Skip to main content
Log in

Combination of targeted recognition and drug-triggered release multifunctional nanoplatform for fluorescence-guided synergistic photothermal/photodynamic/chemodynamic process

  • Research
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Synergistic chemodynamics, photodynamic and photothermal therapy (CDT, PDT and PTT) can be used to promoting tumor cell death by producing reactive oxygen species (ROS) or raising the temperature under irradiation or releasing the drug in response to stimulation of the tumor microenvironment (TME). This synergistic approach provides higher cancer ablation efficiency, lower therapeutic reagent demand and fewer side effects than individual therapeutic methods. Here, a multimodal intelligent nanoplatform (CuNCs-G/C@MOF-DOX) was constructed for tumor-specific, drug delivery and synergistic therapeutic applications, which integrates PTT, PDT and CDT via a cascade reaction triggered in the TME. The encapsulated CuNCs-G/C maintained the aggregated state, restricted the rotation of the ligands, and enhanced the photostability. Under light irradiation, CuNCs-G/C@MOF-DOX exhibited excellent PDT and PTT effects, further inducing cell apoptosis and pyroptosis. Additionally, localized temperature elevation promoted the enhancement of peroxidase-like activity to improve the CDT effect, inducing cell death. The issues of poor PDT efficacy caused by hypoxia in TME and insufficient CDT efficacy due to inadequate H2O2 levels were simultaneously addressed. Moreover, the drug DOX entered the cell nucleus to disrupt DNA structure for chemotherapy (CT). The released Cu2+ consumed the overexpressed glutathione (GSH) in tumor cells to produce Cu+, which effectively killed tumor for chemodynamic therapy (CDT). In vivo and vitro antitumor experiments further confirmed the excellent cell-killing ability (55.3%) of the multimodal nanoplatform. This study provides a rational approach for designing multimodal synergistic anti-tumor platforms, highlighting their potential for effective therapy.

AbstractSection Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Data availability

All data generated or analysed during this study are included within the article and its supplementary information files.

References

  1. Jia C, Guo Y, Wu F (2021) Chemodynamic therapy via Fenton and Fenton-like nanomaterials: strategies and recent advances. Small 18:2103868

    Article  Google Scholar 

  2. Liu Q, Song P, Zhang W, Wang Z, Yang K, Luo J, Zhu L, Gui L, Tao Y, Ge F (2022) Acid-sensitive nanoparticles based on molybdenum disulfide for photothermal-chemo therapy. ACS Biomaterials Sci Eng 8:1706–1716

    Article  CAS  Google Scholar 

  3. Zhang H, Zhang Q, Guo Z, Liang K, Boyer C, Liu J, Zheng Z, Amal R, Yun SLJ, Gu Z (2022) Disulfiram-loaded metal organic framework for precision cancer treatment via ultrasensitive tumor microenvironment-responsive copper chelation and radical generation. J Colloid Interface Sci 615:517–526

    Article  CAS  PubMed  Google Scholar 

  4. Wen X, Liu N, Ren J, Jiao X, Lv J, Akhtar MH, Qi H, Zhu J, Yu C, Li Y (2022) In situ synthesis of a functional ZIF-8 nanocomposite for synergistic photodynamic-chemotherapy and the pH and NIR-stimulated drug release. New J Chem 46:6966

    Article  CAS  Google Scholar 

  5. Wu J, Zhang Z, Qiao C, Yi C, Xu Z, Chen T, Dai X (2021) Synthesis of monodisperse ZIF-67@CuSe@pvp nanoparticles for pH-responsive drug release and photothermal therapy. ACS Biomaterials Sci Eng 8:284–292

    Article  Google Scholar 

  6. Zhang Y, Eltaye O, Meng Y, Zhang GM, Zhang Y, Shuang SM, Dong C (2020) Tumor microenvironment responsive mesoporous silica nanoparticles for dual delivery of doxorubicin and chemodynamic therapy (CDT) agent. New J Chem 44:2578–2586

    Article  CAS  Google Scholar 

  7. Zhao DH, Li CQ, Hou XL, Xie XT, Zhang B, Wu GY, Jin F, Zhao YD, Liu B (2021) Tumor microenvironment-activated theranostics nanozymes for fluorescence imaging and enhanced chemo-chemodynamic therapy of tumors. ACS Appl Mater Interfaces 13:55780–55789

    Article  CAS  PubMed  Google Scholar 

  8. Deng X, Liang S, Cai X, Huang S, Lin J (2019) Yolk-shell structured Au nanostar@metal-organic framework for synergistic chemo-photothermal therapy in the second near-infrared window. Nano Lett 19:6772–6780

    Article  CAS  PubMed  Google Scholar 

  9. Lv SB, Liu YH, Zhao YL, Fan XX, Lv FY, Feng E, Liu DP, Song FL (2022) Rational design of a small organic photosensitizer for NIR-I imaging-guided synergistic photodynamic and photothermal therapy. Biomaterials Sci 10:4785–4795

    Article  CAS  Google Scholar 

  10. Overchuk M, Weersink R, Wilson B, Zheng G (2023) Photodynamic and photothermal therapies: synergy opportunities for nanomedicine. ACS Nano 17:7979–8003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Luo H, Gao S (2023) Recent advances in fluorescence imaging-guided photothermal therapy and photodynamic therapy for cancer: from near-infrared-I to near-infrared-II. J Controlled Release 362:425–445

    Article  CAS  Google Scholar 

  12. Su W, Jiang X, Zhang Y, Lin C, Xiao J, Li P (2023) Photothermal-driven disassembly of Naphthalocyanine nano-photosensitizers for photothermal and photodynamic therapy. J Colloid Interface Sci 647:201–210

    Article  CAS  PubMed  Google Scholar 

  13. Liu Y, Yang K, Wang J, Tian Y, Song B, Zhang R (2024) Hypoxia-triggered degradable porphyrinic covalent organic framework for synergetic photodynamic and photothermal therapy of cancer. Mater Today Bio 25:100981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu F, Li Y, Wei Q, Liu J (2024) Degradable bifunctional phototherapy composites based on upconversion nanoparticle-metal phenolic network for multimodal tumor therapy in the near-infrared Biowindow. J Colloid Interface Sci 663:436–448

    Article  CAS  PubMed  Google Scholar 

  15. Dehghankhold M, Ahmadi F, Nezafat N, Abedi M, Iranpour P, Dehghanian A, Koohi-Hosseinabadi O, Akbarizadeh AR, Sobhani Z (2024) A versatile theranostic magnetic polydopamine iron oxide NIR laser-responsive nanosystem containing doxorubicin for chemo-photothermal therapy of melanoma. Biomaterials Adv 159:213797

    Article  CAS  Google Scholar 

  16. Chen T, Chu Q, Li M, Han G, Li X (2021) Fe3O4@Pt nanoparticles to enable combinational electrodynamic/chemodynamic therapy. J Nanobiotechnol 19:206

    Article  CAS  Google Scholar 

  17. Ding BB, Shao S, Jiang F, Dang PP, Sun CQ, Huang SS, Ma PA, Jin DY, Al Kheraif AA, Lin J (2019) MnO2-disguised upconversion hybrid nanocomposite: an ideal architecture for tumor microenvironment-triggered UCL/MR bioimaging and enhanced chemodynamic therapy. Chem Mater 31:2651–2660

    Article  CAS  Google Scholar 

  18. Dong Y, Dong S, Wang Z, Feng L, Yang P (2020) Multimode imaging-guided photothermal/chemodynamic synergistic therapy nanoagent with a tumor microenvironment responded effect. ACS Appl Mater Interfaces 12:52479–52491

    Article  CAS  PubMed  Google Scholar 

  19. Zheng N, Fu Y, Liu X, Zhang Z, Wang J, Mei Q, Wang X, Deng G, Lu J, Hu J (2022) Tumor microenvironment responsive self-cascade catalysis for synergistic chemo/chemodynamic therapy by multifunctional biomimetic nanozymes. J Mater Chem B 10:637–645

    Article  CAS  PubMed  Google Scholar 

  20. Chen Y, Zan J, Liu Y, Kuang P, Guo C, Xie C, Huang W, Fan Q (2022) A cerium oxide-based nanomedicine for pH-triggered chemodynamic/chemo combination therapy. J Mater Chem B 10:1403–1409

    Article  CAS  PubMed  Google Scholar 

  21. Sang Y, Cao F, Li W, Zhang L, Qu X (2020) Bioinspired construction of a nanozyme-based H2O2 homeostasis disruptor for intensive chemodynamic therapy. J Am Chem Soc 142:5177–5183

    Article  CAS  PubMed  Google Scholar 

  22. Fu S, Yang R, Zhang L, Liu W, Peng X (2020) Biomimetic CoO@AuPt nanozyme responsive to multiple tumor microenvironmental clues for augmenting chemodynamic therapy. Biomaterials 257:120279

    Article  CAS  PubMed  Google Scholar 

  23. Wang L, Xu Y, Liu C, Si W, Wang W, Zhang Y, Zhong L, Dong X, Zhao Y (2022) Copper-doped mof-based nanocomposite for GSH depleted chemo/photothermal/chemodynamic combination therapy. Chem Eng J 438:135567

    Article  CAS  Google Scholar 

  24. Zhang R, Ma Q, Hu G, Wang L (2022) Acid-triggered H2O2 self-supplying nanoplatform for F-19-MRI with enhanced chemo-chemodynamic therapy. Anal Chem 94:3727–3734

    Article  CAS  PubMed  Google Scholar 

  25. Shi S, Zhu X, Zhao Z, Fang W, Chen M, Huang Y, Chen X (2013) Photothermally enhanced photodynamic therapy based on mesoporous Pd@Ag@mSiO2 nanocarriers. J Mater Chem B 1:1133–1141

    Article  CAS  PubMed  Google Scholar 

  26. Sui CX, Tan R, Chen YW, Yin GT, Wang ZY, Xu WG, Li XF (2021) MOFs-Derived Fe-N Co doped carbon nanoparticles as O2–Evolving reactor and ROS generator for CDT/PDT/PTT synergistic treatment of tumors. Bioconjug Chem 32:318–327

    Article  CAS  PubMed  Google Scholar 

  27. Li Y, Yi M, Xiong B, Huang Y, Guo W, Lin Y, Lu B (2024) pH-responsive degradable mesoporous Organosilica nanoparticle for tumor targeting and phototherapy combined with chemotherapy. J Drug Deliv Sci Technol 92:105344

    Article  CAS  Google Scholar 

  28. Grebinyk A, Chepurna O, Frohme M, Qu J, Patil R, Vretik LO, Ohulchanskyy TY (2024) Molecular and nanoparticulate agents for photodynamic therapy guided by near infrared imaging. J Photochem Photobiol C 58:100652

    Article  CAS  Google Scholar 

  29. Parella C, Blanquer A, Sinha S (2024) Developing photo-activable ruthenium (II) complexes for PDT: Synthesis, characterization, photophysical and biological studies. Dyes Pigm 224:111985

    Article  CAS  Google Scholar 

  30. Liu J, Yang L, Cao X, Chen M, Li J, Wang X, Wu S, Zhang Z (2021) PEGylated Mn containing MOF nanoparticles for potential immunotherapy of pancreatic cancer via manganese induced activation of anti-tumor immunity. Colloid Interface Sci Commun 42:100409

    Article  CAS  Google Scholar 

  31. Zheng H, Zhang Y, Liu L, Wei W, Peng G, Nystroem AM, Zou X (2016) One-pot synthesis of metal–organic frameworks with encapsulated target molecules and their applications for controlled drug delivery. J Am Chem Soc 138:962–968

    Article  CAS  PubMed  Google Scholar 

  32. Li Y, Na X, Zhu W, Wang L, Liu B, Zhang J, Xie Z, Liu W (2018) Nanoscale melittin@zeolitic imidazolate frameworks for enhanced anticancer activity and mechanism analysis. ACS Appl Mater Interfaces 10:22974–22984

    Article  CAS  PubMed  Google Scholar 

  33. Shelonchik O, Lemcoff N, Shimoni R, Biswas A, Yehezkel E, Yesodi D, Hod I, Weizmann Y (2024) Light-induced MOF synthesis enabling composite photothermal materials. Nat Commun 15:1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Singh N, Won M, Yoon AJ, Kim CY, Lee D, Kang SJ, Kim H, Seung J (2024) Advances in covalent organic frameworks for cancer phototherapy. Coord Chem Rev 506:215720

    Article  CAS  Google Scholar 

  35. Bai YL, Zhao JJ, Zhang LL, Wang SL, Hua J, Zhao SL, Liang H (2022) A smart near-infrared carbon dot-metal organic framework assemblies for tumor microenvironment-activated cancer imaging and chemodynamic-photothermal combined therapy. Adv Healthc Mater 11:2270069

    Article  Google Scholar 

  36. Cheng Y, Jiao X, Fan W, Yang Z, Chen X (2020) Controllable synthesis of versatile mesoporous Organosilica nanoparticles as precision cancer theranostics. Biomaterials 256:120191

    Article  CAS  PubMed  Google Scholar 

  37. Xing R, Ning L, Li L, He L, Lin H, You C, Wang F (2023) Efficient in vitro delivery of Paclitaxel by a nanocellulose-coated dendritic mesoporous Organosilica nanoparticle for enhanced chemodynamic cancer therapy. J Drug Deliv Sci Technol 86:104654

    Article  CAS  Google Scholar 

  38. Chi H, Zhu G, Yin YL, Diao H, Liu ZC, Sun SB, Guo ZM, Xu WP, Xu JQ, Cui CH, Xing XJ, Ma K (2022) Dual-responsive multifunctional core-shell magnetic nanoparticles promoting Fenton reaction for tumor ferroptosis therapy. Int J Pharm 622:121898

    Article  CAS  PubMed  Google Scholar 

  39. Cai Y, Zhu H, Zhou W, Qiu Z, Chen C, Qileng A, Li K, Liu Y (2021) Capsulation of AuNCs with AIE effect into metal-organic framework for the marriage of a fluorescence and colorimetric biosensor to detect organophosphorus pesticides. Anal Chem 93(19):7275–7282

  40. Wang Y, Liao J, Lyu Y, Guo Q, Zhu Z, Wu X, Yu J, Wang Q, Zhu WH (2023) An AIE photosensitizer with simultaneous type I and type II ROS generation: efficient bacterial elimination and hypoxic tumor ablation. Adv Funct Mater 33:2301692

    Article  CAS  Google Scholar 

  41. Yan FY, Zang YY, Sun JR, Sun ZH, Zhang H (2020) Sensing mechanism of reactive oxygen species optical detection, TrAc trend. Anal Chem 131:116009

    CAS  Google Scholar 

  42. Tian BS, Liu SH, Yu CH, Liu SK, Dong SM, Feng LL, Hu NRS, Yang PP (2023) A metal-free mesoporous carbon dots/silica hybrid type I photosensitizer with enzyme-activity for synergistic treatment of hypoxic tumor. Adv Funct Mater 33:2300818

    Article  CAS  Google Scholar 

  43. Fang T, Duan ZH, Wan N, Zuo XX, Pan ZW, Zhang WW, Ge F, Gui L (2024) Gold-aptamer-modified metal-organic framework drug delivery nanosystems for combined photothermal/chemotherapy of cancer. ACS Appl Nano Mater 7:12129–12141

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Doctor Fund of Shanxi Normal University (0505/02070481) and the Analysis and Testing Center of Shanxi Normal University.

Funding

This work was supported by the Doctor Fund of Shanxi Normal University (0505/02070481).

Author information

Authors and Affiliations

Authors

Contributions

Xiaoye Wen: Investigation, Visualization, Writing-original draft, Review & editing, Supervision; Chenjie Pang: Methodology, Data curation; Zhefeng Fan: Conceptualization, Methodology, Supervision.

Corresponding author

Correspondence to Zhefeng Fan.

Ethics declarations

Ethics approval

Human serum experiment was approved by the Ethics Committee of Shanxi Normal University in accordance with the requirements of the Chinese National Statement on Ethical Conduct in Human Research.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, X., Pang, C. & Fan, Z. Combination of targeted recognition and drug-triggered release multifunctional nanoplatform for fluorescence-guided synergistic photothermal/photodynamic/chemodynamic process. Microchim Acta 193, 17 (2026). https://doi.org/10.1007/s00604-025-07760-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1007/s00604-025-07760-3

Keywords