Abstract
Diabetic wounds (DWs), particularly those affecting the lower extremities, represent a significant clinical challenge due to their chronic nature and high risk of complications, including infection and amputation. Despite advances in diabetes management, conventional wound care strategies often fail to achieve satisfactory healing outcomes, largely due to the complex pathophysiology of DWs, are involving impaired angiogenesis, chronic inflammation, and compromised immune responses. The data on the conventional and emerging therapies used in the management of DWs were searched using PubMed, Scopus, and Web of Science databases to locate literature published. Studies have shown that conventional wound care interventions like debridement, dressing, and infection control mostly provide symptomatic treatment without eliminating underlying cellular and molecular diabetic wound pathophysiology. Recent years have witnessed the emergence of novel therapeutic approaches, including stem cell therapy, gene therapy, nanotechnology-based interventions, and tissue engineering. These strategies improve angiogenesis, alter the polarization of macrophages, and stimulate tissue repair, which can offer new hope for enhancing wound healing in diabetic patients. This review synthesizes current literature on the pathophysiology of diabetic wound healing, evaluates the limitations of traditional therapies, and provides a comprehensive overview of cutting-edge treatments that holds an effective diabetic wound management.
Graphical abstract





Similar content being viewed by others
Data availability
Not applicable.
Abbreviations
- DWs:
-
Diabetic wounds
- DFUs:
-
Diabetic foot ulcers
- AGEs:
-
Advanced glycation end products
- ROS:
-
Reactive oxygen species
- NO:
-
Nitric oxide
- TNF:
-
Tumor necrosis factor
- IL:
-
Interleukin
- VEGF:
-
Vascular endothelial growth factor
- PDGF:
-
Platelet-derived growth factor
- EGF:
-
Epidermal growth factor
- KGF:
-
Keratinocyte growth factor
- TGF-1:
-
Transforming growth factor beta 1
- IGF-1:
-
Insulin growth factor-1
- FGF:
-
Fibroblast growth factor
- ECM:
-
Extracellular matrix tissue
- MSCs:
-
Mesenchymal stem cells
- ESCs:
-
Embryonic stem cells
- EBB:
-
Extrusion-based bioprinting
- ILM:
-
Insulin-loaded micelles
- MiRNAs:
-
Micro RNA
- CRP:
-
C-Reactive protein
References
Hossain MdJ, Al-Mamun Md, Islam MdR (2024) Diabetes mellitus, the fastest growing global public health concern: early detection should be focused. Health Sci Rep 7:e2004. https://doi.org/10.1002/hsr2.2004
Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB et al (2022) IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract 183:109119. https://doi.org/10.1016/j.diabres.2021.109119
Burgess JL, Wyant WA, Abdo Abujamra B, Kirsner RS, Jozic I (2021) Diabetic wound-healing science. Med (Kaunas) 57:1072. https://doi.org/10.3390/medicina57101072
Kim J (2023) The pathophysiology of diabetic foot: a narrative review. JYMS J Yeungnam Med Sci 40:328–334. https://doi.org/10.12701/jyms.2023.00731
Dawi J, Tumanyan K, Tomas K, Misakyan Y, Gargaloyan A, Gonzalez E et al (2025) Diabetic foot ulcers: pathophysiology, immune dysregulation, and emerging therapeutic strategies. Biomedicines 13:1076. https://doi.org/10.3390/biomedicines13051076
Veith AP, Henderson K, Spencer A, Sligar AD, Baker AB (2019) Therapeutic strategies for enhancing angiogenesis in wound healing. Adv Drug Deliv Rev 146:97–125. https://doi.org/10.1016/j.addr.2018.09.010
Okonkwo UA, DiPietro LA, Multidisciplinary Digital Publishing Institute (2017) Diabetes and wound angiogenesis. Int J Mol Sci 18:1419. https://doi.org/10.3390/ijms18071419
Frykberg RG, Banks J (2015) Challenges in the treatment of chronic wounds. Adv Wound Care (New Rochelle) 4:560–582. https://doi.org/10.1089/wound.2015.0635
Kolimi P, Narala S, Nyavanandi D, Youssef AAA, Dudhipala N (2022) Innovative treatment strategies to accelerate wound healing: trajectory and recent advancements. Cells 11:2439. https://doi.org/10.3390/cells11152439
Frontiers (2025) | Advances in regenerative medicine-based approaches for skin regeneration and rejuvenation [Internet]. [cited 2025 Aug 10]. https://www.frontiersin.org/journals/bioengineering-and-biotechnology/articles/10.3389/fbioe.1527854/full. Accessed 10 Aug 2025
Baydar SY, Ay HF, Cakir R (2024) Frontiers of stem cell engineering for nanotechnology-mediated drug delivery systems. ADMET DMPK 12:225–237. https://doi.org/10.5599/admet.2160
Rasekh M, Arshad MS, Ahmad Z (2025) Advances in drug delivery integrated with regenerative medicine: innovations, challenges, and future frontiers. Pharmaceutics 17:456. https://doi.org/10.3390/pharmaceutics17040456
Nanotechnology-Driven Therapeutic Interventions in Wound Healing Potential Uses and Applications | ACS Central Science [Internet]. [cited 2025 Aug 10]. https://pubs.acs.org/doi/https://doi.org/10.1021/acscentsci.6b00371. Accessed 10 Aug 2025
Gonzalez ACdeO, Costa TF, Andrade ZdeA, Medrado ARAP (2016) Wound healing - a literature review. An Bras Dermatol 91:614–20. https://doi.org/10.1590/abd1806-4841.20164741
Eming SA, Krieg T, Davidson JM (2007) Inflammation in wound repair: molecular and cellular mechanisms. J Invest Dermatol 127:514–525. https://doi.org/10.1038/sj.jid.5700701
Landén NX, Li D, Ståhle M (2016) Transition from inflammation to proliferation: a critical step during wound healing. Cell Mol Life Sci 73:3861–3885. https://doi.org/10.1007/s00018-016-2268-0
Role of fibroblasts in wound healing and tissue remodeling on Earth and in space - PMC [Internet] [cited 2025 Aug 10]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9578548/. Accessed 10 Aug 2025
Gajbhiye S, Wairkar S (2022) Collagen fabricated delivery systems for wound healing: a new roadmap. Biomater Adv 142:213152. https://doi.org/10.1016/j.bioadv.2022.213152
Plikus MV, Wang X, Sinha S, Forte E, Thompson SM, Herzog EL et al (2021) Fibroblasts: origins, definitions, and functions in health and disease. Cell 184:3852–3872. https://doi.org/10.1016/j.cell.2021.06.024
Patel S, Srivastava S, Singh MR, Singh D (2019) Mechanistic insight into diabetic wounds: pathogenesis, molecular targets and treatment strategies to pace wound healing. Biomed Pharmacother 112:108615. https://doi.org/10.1016/j.biopha.2019.108615
Jhamb S, Vangaveti VN, Malabu UH (2016) Genetic and molecular basis of diabetic foot ulcers: clinical review. J Tissue Viability 25:229–236. https://doi.org/10.1016/j.jtv.2016.06.005
Perez-Zabala E, Basterretxea A, Larrazabal A, Perez-del-Pecho K, Rubio-Azpeitia E, Andia I (2016) Biological approach for the management of non-healing diabetic foot ulcers. J Tissue Viability 25:157–163. https://doi.org/10.1016/j.jtv.2016.03.003
Chen C, Zhang J-Q, Li L, Guo M, He Y, Dong Y et al (2022) Advanced glycation end products in the skin: molecular mechanisms, methods of measurement, and inhibitory pathways. Front Med Lausanne 9:837222. https://doi.org/10.3389/fmed.2022.837222
Rademakers T, Horvath JM, van Blitterswijk CA, LaPointe VLS (2019) Oxygen and nutrient delivery in tissue engineering: approaches to graft vascularization. J Tissue Eng Regen Med 13:1815–1829. https://doi.org/10.1002/term.2932
Dasari N, Jiang A, Skochdopole A, Chung J, Reece EM, Vorstenbosch J et al (2021) Updates in diabetic wound healing, inflammation, and scarring. Semin Plast Surg 35:153–158. https://doi.org/10.1055/s-0041-1731460
Lin S, Wang Q, Huang X, Feng J, Wang Y, Shao T et al (2023) Wounds under diabetic milieu: the role of immune cellar components and signaling pathways. Biomed Pharmacother 157:114052. https://doi.org/10.1016/j.biopha.2022.114052
Soares CLR, Wilairatana P, Silva LR, Moreira PS, Vilar Barbosa NMM, da Silva PR et al (2023) Biochemical aspects of the inflammatory process: a narrative review. Biomed Pharmacother 168:115764. https://doi.org/10.1016/j.biopha.2023.115764
Diabetic vascular diseases molecular mechanisms and therapeutic strategies | Signal Transduction and Targeted Therapy [Internet]. [cited 2025 Aug 10]. https://www.nature.com/articles/s41392-023-01400-z. Accessed 10 Aug 2025
Johnson KE, Wilgus TA (2014) Vascular endothelial growth factor and angiogenesis in the regulation of cutaneous wound repair. Adv Wound Care (New Rochelle) 3:647–661. https://doi.org/10.1089/wound.2013.0517
Apte RS, Chen DS, Ferrara N (2019) VEGF in signaling and disease: beyond discovery and development. Cell 176:1248–1264. https://doi.org/10.1016/j.cell.2019.01.021
Citrin KM, Chaube B, Fernández-Hernando C, Suárez Y (2025) Intracellular endothelial cell metabolism in vascular function and dysfunction. Trends Endocrinol Metab 36:744–755. https://doi.org/10.1016/j.tem.2024.11.004
Chronic wounds Treatment consensus - Eriksson – 2022 - Wound Repair and Regeneration - Wiley Online Library [Internet]. [cited 2025 Aug 10]. https://doi.org/10.1111/wrr.12994. Accessed 10 Aug 2025
Current Status and Principles for the Treatment and Prevention of Diabetic Foot Ulcers in the Cardiovascular Patient Population A Scientific Statement From the American Heart Association | Circulation [Internet]. [cited 2025 Aug 10]. https://doi.org/10.1161/CIR.0000000000001192. Accessed 10 Aug 2025
Thomas DC, Tsu CL, Nain RA, Arsat N, Fun SS, Sahid Nik Lah NA (2021) The role of debridement in wound bed preparation in chronic wound: a narrative review. Ann Med Surg (Lond) 71:102876. https://doi.org/10.1016/j.amsu.2021.102876
Spampinato SF, Caruso GI, De Pasquale R, Sortino MA, Merlo S (2020) The treatment of impaired wound healing in diabetes: looking among old drugs. Pharmaceuticals (Basel) 13:60. https://doi.org/10.3390/ph13040060
Jiang Y, Zhang Q, Wang H, Välimäki M, Zhou Q, Dai W et al (2024) Effectiveness of silver and iodine dressings on wound healing: a systematic review and meta-analysis. BMJ Open 14:e077902. https://doi.org/10.1136/bmjopen-2023-077902
Bigliardi PL, Alsagoff SAL, El-Kafrawi HY, Pyon J-K, Wa CTC, Villa MA (2017) Povidone iodine in wound healing: a review of current concepts and practices. Int J Surg 44:260–268. https://doi.org/10.1016/j.ijsu.2017.06.073
Nešporová K, Pavlík V, Šafránková B, Vágnerová H, Odráška P, Žídek O, et al (2020) Effects of wound dressings containing silver on skin and immune cells. Sci Rep 10:15216. https://doi.org/10.1038/s41598-020-72249-3
Ma Z, Li Z, Shou K, Jian C, Li P, Niu Y et al (2017) Negative pressure wound therapy: regulating blood flow perfusion and microvessel maturation through microvascular pericytes. Int J Mol Med 40:1415–25. https://doi.org/10.3892/ijmm.2017.3131
Guo Q (2025) Comparison and evaluation of negative pressure wound therapy versus standard wound care in the treatment of diabetic foot ulcers. BMC Surg 25:208. https://doi.org/10.1186/s12893-025-02885-x
Li H-Z, Xu X-H, Wang D-W, Lin Y-M, Lin N, Lu H-D (2019) Negative pressure wound therapy for surgical site infections: a systematic review and meta-analysis of randomized controlled trials. Clin Microbiol Infect 25:1328–1338. https://doi.org/10.1016/j.cmi.2019.06.005
Comparison of Negative Pressure Wound Therapy Systems and Conventional Non-Pressure Dressings on Surgical Site Infection Rate After Stoma Reversal Systematic Review and Meta-Analysis of Randomized Controlled Trials [Internet]. [cited 2025 Aug 10]. https://www.mdpi.com/2077-0383/14/5/1654. Accessed 10 Aug 2025
Nuutila K, Eriksson E (2021) Moist wound healing with commonly available dressings. Adv Wound Care (New Rochelle) 10:685–698. https://doi.org/10.1089/wound.2020.1232
Xue Y, Zhou J, Lu Y, Zhang H, Chen B, Dong S et al (2025) Advancements in wound management: microenvironment-sensitive bioactive dressings with on-demand regulations for diabetic wounds. Engineering 48:234–261. https://doi.org/10.1016/j.eng.2025.01.018
Silk Fibroin Nanofibers Advancements in Bioactive Dressings through Electrospinning Technology for Diabetic Wound Healing [Internet]. [cited 2025 Aug 10]. https://www.mdpi.com/1424-8247/17/10/1305. Accessed 10 Aug 2025
(PDF) A Comprehensive Review on Wound Dressings and Their Comparative Effectiveness on Healing of Contaminated Wounds and Ulcers [Internet]. [cited 2025 Aug 10]. https://www.researchgate.net/publication/359931469_A_Comprehensive_Review_on_Wound_Dressings_and_Their_Comparative_Effectiveness_on_Healing_of_Contaminated_Wounds_and_Ulcers. Accessed 10 Aug 2025
Moradifar F, Sepahdoost N, Tavakoli P, Mirzapoor A (2025) Multi-functional dressings for recovery and screenable treatment of wounds: a review. Heliyon 11:e41465. https://doi.org/10.1016/j.heliyon.2024.e41465
Minh Nguyen H, Le TTN, Thanh Nguyen A, Le HNT, Tan Pham T (2023) Biomedical materials for wound dressing: recent advances and applications. Royal Soc Chem. https://doi.org/10.1039/D2RA07673J
Rezvani Ghomi E, Khalili S, Nouri Khorasani S, Esmaeely Neisiany R, Ramakrishna S (2019) Wound dressings: current advances and future directions. J Appl Polym Sci 136:47738. https://doi.org/10.1002/app.47738
Alberts A, Tudorache D-I, Niculescu A-G, Grumezescu AM (2025) Advancements in wound dressing materials: highlighting recent progress in hydrogels, foams, and antimicrobial dressings. Gels 11:123. https://doi.org/10.3390/gels11020123
Gupta A, Briffa SM, Swingler S, Gibson H, Kannappan V, Adamus G et al (2020) Synthesis of silver nanoparticles using curcumin-cyclodextrins loaded into bacterial cellulose-based hydrogels for wound dressing applications. Biomacromolecules 21:1802. https://doi.org/10.1021/acs.biomac.9b01724
Alencar-Silva T, Díaz-Martín RD, Sousa Dos Santos M, Saraiva RVP, Leite ML, de Oliveira Rodrigues MT et al (2024) Screening of the skin-regenerative potential of antimicrobial peptides: clavanin A, clavanin-MO, and mastoparan-MO. Int J Mol Sci 25:6851. https://doi.org/10.3390/ijms25136851
Anderi R, Makdissy N, Azar A, Rizk F, Hamade A (2018) Cellular therapy with human autologous adipose-derived adult cells of stromal vascular fraction for alopecia areata. Stem Cell Res Ther 9:141. https://doi.org/10.1186/s13287-018-0889-y
Shimizu Y, Ntege EH, Sunami H (2022) Current regenerative medicine-based approaches for skin regeneration: a review of literature and a report on clinical applications in Japan. Regen Ther 21:73–80. https://doi.org/10.1016/j.reth.2022.05.008
Mahajan N, Soker S, Murphy SV (2024) Regenerative medicine approaches for skin wound healing: from allografts to engineered skin substitutes. Curr Transpl Rep 11:207–221. https://doi.org/10.1007/s40472-024-00453-5
Diller RB, Tabor AJ (2022) The role of the extracellular matrix (ECM) in wound healing: a review. Biomimetics 7:87. https://doi.org/10.3390/biomimetics7030087
Ho J, Yue D, Cheema U, Hsia HC, Dardik A (2023) Innovations in stem cell therapy for diabetic wound healing. Adv Wound Care (New Rochelle) 12:626–643. https://doi.org/10.1089/wound.2021.0104
Gopalarethinam J, Nair AP, Iyer M, Vellingiri B, Subramaniam MD (2023) Advantages of mesenchymal stem cell over the other stem cells. Acta Histochem 125:152041. https://doi.org/10.1016/j.acthis.2023.152041
Clinical application of mesenchymal stem cell in regenerative medicine: a narrative review | Stem Cell Research & Therapy | Full Text [Internet]. [cited 2025 Aug 10]. https://doi.org/10.1186/s13287-022-03054-0. Accessed 10 Aug 2025
Induced Mesenchymal Stem Cells An Emerging Source for Regenerative Medicine Applications [Internet]. [cited 2025 Aug 10]. https://www.mdpi.com/2077-0383/14/6/2053. Accessed 10 Aug 2025
Translational potential of mesenchymal stem cells in regenerative therapies for human diseases: challenges and opportunities | Stem Cell Research & Therapy | Full Text [Internet]. [cited 2025 Aug 10]. https://doi.org/10.1186/s13287-024-03885-z. Accessed 10 Aug 2025
Xu P, Wu Y, Zhou L, Yang Z, Zhang X, Hu X et al (2020) Platelet-rich plasma accelerates skin wound healing by promoting re-epithelialization. Burns Trauma 8:tkaa028. https://doi.org/10.1093/burnst/tkaa028
Chicharro-Alcántara D, Rubio-Zaragoza M, Damiá-Giménez E, Carrillo-Poveda JM, Cuervo-Serrato B, Peláez-Gorrea P et al (2018) Platelet rich plasma: new insights for cutaneous wound healing management. J Funct Biomater 9:10. https://doi.org/10.3390/jfb9010010
Patil P, Jadhav M, Suvvari TK, Thomas V (2024) Therapeutic uses of platelet-rich plasma (PRP) in sport injuries – a narrative review. J Orthop Rep 3:100287. https://doi.org/10.1016/j.jorep.2023.100287
Platelet-rich plasma a comparative and economical therapy for wound healing and tissue regeneration | Cell and Tissue Banking [Internet]. [cited 2025 Aug 10]. https://doi.org/10.1007/s10561-022-10039-z. Accessed 10 Aug 2025
Platelet-Rich Plasma (PRP) Based on Simple and Efficient Integrated Preparation Precises Quantitatively for Skin Wound Repair [Internet]. [cited 2025 Aug 10]. https://www.mdpi.com/1422-0067/25/17/9340. Accessed 10 Aug 2025
Zhang Y, Wang Z-L, Deng Z-P, Wang Z-L, Song F, Zhu L-L (2022) Emerging delivery strategies of platelet-rich plasma with hydrogels for wound healing. Adv Polym Technol 2022:5446291. https://doi.org/10.1155/2022/5446291
do Amaral RJFC, Zayed NMA, Pascu EI, Cavanagh B, Hobbs C, Santarella F et al (2019) Functionalising collagen-based scaffolds with platelet-rich plasma for enhanced skin wound healing potential. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2019.00371
Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH et al (2018) Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist 11:1645–1658. https://doi.org/10.2147/IDR.S173867
Huang R, Hu J, Qian W, Chen L, Zhang D (2021) Recent advances in nanotherapeutics for the treatment of burn wounds. Burns Trauma 9:tkab026. https://doi.org/10.1093/burnst/tkab026
Ali N, Arshad R, kousar S, Aman W, Ahmad W, Azeem M et al (2025) Advanced wound healing: the synergy of nature and nanotechnology. J Drug Deliv Sci Technol 105:106579. https://doi.org/10.1016/j.jddst.2024.106579
Keskin D, Zu G, Forson AM, Tromp L, Sjollema J, van Rijn P (2021) Nanogels: a novel approach in antimicrobial delivery systems and antimicrobial coatings. Bioact Mater 6:3634–57. https://doi.org/10.1016/j.bioactmat.2021.03.004
Nanotechnology’s frontier in combatting infectious and inflammatory diseases: prevention and treatment | Signal Transduction and Targeted Therapy [Internet]. [cited 2025 Aug 10]. https://www.nature.com/articles/s41392-024-01745-z. Accessed 10 Aug 2025
Sharda D, Kaur P, Choudhury D (2023) Protein-modified nanomaterials: emerging trends in skin wound healing. Discover Nano 18:127. https://doi.org/10.1186/s11671-023-03903-8
Fahimirad S, Fattahi F, Hatami M, Shabani S, Ghorbanpour M (2025) Nanotechnology-based biotherapeutics for physiological wound healing phases. Ind Crops Prod 226:120608. https://doi.org/10.1016/j.indcrop.2025.120608
Motsoene F, Abrahamse H, Dhilip Kumar SS (2023) Multifunctional lipid-based nanoparticles for wound healing and antibacterial applications: a review. Adv Colloid Interface Sci 321:103002. https://doi.org/10.1016/j.cis.2023.103002
Yadavalli T, Shukla D (2017) Role of metal and metal oxide nanoparticles as diagnostic and therapeutic tools for highly prevalent viral infections. Nanomedicine 13:219–230. https://doi.org/10.1016/j.nano.2016.08.016
Medic BS, Tomic N, Lagopati N, Gazouli M, Pojskic L (2024) Advances in metal and metal oxide nanomaterials for topical antimicrobial applications: insights and future perspectives. Molecules 29:5551. https://doi.org/10.3390/molecules29235551
Pure and multi metal oxide nanoparticles: synthesis, antibacterial and cytotoxic properties | Journal of Nanobiotechnology | Full Text [Internet]. [cited 2025 Aug 10]. https://doi.org/10.1186/s12951-016-0225-6. Accessed 10 Aug 2025
Mao W, Yoo HS (2024) Inorganic nanoparticle functionalization strategies in immunotherapeutic applications. Biomater Res 28:0086. https://doi.org/10.34133/bmr.0086
Mahmoud NN, Hamad K, Al Shibitini A, Juma S, Sharifi S, Gould L et al (2024) Investigating inflammatory markers in wound healing: understanding implications and identifying artifacts. ACS Pharmacol Transl Sci 7:18–27. https://doi.org/10.1021/acsptsci.3c00336
Aljabali AA, Obeid MA, Bashatwah RM, Serrano-Aroca Á, Mishra V, Mishra Y et al (2023) Nanomaterials and their impact on the immune system. Int J Mol Sci 24:2008. https://doi.org/10.3390/ijms24032008
Hetta HF, Ramadan YN, Al-Harbi AI, Ahmed A, Battah E, Abd Ellah B (2023) Nanotechnology as a promising approach to combat multidrug resistant bacteria: a comprehensive review and future perspectives. Biomedicines 11:413. https://doi.org/10.3390/biomedicines11020413
Alotaibi BS, Khan AK, Kharaba Z, Yasin H, Yasmin R, Ijaz M et al (2024) Development of Poly(vinyl alcohol)–Chitosan composite nanofibers for dual drug therapy of wounds. ACS Omega Am Chem Soc 9:12825–12834. https://doi.org/10.1021/acsomega.3c08856
Froelich A, Jakubowska E, Wojtyłko M, Jadach B, Gackowski M, Gadziński P et al (2023) Alginate-based materials loaded with nanoparticles in wound healing. Pharmaceutics 15:1142. https://doi.org/10.3390/pharmaceutics15041142
Sudhakar K, Ji S, min, Kummara MR, Han SS (2022) Recent progress on hyaluronan-based products for wound healing applications. Pharmaceutics 14:2235. https://doi.org/10.3390/pharmaceutics14102235
Silk Fibroin and Its Nanocomposites for Wound Care A Comprehensive Review | ACS Polymers Au [Internet]. [cited 2025 Aug 12]. https://pubs.acs.org/doi/https://doi.org/10.1021/acspolymersau.3c00050. Accessed 12 Aug 2025
Ejiohuo O, Folami SO, Edi D, Isaac J (2024) Polyphenol encapsulated nanofibers in wound healing and drug delivery. Eur J Med Chem Rep 12:100184. https://doi.org/10.1016/j.ejmcr.2024.100184
Cetin FN, Mignon A, Van Vlierberghe S, Kolouchova K (2025) Polymer- and lipid-based nanostructures serving wound healing applications: a review. Adv Healthc Mater 14:e2402699. https://doi.org/10.1002/adhm.202402699
Electrospun PLGA/PCL Nanofiber Film Loaded with LPA Promotes Full-Layer Wound Healing by Regulating the Keratinocyte Pyroptosis | ACS Applied Materials & Interfaces [Internet]. [cited 2025 Aug 12]. https://doi.org/10.1021/acsami.4c22495. Accessed 12 Aug 2025
Prasai A, Jay JW, Jupiter D, Wolf SE, El Ayadi A (2022) Role of exosomes in dermal wound healing: a systematic review. J Invest Dermatol 142:662-678.e8. https://doi.org/10.1016/j.jid.2021.07.167
Gunasekaran T, Nigusse T, Dhanaraju MD (2012) Silver nanoparticles as real topical bullets for wound healing. J Am Coll Clin Wound Spec 3:82–96. https://doi.org/10.1016/j.jcws.2012.05.001
Moalwi A, Kamat K, Muddapur UM, Aldoah B, AlWadai HH, Alamri AM, et al (2024) Green synthesis of zinc oxide nanoparticles from Wodyetia bifurcata fruit peel extract: multifaceted potential in wound healing, antimicrobial, antioxidant, and anticancer applications. Front Pharmacol. https://doi.org/10.3389/fphar.2024.1435222
Sandoval C, Ríos G, Sepúlveda N, Salvo J, Souza-Mello V, Farías J (2022) Effectiveness of copper nanoparticles in wound healing process using in vivo and in vitro studies: a systematic review. Pharmaceutics 14:1838. https://doi.org/10.3390/pharmaceutics14091838
Yi L, Yu L, Chen S, Huang D, Yang C, Deng H et al (2024) The regulatory mechanisms of cerium oxide nanoparticles in oxidative stress and emerging applications in refractory wound care. Front Pharmacol. https://doi.org/10.3389/fphar.2024.1439960
Barjasteh M, Dehnavi SM, Ahmadi Seyedkhani S, Akrami M, Rahimi M (2024) Hybrid nanocomposite wound dressings by a novel nanorod vitamin-B3-Ag metal-organic framework and bacterial cellulose nanofibers. J Drug Deliv Sci Technol 95:105532. https://doi.org/10.1016/j.jddst.2024.105532
Weng T, Zhang W, Xia Y, Wu P, Yang M, Jin R et al (2021) 3D bioprinting for skin tissue engineering: current status and perspectives. J Tissue Eng 12:20417314211028576. https://doi.org/10.1177/20417314211028574
Deptuła M, Zawrzykraj M, Sawicka J, Banach-Kopeć A, Tylingo R, Pikuła M (2023) Application of 3D- printed hydrogels in wound healing and regenerative medicine. Biomed Pharmacother 167:115416. https://doi.org/10.1016/j.biopha.2023.115416
Abuhamad AY, Masri S, Fadilah NIM, Alamassi MN, Maarof M, Fauzi MB (2024) Application of 3D-printed bioinks in chronic wound healing: a scoping review. Polymers 16:2456. https://doi.org/10.3390/polym16172456
Uchida DT, Bruschi ML (2023) 3D printing as a technological strategy for the personalized treatment of wound healing. AAPS PharmSciTech 24:41. https://doi.org/10.1208/s12249-023-02503-0
Advances in Three Dimensional Bioprinting for Wound Healing A Comprehensive Review [Internet]. [cited 2025 Aug 10]. https://www.mdpi.com/2076-3417/13/18/10269. Accessed 10 Aug 2025
Guida L, Cavallaro M, Levi M (2024) Advancements in high-resolution 3D bioprinting: exploring technological trends, bioinks and achieved resolutions. Bioprinting 44:e00376. https://doi.org/10.1016/j.bprint.2024.e00376
Huang G, Zhao Y, Chen D, Wei L, Hu Z, Li J et al (2024) Applications, advancements, and challenges of 3D bioprinting in organ transplantation. Biomater Sci 12:1425–48. https://doi.org/10.1039/D3BM01934A
Liu N, Zhang X, Guo Q, Wu T, Wang Y, Frontiers (2022) 3D bioprinted scaffolds for tissue repair and regeneration. Front Mater. https://doi.org/10.3389/fmats.2022.925321
Pathak K, Saikia R, Das A, Das D, Islam MA, Pramanik P et al (2023) 3D printing in biomedicine: advancing personalized care through additive manufacturing. Explor Med Open Explor 4:1135–1167. https://doi.org/10.37349/emed.2023.00200
Hydrogel-mediated extracellular vesicles for enhanced wound healing: the latest progress, and their prospects for 3D bioprinting | Journal of Nanobiotechnology | Full Text [Internet]. [cited 2025 Aug 10]. https://doi.org/10.1186/s12951-024-02315-9. Accessed 10 Aug 2025
Zhou X, Luo Y, Gao Y, Ma J, Lin C, Zhou X et al (2024) Development and application of a mechanical arm-based in situ 3D bioprinting method for the repair of skin wounds. Discov Appl Sci 6:438. https://doi.org/10.1007/s42452-024-06043-5
Fabrication of SA/Gel/ C scaffold with 3D bioprinting to generate micro-nano porosity structure for skin wound healing: a detailed animal in vivo study | Cell Regeneration | Full Text [Internet]. [cited 2025 Aug 10]. https://doi.org/10.1186/s13619-022-00113-y. Accessed 10 Aug 2025
Immunology of Acute and Chronic Wound Healing [Internet]. [cited 2025 Aug 10]. https://www.mdpi.com/2218-273X/11/5/700. Accessed 10 Aug 2025
Fernández-Guarino M, Hernández-Bule ML, Bacci S, Multidisciplinary Digital Publishing Institute (2023) Cellular and molecular processes in wound healing. Biomedicines 11:2526. https://doi.org/10.3390/biomedicines11092526
Etulain J (2018) Platelets in wound healing and regenerative medicine. Platelets Taylor Francis 29:556–568. https://doi.org/10.1080/09537104.2018.1430357
Effect of 1-MHz ultrasound on the proinflammatory interleukin-6 secretion in human keratinocytes | Scientific Reports [Internet]. [cited 2025 Aug 10]. https://www.nature.com/articles/s41598-021-98141-2. Accessed 10 Aug 2025
Holjencin C, Jakymiw A (2022) MicroRNAs and their big therapeutic impacts: delivery strategies for cancer intervention. Cells 11:2332. https://doi.org/10.3390/cells11152332
The Role of MicroRNA-206 in the Regulation of Diabetic Wound Healing via Hypoxia-Inducible Factor 1-Alpha | Biochemical Genetics [Internet]. [cited 2025 Aug 10]. https://link.springer.com/article/https://doi.org/10.1007/s10528-024-10759-9. Accessed 10 Aug 2025
Ozdemir D, Feinberg MW (2019) MicroRNAs in diabetic wound healing: pathophysiology and therapeutic opportunities. Trends Cardiovasc Med 29:131–137. https://doi.org/10.1016/j.tcm.2018.08.002
Li H, Jing S, Xu H (2023) Effect and mechanism of MicroRNAs on various diabetic wound local cells. J Diabetes 15:955–967. https://doi.org/10.1111/1753-0407.13474
Berger AG, Deiss-Yehiely E, Vo C, McCoy MG, Almofty S, Feinberg MW et al (2023) Electrostatically assembled wound dressings deliver pro-angiogenic anti-miRs preferentially to endothelial cells. Biomaterials 300:122188. https://doi.org/10.1016/j.biomaterials.2023.122188
Capturing the RNA castle Exploiting MicroRNA inhibition for wound healing - Bibby – 2022 - The FEBS Journal - Wiley Online Library [Internet]. [cited 2025 Aug 10]. https://doi.org/10.1111/febs.16160. Accessed 10 Aug 2025
Towards microRNA-based therapeutics for diabetic nephropathy | Diabetologia [Internet]. [cited 2025 Aug 10]. https://link.springer.com/article/10.1007/s00125-012-2768-x. Accessed 10 Aug 2025
Azari Z, Nazarnezhad S, Webster TJ, Hoseini SJ, Brouki Milan P, Baino F et al (2022) Stem cell-mediated angiogenesis in skin tissue engineering and wound healing. Wound Repair Regen 30:421–35. https://doi.org/10.1111/wrr.13033
Li M, Liu Y, Gong Y, Yan X, Wang L, Zheng W, et al (2023) Recent advances in nanoantibiotics against multidrug-resistant bacteria. Nanoscale Adv 5:6278–317. https://doi.org/10.1039/D3NA00530E
Mullin JA, Rahmani E, Kiick KL, Sullivan MO (2023) Growth factors and growth factor gene therapies for treating chronic wounds. Bioeng Transl Med 9:e10642. https://doi.org/10.1002/btm2.10642
Wang Y, Shao T, Wang J, Huang X, Deng X, Cao Y et al (2021) An update on potential biomarkers for diagnosing diabetic foot ulcer at early stage. Biomed Pharmacother 133:110991. https://doi.org/10.1016/j.biopha.2020.110991
Xin X, Zhou H, Huang S, Zhang W, Xu J, Wang W et al (2025) Identification of biomarkers and potential drug targets in DFU based on fundamental experiments and multi-omics joint analysis. Front Pharmacol 16:1561179. https://doi.org/10.3389/fphar.2025.1561179
Wang J, Zhou Y, Li Y, Xu Y, Liu G, Lu Z (2020) Extensive serum biomarker analysis before and after treatment in healing of diabetic foot ulcers using a cytokine antibody array. Cytokine 133:155173. https://doi.org/10.1016/j.cyto.2020.155173
Kirsner RS, Pastar I, Krambrink A, Lev-Tov H, Burgess JL, Kolenic G et al (2025) Evaluation of c‐Myc and Phosphorylated Glucocorticoid Receptor (p‐GR) for predicting diabetic foot ulcer healing—a diabetic foot consortium study. Wound Repair Regen 33:e70044. https://doi.org/10.1111/wrr.70044
Rusling JF, Forster RJ (2021) Biosensors designed for clinical applications. Biomedicines 9:702. https://doi.org/10.3390/biomedicines9070702
Mehrotra P (2016) Biosensors and their applications – a review. J Oral Biol Craniofac Res 6:153–159. https://doi.org/10.1016/j.jobcr.2015.12.002
Hemdan M, Ali MA, Doghish AS, Mageed SSA, Elazab IM, Khalil MM et al (2024) Innovations in biosensor technologies for healthcare diagnostics and therapeutic drug monitoring: applications, recent progress, and future research challenges. Sensors 24:5143. https://doi.org/10.3390/s24165143
Ren Y, Wang H, Song X, Wu Y, Lyu Y, Zeng W (2024) Advancements in diabetic foot insoles: a comprehensive review of design, manufacturing, and performance evaluation. Front Bioeng Biotechnol 12:1394758. https://doi.org/10.3389/fbioe.2024.1394758
Littman AJ, Timmons AK, Korpak A, Chan KCG, Jones KT, Shirley S et al (2024) Remote foot temperature monitoring among veterans: large observational study of noncompliance and its correlates. JMIR Diabetes 9:e53083. https://doi.org/10.2196/53083
Jones P, Bibb R, Davies M, Khunti K, McCarthy M, Webb D et al (2019) Prediction of diabetic foot ulceration: the value of using microclimate sensor arrays. J Diabetes Sci Technol 14:55–64. https://doi.org/10.1177/1932296819877194
Sousa LB, Almeida I, Bernardes RA, Leite TR, Negrão R, Apóstolo J et al (2023) A three step protocol for the development of an innovative footwear (shoe and sensor based insole) to prevent diabetic foot ulceration. Front Public Health 11:1061383. https://doi.org/10.3389/fpubh.2023.1061383
Byeon H (2025) Future of diabetic foot risk: unveiling predictive continuous glucose monitoring biomarkers. World J Diabetes 16:107006. https://doi.org/10.4239/wjd.v16.i6.107006
Xia Y, Wu P, Chen H, Chen Z (2024) Advances in stem cell therapy for diabetic foot. Front Genet. https://doi.org/10.3389/fgene.2024.1427205
Shi S, Hu L, Hu D, Ou X, Huang Y (2024) Emerging nanotherapeutic approaches for diabetic wound healing. Int J Nanomed 19:8815–8830. https://doi.org/10.2147/IJN.S476006
Cerium oxide nanoparticles in wound care: a review of mechanisms and therapeutic applications - PMC [Internet]. [cited 2025 Aug 10]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11145637/. Accessed 10 Aug 2025
Britton D, Almanzar D, Xiao Y, Shih H-W, Legocki J, Rabbani P et al (2024) Exosome loaded protein hydrogel for enhanced gelation kinetics and wound healing. ACS Appl Bio Mater 7:5992–6000. https://doi.org/10.1021/acsabm.4c00569
Volarevic V, Markovic BS, Gazdic M, Volarevic A, Jovicic N, Arsenijevic N et al (2018) Ethical and safety issues of stem cell-based therapy. Int J Med Sci 15:36–45. https://doi.org/10.7150/ijms.21666
Biofilm formation and antibiogram profile of bacteria from infected wounds in a general hospital in southern Ethiopia | Scientific Reports [Internet]. [cited 2025 Aug 10]. https://www.nature.com/articles/s41598-024-78283-9. Accessed 10 Aug 2025
Van Netten JJ, Woodburn J, Bus SA (2020) The future for diabetic foot ulcer prevention: a paradigm shift from stratified healthcare towards personalized medicine. Diabetes Metab Res Rev 36(1):e3234. https://doi.org/10.1002/dmrr.3234
Huang C, Yuan W, Chen J, Wu L-P, You T (2023) Construction of smart biomaterials for promoting diabetic wound healing. Molecules 28:1110. https://doi.org/10.3390/molecules28031110
Scaffold-based delivery of mesenchymal stromal cells to diabetic wounds | Stem Cell Research & Therapy | Full Text [Internet]. [cited 2025 Aug 10]. https://stemcellres.biomedcentral.com/articles/https://doi.org/10.1186/s13287-022-03115-4. Accessed 10 Aug 2025
Kamal R, Awasthi A, Pundir M, Thakur S (2024) Healing the diabetic wound: unlocking the secrets of genes and pathways. Eur J Pharmacol 975:176645. https://doi.org/10.1016/j.ejphar.2024.176645
Afonso AC, Oliveira D, Saavedra MJ, Borges A, Simões M (2021) Biofilms in diabetic foot ulcers: impact, risk factors and control strategies. Int J Mol Sci 22:8278. https://doi.org/10.3390/ijms22158278
Zielińska M, Pawłowska A, Orzeł A, Sulej L, Muzyka-Placzyńska K, Baran A et al (2023) Wound microbiota and its impact on wound healing. Int J Mol Sci 24:17318. https://doi.org/10.3390/ijms242417318
Acknowledgements
The authors acknowledge the JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, India, for providing the necessary research facilities, infrastructure, academic support, and JSSAHER Research Grant (JSSAHER/REG/RES/URG/54/2023-24).
Author information
Authors and Affiliations
Contributions
Swati Swagatika Swain: Wring original draft. Data curation, Formal analysis. Veera Venkata Satyanarayana Reddy Karri: Conceptualization, Writing, Reviewing, and Editing, Supervision, Md Ekhtiar Uddin: Writing, Reviewing, and Editing, Kuppuswamy Gowthamarajan: Reviewing and Editing. Manimaran B: Reviewing and Editing. Vetriselvan Subramaniyan: Reviewing and Editing.
Corresponding author
Ethics declarations
Conflict of interest
The Authors declare that no conflict of this study.
Additional information
Communicated by Salvatore Corrao, M.D.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Swain, S.S., Karri, V.V.S.R., Uddin, M.E. et al. Advances in diabetic wound healing: from pathophysiology to emerging therapies. Acta Diabetol (2025). https://doi.org/10.1007/s00592-025-02629-6
Received:
Accepted:
Published:
Version of record:
DOI: https://doi.org/10.1007/s00592-025-02629-6

