 update from the ICTV Bacterial and Archaeal Viruses Subcommittee. Arch Virol 165:1253–1260

    Article  CAS  PubMed  Google Scholar 

  10. Zhao J, Zhang Z, Tian C, Chen X, Hu L, Wei X, Li H, Lin W, Jiang A, Feng R, Yuan J, Yin Z, Zhao X (2019) Characterizing the Biology of Lytic Bacteriophage vB_EaeM_φEap-3 Infecting Multidrug-Resistant Enterobacter aerogenes. Front Microbiol 10:420

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hyman P, Abedon ST (2009) Practical methods for determining phage growth parameters. Methods Mol Biol 501:175–202

    Article  CAS  PubMed  Google Scholar 

  12. Pajunen M, Kiljunen S, Skurnik M (2000) Bacteriophage phiYeO3-12, specific for Yersinia enterocolitica serotype O:3, is related to coliphages T3 and T7. J Bacteriol 182:5114–5120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kutter E (2009) Phage host range and efficiency of plating. Methods Mol Biol 501:141–149

    Article  CAS  PubMed  Google Scholar 

  14. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sullivan MJ, Petty NK, Beatson SA (2011) Easyfig: a genome comparison visualizer. Bioinf (Oxford England) 27:1009–1010

    CAS  Google Scholar 

  16. Qi Z, Meng B, Wei X, Li X, Peng H, Li Y, Feng Q, Huang Y, Zhang Q, Xu X, Zhao H, Yang X, Wang C, Zhao X (2022) Identification and characterization of P2-like bacteriophages of Yersinia pestis. Virus Res 322:198934

    Article  CAS  PubMed  Google Scholar 

  17. Kiljunen S, Datta N, Dentovskaya SV, Anisimov AP, Knirel YA, Bengoechea JA, Holst O, Skurnik M (2011) Identification of the lipopolysaccharide core of Yersinia pestis and Yersinia pseudotuberculosis as the receptor for bacteriophage φA1122. J Bacteriol 193:4963–4972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Islam MS, Raz A, Liu Y, Elbassiony KRA, Dong X, Zhou P, Zhou Y, Li J (2019) Complete Genome Sequence of Aeromonas Phage ZPAH7 with Halo Zones, Isolated in China. Microbiology resource announcements 8

  19. Cui X, Du B, Feng J, Feng Y, Fan Z, Chen J, Cui J, Gan L, Fu T, Tian Z, Zhang R, Yan C, Zhao H, Xu W, Xu Z, Yu Z, Ding Z, Li Z, Chen Y, Xue G, Yuan J (2023) A novel phage carrying capsule depolymerase effectively relieves pneumonia caused by multidrug-resistant Klebsiella aerogenes. J Biomed Sci 30:75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Turner D, Shkoporov AN, Lood C, Millard AD, Dutilh BE, Alfenas-Zerbini P, van Zyl LJ, Aziz RK, Oksanen HM, Poranen MM, Kropinski AM, Barylski J, Brister JR, Chanisvili N, Edwards RA, Enault F, Gillis A, Knezevic P, Krupovic M, Kurtböke I, Kushkina A, Lavigne R, Lehman S, Lobocka M, Moraru C, Moreno Switt A, Morozova V, Nakavuma J, Reyes Muñoz A, Rūmnieks J, Sarkar BL, Sullivan MB, Uchiyama J, Wittmann J, Yigang T, Adriaenssens EM (2023) Abolishment of morphology-based taxa and change to binomial species names: 2022 taxonomy update of the ICTV bacterial viruses subcommittee. Arch Virol 168:74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ma Y, Li E, Qi Z, Li H, Xiao W, Lin W, Zhao R, Jiang A, Yang H, Zhe Y (2016) Isolation and molecular characterisation of Achromobacter phage phiAxp-3, an N4-like bacteriophage. Sci Rep 6:24776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Niu YD, McAllister TA, Nash JH, Kropinski AM, Stanford K (2014) Four Escherichia coli O157:H7 phages: a new bacteriophage genus and taxonomic classification of T1-like phages. PLoS ONE 9:e100426

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mishra CK, Choi TJ, Kang SC (2012) Isolation and characterization of a bacteriophage F20 virulent to Enterobacter aerogenes. J Gen Virol 93:2310–2314

    Article  CAS  PubMed  Google Scholar 

  24. Kaszowska M, Majkowska-Skrobek G, Markwitz P, Lood C, Jachymek W, Maciejewska A, Lukasiewicz J, Drulis-Kawa Z (2021) The Mutation in wbaP cps Gene Cluster Selected by Phage-Borne Depolymerase Abolishes Capsule Production and Diminishes the Virulence of Klebsiella pneumoniae. International journal of molecular sciences 22

  25. Majkowska-Skrobek G, Łątka A, Berisio R, Maciejewska B, Squeglia F, Romano M, Lavigne R, Struve C, Drulis-Kawa Z (2016) Capsule-Targeting Depolymerase, Derived from Klebsiella KP36 Phage, as a Tool for the Development of Anti-Virulent Strategy. Viruses 8

  26. Liu S, Lei T, Tan Y, Huang X, Zhao W, Zou H, Su J, Zeng J, Zeng H (2025) Discovery, structural characteristics and evolutionary analyses of functional domains in Acinetobacter baumannii phage tail fiber/spike proteins. BMC Microbiol 25:73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ebeling W, Hennrich N, Klockow M, Metz H, Orth HD, Lang H (1974) Proteinase K from Tritirachium album Limber. Eur J Biochem 47:91–97

    Article  CAS  PubMed  Google Scholar 

  28. Kou X, Yang X, Zheng R (2024) Challenges and opportunities of phage therapy for Klebsiella pneumoniae infections. Appl Environ Microbiol 90:e0135324

    Article  PubMed  Google Scholar 

  29. Lin TL, Yang FL, Ren CT, Pan YJ, Liao KS, Tu IF, Chang YP, Cheng YY, Wu CY, Wu SH, Wang JT (2022) Development of Klebsiella pneumoniae Capsule Polysaccharide-Conjugated Vaccine Candidates Using Phage Depolymerases. Front Immunol 13:843183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Strathdee SA, Hatfull GF, Mutalik VK, Schooley RT (2023) Phage therapy: From biological mechanisms to future directions. Cell 186:17–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chegini Z, Khoshbayan A, Vesal S, Moradabadi A, Hashemi A, Shariati A (2021) Bacteriophage therapy for inhibition of multi drug-resistant uropathogenic bacteria: a narrative review. Ann Clin Microbiol Antimicrob 20:30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lam MMC, Wick RR, Judd LM, Holt KE, Wyres KL (2022) Kaptive 2.0: updated capsule and lipopolysaccharide locus typing for the Klebsiella pneumoniae species complex. Microbial genomics 8

  33. Huang X, Li X, An H, Wang J, Ding M, Wang L, Li L, Ji Q, Qu F, Wang H, Xu Y, Lu X, He Y, Zhang JR (2022) Capsule type defines the capability of Klebsiella pneumoniae in evading Kupffer cell capture in the liver. PLoS Pathog 18:e1010693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Walker KA, Miner TA, Palacios M, Trzilova D, Frederick DR, Broberg CA, Sepúlveda VE, Quinn JD, Miller VL (2019) A Klebsiella pneumoniae Regulatory Mutant Has Reduced Capsule Expression but Retains Hypermucoviscosity. mBio 10

Download references

Funding

This work was supported by the Beijing Municipal Natural Science Foundation Project (no. 5202027).

Author information

Authors and Affiliations

Authors

Contributions

Huasheng Yu and Bohai Du did the experiments and contributed equally to this study as joint first authors. Hong Peng and Xiao Wei analyzed the data. Xiangna Zhao designed the experiments. Xiangna Zhao managed the project. Huasheng Yu and Xiangna Zhao wrote the manuscript.

Corresponding authors

Correspondence to Xiao Wei or Xiangna Zhao.

Ethics declarations

Accession number

The annotated genome sequence for the phage was deposited in the NCBI nucleotide database under the accession number OQ622006.

Conflict of interest

The authors declare no competing financial interests.

Additional information

Handling editor Johannes Wittmann.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, H., Du, B., Peng, H. et al. Characterization and genome analysis of the Klebsiella webervirus vB_KpnS_2146−302. Arch Virol 171, 15 (2026). https://doi.org/10.1007/s00705-025-06454-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1007/s00705-025-06454-8

Keywords