Skip to main content
Log in

Advances in diabetic wound healing: from pathophysiology to emerging therapies

  • Review Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Diabetic wounds (DWs), particularly those affecting the lower extremities, represent a significant clinical challenge due to their chronic nature and high risk of complications, including infection and amputation. Despite advances in diabetes management, conventional wound care strategies often fail to achieve satisfactory healing outcomes, largely due to the complex pathophysiology of DWs, are involving impaired angiogenesis, chronic inflammation, and compromised immune responses. The data on the conventional and emerging therapies used in the management of DWs were searched using PubMed, Scopus, and Web of Science databases to locate literature published. Studies have shown that conventional wound care interventions like debridement, dressing, and infection control mostly provide symptomatic treatment without eliminating underlying cellular and molecular diabetic wound pathophysiology. Recent years have witnessed the emergence of novel therapeutic approaches, including stem cell therapy, gene therapy, nanotechnology-based interventions, and tissue engineering. These strategies improve angiogenesis, alter the polarization of macrophages, and stimulate tissue repair, which can offer new hope for enhancing wound healing in diabetic patients. This review synthesizes current literature on the pathophysiology of diabetic wound healing, evaluates the limitations of traditional therapies, and provides a comprehensive overview of cutting-edge treatments that holds an effective diabetic wound management.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

DWs:

Diabetic wounds

DFUs:

Diabetic foot ulcers

AGEs:

Advanced glycation end products

ROS:

Reactive oxygen species

NO:

Nitric oxide

TNF:

Tumor necrosis factor

IL:

Interleukin

VEGF:

Vascular endothelial growth factor

PDGF:

Platelet-derived growth factor

EGF:

Epidermal growth factor

KGF:

Keratinocyte growth factor

TGF-1:

Transforming growth factor beta 1

IGF-1:

Insulin growth factor-1

FGF:

Fibroblast growth factor

ECM:

Extracellular matrix tissue

MSCs:

Mesenchymal stem cells

ESCs:

Embryonic stem cells

EBB:

Extrusion-based bioprinting

ILM:

Insulin-loaded micelles

MiRNAs:

Micro RNA

CRP:

C-Reactive protein

References

  1. Hossain MdJ, Al-Mamun Md, Islam MdR (2024) Diabetes mellitus, the fastest growing global public health concern: early detection should be focused. Health Sci Rep 7:e2004. https://doi.org/10.1002/hsr2.2004

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB et al (2022) IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract 183:109119. https://doi.org/10.1016/j.diabres.2021.109119

    Article  PubMed  Google Scholar 

  3. Burgess JL, Wyant WA, Abdo Abujamra B, Kirsner RS, Jozic I (2021) Diabetic wound-healing science. Med (Kaunas) 57:1072. https://doi.org/10.3390/medicina57101072

    Article  Google Scholar 

  4. Kim J (2023) The pathophysiology of diabetic foot: a narrative review. JYMS J Yeungnam Med Sci 40:328–334. https://doi.org/10.12701/jyms.2023.00731

    Article  CAS  PubMed  Google Scholar 

  5. Dawi J, Tumanyan K, Tomas K, Misakyan Y, Gargaloyan A, Gonzalez E et al (2025) Diabetic foot ulcers: pathophysiology, immune dysregulation, and emerging therapeutic strategies. Biomedicines 13:1076. https://doi.org/10.3390/biomedicines13051076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Veith AP, Henderson K, Spencer A, Sligar AD, Baker AB (2019) Therapeutic strategies for enhancing angiogenesis in wound healing. Adv Drug Deliv Rev 146:97–125. https://doi.org/10.1016/j.addr.2018.09.010

    Article  CAS  PubMed  Google Scholar 

  7. Okonkwo UA, DiPietro LA, Multidisciplinary Digital Publishing Institute (2017) Diabetes and wound angiogenesis. Int J Mol Sci 18:1419. https://doi.org/10.3390/ijms18071419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Frykberg RG, Banks J (2015) Challenges in the treatment of chronic wounds. Adv Wound Care (New Rochelle) 4:560–582. https://doi.org/10.1089/wound.2015.0635

    Article  PubMed  Google Scholar 

  9. Kolimi P, Narala S, Nyavanandi D, Youssef AAA, Dudhipala N (2022) Innovative treatment strategies to accelerate wound healing: trajectory and recent advancements. Cells 11:2439. https://doi.org/10.3390/cells11152439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Frontiers (2025) | Advances in regenerative medicine-based approaches for skin regeneration and rejuvenation [Internet]. [cited 2025 Aug 10]. https://www.frontiersin.org/journals/bioengineering-and-biotechnology/articles/10.3389/fbioe.1527854/full. Accessed 10 Aug 2025

  11. Baydar SY, Ay HF, Cakir R (2024) Frontiers of stem cell engineering for nanotechnology-mediated drug delivery systems. ADMET DMPK 12:225–237. https://doi.org/10.5599/admet.2160

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rasekh M, Arshad MS, Ahmad Z (2025) Advances in drug delivery integrated with regenerative medicine: innovations, challenges, and future frontiers. Pharmaceutics 17:456. https://doi.org/10.3390/pharmaceutics17040456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nanotechnology-Driven Therapeutic Interventions in Wound Healing Potential Uses and Applications | ACS Central Science [Internet]. [cited 2025 Aug 10]. https://pubs.acs.org/doi/https://doi.org/10.1021/acscentsci.6b00371. Accessed 10 Aug 2025

  14. Gonzalez ACdeO, Costa TF, Andrade ZdeA, Medrado ARAP (2016) Wound healing - a literature review. An Bras Dermatol 91:614–20. https://doi.org/10.1590/abd1806-4841.20164741

    Article  PubMed  PubMed Central  Google Scholar 

  15. Eming SA, Krieg T, Davidson JM (2007) Inflammation in wound repair: molecular and cellular mechanisms. J Invest Dermatol 127:514–525. https://doi.org/10.1038/sj.jid.5700701

    Article  CAS  PubMed  Google Scholar 

  16. Landén NX, Li D, Ståhle M (2016) Transition from inflammation to proliferation: a critical step during wound healing. Cell Mol Life Sci 73:3861–3885. https://doi.org/10.1007/s00018-016-2268-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Role of fibroblasts in wound healing and tissue remodeling on Earth and in space - PMC [Internet] [cited 2025 Aug 10]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9578548/. Accessed 10 Aug 2025

  18. Gajbhiye S, Wairkar S (2022) Collagen fabricated delivery systems for wound healing: a new roadmap. Biomater Adv 142:213152. https://doi.org/10.1016/j.bioadv.2022.213152

    Article  CAS  PubMed  Google Scholar 

  19. Plikus MV, Wang X, Sinha S, Forte E, Thompson SM, Herzog EL et al (2021) Fibroblasts: origins, definitions, and functions in health and disease. Cell 184:3852–3872. https://doi.org/10.1016/j.cell.2021.06.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Patel S, Srivastava S, Singh MR, Singh D (2019) Mechanistic insight into diabetic wounds: pathogenesis, molecular targets and treatment strategies to pace wound healing. Biomed Pharmacother 112:108615. https://doi.org/10.1016/j.biopha.2019.108615

    Article  CAS  PubMed  Google Scholar 

  21. Jhamb S, Vangaveti VN, Malabu UH (2016) Genetic and molecular basis of diabetic foot ulcers: clinical review. J Tissue Viability 25:229–236. https://doi.org/10.1016/j.jtv.2016.06.005

    Article  PubMed  Google Scholar 

  22. Perez-Zabala E, Basterretxea A, Larrazabal A, Perez-del-Pecho K, Rubio-Azpeitia E, Andia I (2016) Biological approach for the management of non-healing diabetic foot ulcers. J Tissue Viability 25:157–163. https://doi.org/10.1016/j.jtv.2016.03.003

    Article  PubMed  Google Scholar 

  23. Chen C, Zhang J-Q, Li L, Guo M, He Y, Dong Y et al (2022) Advanced glycation end products in the skin: molecular mechanisms, methods of measurement, and inhibitory pathways. Front Med Lausanne 9:837222. https://doi.org/10.3389/fmed.2022.837222

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rademakers T, Horvath JM, van Blitterswijk CA, LaPointe VLS (2019) Oxygen and nutrient delivery in tissue engineering: approaches to graft vascularization. J Tissue Eng Regen Med 13:1815–1829. https://doi.org/10.1002/term.2932

    Article  CAS  PubMed  Google Scholar 

  25. Dasari N, Jiang A, Skochdopole A, Chung J, Reece EM, Vorstenbosch J et al (2021) Updates in diabetic wound healing, inflammation, and scarring. Semin Plast Surg 35:153–158. https://doi.org/10.1055/s-0041-1731460

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lin S, Wang Q, Huang X, Feng J, Wang Y, Shao T et al (2023) Wounds under diabetic milieu: the role of immune cellar components and signaling pathways. Biomed Pharmacother 157:114052. https://doi.org/10.1016/j.biopha.2022.114052

    Article  CAS  PubMed  Google Scholar 

  27. Soares CLR, Wilairatana P, Silva LR, Moreira PS, Vilar Barbosa NMM, da Silva PR et al (2023) Biochemical aspects of the inflammatory process: a narrative review. Biomed Pharmacother 168:115764. https://doi.org/10.1016/j.biopha.2023.115764

    Article  CAS  PubMed  Google Scholar 

  28. Diabetic vascular diseases molecular mechanisms and therapeutic strategies | Signal Transduction and Targeted Therapy [Internet]. [cited 2025 Aug 10]. https://www.nature.com/articles/s41392-023-01400-z. Accessed 10 Aug 2025

  29. Johnson KE, Wilgus TA (2014) Vascular endothelial growth factor and angiogenesis in the regulation of cutaneous wound repair. Adv Wound Care (New Rochelle) 3:647–661. https://doi.org/10.1089/wound.2013.0517

    Article  PubMed  PubMed Central  Google Scholar 

  30. Apte RS, Chen DS, Ferrara N (2019) VEGF in signaling and disease: beyond discovery and development. Cell 176:1248–1264. https://doi.org/10.1016/j.cell.2019.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Citrin KM, Chaube B, Fernández-Hernando C, Suárez Y (2025) Intracellular endothelial cell metabolism in vascular function and dysfunction. Trends Endocrinol Metab 36:744–755. https://doi.org/10.1016/j.tem.2024.11.004

    Article  CAS  PubMed  Google Scholar 

  32. Chronic wounds Treatment consensus - Eriksson – 2022 - Wound Repair and Regeneration - Wiley Online Library [Internet]. [cited 2025 Aug 10]. https://doi.org/10.1111/wrr.12994. Accessed 10 Aug 2025

  33. Current Status and Principles for the Treatment and Prevention of Diabetic Foot Ulcers in the Cardiovascular Patient Population A Scientific Statement From the American Heart Association | Circulation [Internet]. [cited 2025 Aug 10]. https://doi.org/10.1161/CIR.0000000000001192. Accessed 10 Aug 2025

  34. Thomas DC, Tsu CL, Nain RA, Arsat N, Fun SS, Sahid Nik Lah NA (2021) The role of debridement in wound bed preparation in chronic wound: a narrative review. Ann Med Surg (Lond) 71:102876. https://doi.org/10.1016/j.amsu.2021.102876

    Article  PubMed  Google Scholar 

  35. Spampinato SF, Caruso GI, De Pasquale R, Sortino MA, Merlo S (2020) The treatment of impaired wound healing in diabetes: looking among old drugs. Pharmaceuticals (Basel) 13:60. https://doi.org/10.3390/ph13040060

    Article  CAS  PubMed  Google Scholar 

  36. Jiang Y, Zhang Q, Wang H, Välimäki M, Zhou Q, Dai W et al (2024) Effectiveness of silver and iodine dressings on wound healing: a systematic review and meta-analysis. BMJ Open 14:e077902. https://doi.org/10.1136/bmjopen-2023-077902

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bigliardi PL, Alsagoff SAL, El-Kafrawi HY, Pyon J-K, Wa CTC, Villa MA (2017) Povidone iodine in wound healing: a review of current concepts and practices. Int J Surg 44:260–268. https://doi.org/10.1016/j.ijsu.2017.06.073

    Article  PubMed  Google Scholar 

  38. Nešporová K, Pavlík V, Šafránková B, Vágnerová H, Odráška P, Žídek O, et al (2020) Effects of wound dressings containing silver on skin and immune cells. Sci Rep 10:15216. https://doi.org/10.1038/s41598-020-72249-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ma Z, Li Z, Shou K, Jian C, Li P, Niu Y et al (2017) Negative pressure wound therapy: regulating blood flow perfusion and microvessel maturation through microvascular pericytes. Int J Mol Med 40:1415–25. https://doi.org/10.3892/ijmm.2017.3131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Guo Q (2025) Comparison and evaluation of negative pressure wound therapy versus standard wound care in the treatment of diabetic foot ulcers. BMC Surg 25:208. https://doi.org/10.1186/s12893-025-02885-x

    Article  PubMed  PubMed Central  Google Scholar 

  41. Li H-Z, Xu X-H, Wang D-W, Lin Y-M, Lin N, Lu H-D (2019) Negative pressure wound therapy for surgical site infections: a systematic review and meta-analysis of randomized controlled trials. Clin Microbiol Infect 25:1328–1338. https://doi.org/10.1016/j.cmi.2019.06.005

    Article  PubMed  Google Scholar 

  42. Comparison of Negative Pressure Wound Therapy Systems and Conventional Non-Pressure Dressings on Surgical Site Infection Rate After Stoma Reversal Systematic Review and Meta-Analysis of Randomized Controlled Trials [Internet]. [cited 2025 Aug 10]. https://www.mdpi.com/2077-0383/14/5/1654. Accessed 10 Aug 2025

  43. Nuutila K, Eriksson E (2021) Moist wound healing with commonly available dressings. Adv Wound Care (New Rochelle) 10:685–698. https://doi.org/10.1089/wound.2020.1232

    Article  PubMed  Google Scholar 

  44. Xue Y, Zhou J, Lu Y, Zhang H, Chen B, Dong S et al (2025) Advancements in wound management: microenvironment-sensitive bioactive dressings with on-demand regulations for diabetic wounds. Engineering 48:234–261. https://doi.org/10.1016/j.eng.2025.01.018

    Article  CAS  Google Scholar 

  45. Silk Fibroin Nanofibers Advancements in Bioactive Dressings through Electrospinning Technology for Diabetic Wound Healing [Internet]. [cited 2025 Aug 10]. https://www.mdpi.com/1424-8247/17/10/1305. Accessed 10 Aug 2025

  46. (PDF) A Comprehensive Review on Wound Dressings and Their Comparative Effectiveness on Healing of Contaminated Wounds and Ulcers [Internet]. [cited 2025 Aug 10]. https://www.researchgate.net/publication/359931469_A_Comprehensive_Review_on_Wound_Dressings_and_Their_Comparative_Effectiveness_on_Healing_of_Contaminated_Wounds_and_Ulcers. Accessed 10 Aug 2025

  47. Moradifar F, Sepahdoost N, Tavakoli P, Mirzapoor A (2025) Multi-functional dressings for recovery and screenable treatment of wounds: a review. Heliyon 11:e41465. https://doi.org/10.1016/j.heliyon.2024.e41465

    Article  CAS  PubMed  Google Scholar 

  48. Minh Nguyen H, Le TTN, Thanh Nguyen A, Le HNT, Tan Pham T (2023) Biomedical materials for wound dressing: recent advances and applications. Royal Soc Chem. https://doi.org/10.1039/D2RA07673J

  49. Rezvani Ghomi E, Khalili S, Nouri Khorasani S, Esmaeely Neisiany R, Ramakrishna S (2019) Wound dressings: current advances and future directions. J Appl Polym Sci 136:47738. https://doi.org/10.1002/app.47738

    Article  CAS  Google Scholar 

  50. Alberts A, Tudorache D-I, Niculescu A-G, Grumezescu AM (2025) Advancements in wound dressing materials: highlighting recent progress in hydrogels, foams, and antimicrobial dressings. Gels 11:123. https://doi.org/10.3390/gels11020123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gupta A, Briffa SM, Swingler S, Gibson H, Kannappan V, Adamus G et al (2020) Synthesis of silver nanoparticles using curcumin-cyclodextrins loaded into bacterial cellulose-based hydrogels for wound dressing applications. Biomacromolecules 21:1802. https://doi.org/10.1021/acs.biomac.9b01724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Alencar-Silva T, Díaz-Martín RD, Sousa Dos Santos M, Saraiva RVP, Leite ML, de Oliveira Rodrigues MT et al (2024) Screening of the skin-regenerative potential of antimicrobial peptides: clavanin A, clavanin-MO, and mastoparan-MO. Int J Mol Sci 25:6851. https://doi.org/10.3390/ijms25136851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Anderi R, Makdissy N, Azar A, Rizk F, Hamade A (2018) Cellular therapy with human autologous adipose-derived adult cells of stromal vascular fraction for alopecia areata. Stem Cell Res Ther 9:141. https://doi.org/10.1186/s13287-018-0889-y

    Article  PubMed  PubMed Central  Google Scholar 

  54. Shimizu Y, Ntege EH, Sunami H (2022) Current regenerative medicine-based approaches for skin regeneration: a review of literature and a report on clinical applications in Japan. Regen Ther 21:73–80. https://doi.org/10.1016/j.reth.2022.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mahajan N, Soker S, Murphy SV (2024) Regenerative medicine approaches for skin wound healing: from allografts to engineered skin substitutes. Curr Transpl Rep 11:207–221. https://doi.org/10.1007/s40472-024-00453-5

    Article  Google Scholar 

  56. Diller RB, Tabor AJ (2022) The role of the extracellular matrix (ECM) in wound healing: a review. Biomimetics 7:87. https://doi.org/10.3390/biomimetics7030087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ho J, Yue D, Cheema U, Hsia HC, Dardik A (2023) Innovations in stem cell therapy for diabetic wound healing. Adv Wound Care (New Rochelle) 12:626–643. https://doi.org/10.1089/wound.2021.0104

    Article  PubMed  Google Scholar 

  58. Gopalarethinam J, Nair AP, Iyer M, Vellingiri B, Subramaniam MD (2023) Advantages of mesenchymal stem cell over the other stem cells. Acta Histochem 125:152041. https://doi.org/10.1016/j.acthis.2023.152041

    Article  CAS  PubMed  Google Scholar 

  59. Clinical application of mesenchymal stem cell in regenerative medicine: a narrative review | Stem Cell Research & Therapy | Full Text [Internet]. [cited 2025 Aug 10]. https://doi.org/10.1186/s13287-022-03054-0. Accessed 10 Aug 2025

  60. Induced Mesenchymal Stem Cells An Emerging Source for Regenerative Medicine Applications [Internet]. [cited 2025 Aug 10]. https://www.mdpi.com/2077-0383/14/6/2053. Accessed 10 Aug 2025

  61. Translational potential of mesenchymal stem cells in regenerative therapies for human diseases: challenges and opportunities | Stem Cell Research & Therapy | Full Text [Internet]. [cited 2025 Aug 10]. https://doi.org/10.1186/s13287-024-03885-z. Accessed 10 Aug 2025

  62. Xu P, Wu Y, Zhou L, Yang Z, Zhang X, Hu X et al (2020) Platelet-rich plasma accelerates skin wound healing by promoting re-epithelialization. Burns Trauma 8:tkaa028. https://doi.org/10.1093/burnst/tkaa028

    Article  PubMed  PubMed Central  Google Scholar 

  63. Chicharro-Alcántara D, Rubio-Zaragoza M, Damiá-Giménez E, Carrillo-Poveda JM, Cuervo-Serrato B, Peláez-Gorrea P et al (2018) Platelet rich plasma: new insights for cutaneous wound healing management. J Funct Biomater 9:10. https://doi.org/10.3390/jfb9010010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Patil P, Jadhav M, Suvvari TK, Thomas V (2024) Therapeutic uses of platelet-rich plasma (PRP) in sport injuries – a narrative review. J Orthop Rep 3:100287. https://doi.org/10.1016/j.jorep.2023.100287

    Article  Google Scholar 

  65. Platelet-rich plasma a comparative and economical therapy for wound healing and tissue regeneration | Cell and Tissue Banking [Internet]. [cited 2025 Aug 10]. https://doi.org/10.1007/s10561-022-10039-z. Accessed 10 Aug 2025

  66. Platelet-Rich Plasma (PRP) Based on Simple and Efficient Integrated Preparation Precises Quantitatively for Skin Wound Repair [Internet]. [cited 2025 Aug 10]. https://www.mdpi.com/1422-0067/25/17/9340. Accessed 10 Aug 2025

  67. Zhang Y, Wang Z-L, Deng Z-P, Wang Z-L, Song F, Zhu L-L (2022) Emerging delivery strategies of platelet-rich plasma with hydrogels for wound healing. Adv Polym Technol 2022:5446291. https://doi.org/10.1155/2022/5446291

    Article  CAS  Google Scholar 

  68. do Amaral RJFC, Zayed NMA, Pascu EI, Cavanagh B, Hobbs C, Santarella F et al (2019) Functionalising collagen-based scaffolds with platelet-rich plasma for enhanced skin wound healing potential. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2019.00371

    Article  PubMed  PubMed Central  Google Scholar 

  69. Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH et al (2018) Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist 11:1645–1658. https://doi.org/10.2147/IDR.S173867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Huang R, Hu J, Qian W, Chen L, Zhang D (2021) Recent advances in nanotherapeutics for the treatment of burn wounds. Burns Trauma 9:tkab026. https://doi.org/10.1093/burnst/tkab026

    Article  PubMed  PubMed Central  Google Scholar 

  71. Ali N, Arshad R, kousar S, Aman W, Ahmad W, Azeem M et al (2025) Advanced wound healing: the synergy of nature and nanotechnology. J Drug Deliv Sci Technol 105:106579. https://doi.org/10.1016/j.jddst.2024.106579

    Article  CAS  Google Scholar 

  72. Keskin D, Zu G, Forson AM, Tromp L, Sjollema J, van Rijn P (2021) Nanogels: a novel approach in antimicrobial delivery systems and antimicrobial coatings. Bioact Mater 6:3634–57. https://doi.org/10.1016/j.bioactmat.2021.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nanotechnology’s frontier in combatting infectious and inflammatory diseases: prevention and treatment | Signal Transduction and Targeted Therapy [Internet]. [cited 2025 Aug 10]. https://www.nature.com/articles/s41392-024-01745-z. Accessed 10 Aug 2025

  74. Sharda D, Kaur P, Choudhury D (2023) Protein-modified nanomaterials: emerging trends in skin wound healing. Discover Nano 18:127. https://doi.org/10.1186/s11671-023-03903-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Fahimirad S, Fattahi F, Hatami M, Shabani S, Ghorbanpour M (2025) Nanotechnology-based biotherapeutics for physiological wound healing phases. Ind Crops Prod 226:120608. https://doi.org/10.1016/j.indcrop.2025.120608

    Article  CAS  Google Scholar 

  76. Motsoene F, Abrahamse H, Dhilip Kumar SS (2023) Multifunctional lipid-based nanoparticles for wound healing and antibacterial applications: a review. Adv Colloid Interface Sci 321:103002. https://doi.org/10.1016/j.cis.2023.103002

    Article  CAS  PubMed  Google Scholar 

  77. Yadavalli T, Shukla D (2017) Role of metal and metal oxide nanoparticles as diagnostic and therapeutic tools for highly prevalent viral infections. Nanomedicine 13:219–230. https://doi.org/10.1016/j.nano.2016.08.016

    Article  CAS  PubMed  Google Scholar 

  78. Medic BS, Tomic N, Lagopati N, Gazouli M, Pojskic L (2024) Advances in metal and metal oxide nanomaterials for topical antimicrobial applications: insights and future perspectives. Molecules 29:5551. https://doi.org/10.3390/molecules29235551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pure and multi metal oxide nanoparticles: synthesis, antibacterial and cytotoxic properties | Journal of Nanobiotechnology | Full Text [Internet]. [cited 2025 Aug 10]. https://doi.org/10.1186/s12951-016-0225-6. Accessed 10 Aug 2025

  80. Mao W, Yoo HS (2024) Inorganic nanoparticle functionalization strategies in immunotherapeutic applications. Biomater Res 28:0086. https://doi.org/10.34133/bmr.0086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mahmoud NN, Hamad K, Al Shibitini A, Juma S, Sharifi S, Gould L et al (2024) Investigating inflammatory markers in wound healing: understanding implications and identifying artifacts. ACS Pharmacol Transl Sci 7:18–27. https://doi.org/10.1021/acsptsci.3c00336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Aljabali AA, Obeid MA, Bashatwah RM, Serrano-Aroca Á, Mishra V, Mishra Y et al (2023) Nanomaterials and their impact on the immune system. Int J Mol Sci 24:2008. https://doi.org/10.3390/ijms24032008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hetta HF, Ramadan YN, Al-Harbi AI, Ahmed A, Battah E, Abd Ellah B (2023) Nanotechnology as a promising approach to combat multidrug resistant bacteria: a comprehensive review and future perspectives. Biomedicines 11:413. https://doi.org/10.3390/biomedicines11020413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Alotaibi BS, Khan AK, Kharaba Z, Yasin H, Yasmin R, Ijaz M et al (2024) Development of Poly(vinyl alcohol)–Chitosan composite nanofibers for dual drug therapy of wounds. ACS Omega Am Chem Soc 9:12825–12834. https://doi.org/10.1021/acsomega.3c08856

    Article  CAS  Google Scholar 

  85. Froelich A, Jakubowska E, Wojtyłko M, Jadach B, Gackowski M, Gadziński P et al (2023) Alginate-based materials loaded with nanoparticles in wound healing. Pharmaceutics 15:1142. https://doi.org/10.3390/pharmaceutics15041142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sudhakar K, Ji S, min, Kummara MR, Han SS (2022) Recent progress on hyaluronan-based products for wound healing applications. Pharmaceutics 14:2235. https://doi.org/10.3390/pharmaceutics14102235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Silk Fibroin and Its Nanocomposites for Wound Care A Comprehensive Review | ACS Polymers Au [Internet]. [cited 2025 Aug 12]. https://pubs.acs.org/doi/https://doi.org/10.1021/acspolymersau.3c00050. Accessed 12 Aug 2025

  88. Ejiohuo O, Folami SO, Edi D, Isaac J (2024) Polyphenol encapsulated nanofibers in wound healing and drug delivery. Eur J Med Chem Rep 12:100184. https://doi.org/10.1016/j.ejmcr.2024.100184

    Article  CAS  Google Scholar 

  89. Cetin FN, Mignon A, Van Vlierberghe S, Kolouchova K (2025) Polymer- and lipid-based nanostructures serving wound healing applications: a review. Adv Healthc Mater 14:e2402699. https://doi.org/10.1002/adhm.202402699

    Article  CAS  PubMed  Google Scholar 

  90. Electrospun PLGA/PCL Nanofiber Film Loaded with LPA Promotes Full-Layer Wound Healing by Regulating the Keratinocyte Pyroptosis | ACS Applied Materials & Interfaces [Internet]. [cited 2025 Aug 12]. https://doi.org/10.1021/acsami.4c22495. Accessed 12 Aug 2025

  91. Prasai A, Jay JW, Jupiter D, Wolf SE, El Ayadi A (2022) Role of exosomes in dermal wound healing: a systematic review. J Invest Dermatol 142:662-678.e8. https://doi.org/10.1016/j.jid.2021.07.167

    Article  CAS  PubMed  Google Scholar 

  92. Gunasekaran T, Nigusse T, Dhanaraju MD (2012) Silver nanoparticles as real topical bullets for wound healing. J Am Coll Clin Wound Spec 3:82–96. https://doi.org/10.1016/j.jcws.2012.05.001

    Article  PubMed  PubMed Central  Google Scholar 

  93. Moalwi A, Kamat K, Muddapur UM, Aldoah B, AlWadai HH, Alamri AM, et al (2024) Green synthesis of zinc oxide nanoparticles from Wodyetia bifurcata fruit peel extract: multifaceted potential in wound healing, antimicrobial, antioxidant, and anticancer applications. Front Pharmacol. https://doi.org/10.3389/fphar.2024.1435222

    Article  PubMed  PubMed Central  Google Scholar 

  94. Sandoval C, Ríos G, Sepúlveda N, Salvo J, Souza-Mello V, Farías J (2022) Effectiveness of copper nanoparticles in wound healing process using in vivo and in vitro studies: a systematic review. Pharmaceutics 14:1838. https://doi.org/10.3390/pharmaceutics14091838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yi L, Yu L, Chen S, Huang D, Yang C, Deng H et al (2024) The regulatory mechanisms of cerium oxide nanoparticles in oxidative stress and emerging applications in refractory wound care. Front Pharmacol. https://doi.org/10.3389/fphar.2024.1439960

    Article  PubMed  PubMed Central  Google Scholar 

  96. Barjasteh M, Dehnavi SM, Ahmadi Seyedkhani S, Akrami M, Rahimi M (2024) Hybrid nanocomposite wound dressings by a novel nanorod vitamin-B3-Ag metal-organic framework and bacterial cellulose nanofibers. J Drug Deliv Sci Technol 95:105532. https://doi.org/10.1016/j.jddst.2024.105532

    Article  CAS  Google Scholar 

  97. Weng T, Zhang W, Xia Y, Wu P, Yang M, Jin R et al (2021) 3D bioprinting for skin tissue engineering: current status and perspectives. J Tissue Eng 12:20417314211028576. https://doi.org/10.1177/20417314211028574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Deptuła M, Zawrzykraj M, Sawicka J, Banach-Kopeć A, Tylingo R, Pikuła M (2023) Application of 3D- printed hydrogels in wound healing and regenerative medicine. Biomed Pharmacother 167:115416. https://doi.org/10.1016/j.biopha.2023.115416

    Article  CAS  PubMed  Google Scholar 

  99. Abuhamad AY, Masri S, Fadilah NIM, Alamassi MN, Maarof M, Fauzi MB (2024) Application of 3D-printed bioinks in chronic wound healing: a scoping review. Polymers 16:2456. https://doi.org/10.3390/polym16172456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Uchida DT, Bruschi ML (2023) 3D printing as a technological strategy for the personalized treatment of wound healing. AAPS PharmSciTech 24:41. https://doi.org/10.1208/s12249-023-02503-0

    Article  PubMed  Google Scholar 

  101. Advances in Three Dimensional Bioprinting for Wound Healing A Comprehensive Review [Internet]. [cited 2025 Aug 10]. https://www.mdpi.com/2076-3417/13/18/10269. Accessed 10 Aug 2025

  102. Guida L, Cavallaro M, Levi M (2024) Advancements in high-resolution 3D bioprinting: exploring technological trends, bioinks and achieved resolutions. Bioprinting 44:e00376. https://doi.org/10.1016/j.bprint.2024.e00376

    Article  CAS  Google Scholar 

  103. Huang G, Zhao Y, Chen D, Wei L, Hu Z, Li J et al (2024) Applications, advancements, and challenges of 3D bioprinting in organ transplantation. Biomater Sci 12:1425–48. https://doi.org/10.1039/D3BM01934A

    Article  CAS  PubMed  Google Scholar 

  104. Liu N, Zhang X, Guo Q, Wu T, Wang Y, Frontiers (2022) 3D bioprinted scaffolds for tissue repair and regeneration. Front Mater. https://doi.org/10.3389/fmats.2022.925321

    Article  Google Scholar 

  105. Pathak K, Saikia R, Das A, Das D, Islam MA, Pramanik P et al (2023) 3D printing in biomedicine: advancing personalized care through additive manufacturing. Explor Med Open Explor 4:1135–1167. https://doi.org/10.37349/emed.2023.00200

    Article  CAS  Google Scholar 

  106. Hydrogel-mediated extracellular vesicles for enhanced wound healing: the latest progress, and their prospects for 3D bioprinting | Journal of Nanobiotechnology | Full Text [Internet]. [cited 2025 Aug 10]. https://doi.org/10.1186/s12951-024-02315-9. Accessed 10 Aug 2025

  107. Zhou X, Luo Y, Gao Y, Ma J, Lin C, Zhou X et al (2024) Development and application of a mechanical arm-based in situ 3D bioprinting method for the repair of skin wounds. Discov Appl Sci 6:438. https://doi.org/10.1007/s42452-024-06043-5

    Article  Google Scholar 

  108. Fabrication of SA/Gel/ C scaffold with 3D bioprinting to generate micro-nano porosity structure for skin wound healing: a detailed animal in vivo study | Cell Regeneration | Full Text [Internet]. [cited 2025 Aug 10]. https://doi.org/10.1186/s13619-022-00113-y. Accessed 10 Aug 2025

  109. Immunology of Acute and Chronic Wound Healing [Internet]. [cited 2025 Aug 10]. https://www.mdpi.com/2218-273X/11/5/700. Accessed 10 Aug 2025

  110. Fernández-Guarino M, Hernández-Bule ML, Bacci S, Multidisciplinary Digital Publishing Institute (2023) Cellular and molecular processes in wound healing. Biomedicines 11:2526. https://doi.org/10.3390/biomedicines11092526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Etulain J (2018) Platelets in wound healing and regenerative medicine. Platelets Taylor Francis 29:556–568. https://doi.org/10.1080/09537104.2018.1430357

    Article  CAS  Google Scholar 

  112. Effect of 1-MHz ultrasound on the proinflammatory interleukin-6 secretion in human keratinocytes | Scientific Reports [Internet]. [cited 2025 Aug 10]. https://www.nature.com/articles/s41598-021-98141-2. Accessed 10 Aug 2025

  113. Holjencin C, Jakymiw A (2022) MicroRNAs and their big therapeutic impacts: delivery strategies for cancer intervention. Cells 11:2332. https://doi.org/10.3390/cells11152332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. The Role of MicroRNA-206 in the Regulation of Diabetic Wound Healing via Hypoxia-Inducible Factor 1-Alpha | Biochemical Genetics [Internet]. [cited 2025 Aug 10]. https://link.springer.com/article/https://doi.org/10.1007/s10528-024-10759-9. Accessed 10 Aug 2025

  115. Ozdemir D, Feinberg MW (2019) MicroRNAs in diabetic wound healing: pathophysiology and therapeutic opportunities. Trends Cardiovasc Med 29:131–137. https://doi.org/10.1016/j.tcm.2018.08.002

    Article  CAS  PubMed  Google Scholar 

  116. Li H, Jing S, Xu H (2023) Effect and mechanism of MicroRNAs on various diabetic wound local cells. J Diabetes 15:955–967. https://doi.org/10.1111/1753-0407.13474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Berger AG, Deiss-Yehiely E, Vo C, McCoy MG, Almofty S, Feinberg MW et al (2023) Electrostatically assembled wound dressings deliver pro-angiogenic anti-miRs preferentially to endothelial cells. Biomaterials 300:122188. https://doi.org/10.1016/j.biomaterials.2023.122188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Capturing the RNA castle Exploiting MicroRNA inhibition for wound healing - Bibby – 2022 - The FEBS Journal - Wiley Online Library [Internet]. [cited 2025 Aug 10]. https://doi.org/10.1111/febs.16160. Accessed 10 Aug 2025

  119. Towards microRNA-based therapeutics for diabetic nephropathy | Diabetologia [Internet]. [cited 2025 Aug 10]. https://link.springer.com/article/10.1007/s00125-012-2768-x. Accessed 10 Aug 2025

  120. Azari Z, Nazarnezhad S, Webster TJ, Hoseini SJ, Brouki Milan P, Baino F et al (2022) Stem cell-mediated angiogenesis in skin tissue engineering and wound healing. Wound Repair Regen 30:421–35. https://doi.org/10.1111/wrr.13033

    Article  PubMed  PubMed Central  Google Scholar 

  121. Li M, Liu Y, Gong Y, Yan X, Wang L, Zheng W, et al (2023) Recent advances in nanoantibiotics against multidrug-resistant bacteria. Nanoscale Adv 5:6278–317. https://doi.org/10.1039/D3NA00530E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Mullin JA, Rahmani E, Kiick KL, Sullivan MO (2023) Growth factors and growth factor gene therapies for treating chronic wounds. Bioeng Transl Med 9:e10642. https://doi.org/10.1002/btm2.10642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wang Y, Shao T, Wang J, Huang X, Deng X, Cao Y et al (2021) An update on potential biomarkers for diagnosing diabetic foot ulcer at early stage. Biomed Pharmacother 133:110991. https://doi.org/10.1016/j.biopha.2020.110991

    Article  CAS  PubMed  Google Scholar 

  124. Xin X, Zhou H, Huang S, Zhang W, Xu J, Wang W et al (2025) Identification of biomarkers and potential drug targets in DFU based on fundamental experiments and multi-omics joint analysis. Front Pharmacol 16:1561179. https://doi.org/10.3389/fphar.2025.1561179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wang J, Zhou Y, Li Y, Xu Y, Liu G, Lu Z (2020) Extensive serum biomarker analysis before and after treatment in healing of diabetic foot ulcers using a cytokine antibody array. Cytokine 133:155173. https://doi.org/10.1016/j.cyto.2020.155173

    Article  CAS  PubMed  Google Scholar 

  126. Kirsner RS, Pastar I, Krambrink A, Lev-Tov H, Burgess JL, Kolenic G et al (2025) Evaluation of c‐Myc and Phosphorylated Glucocorticoid Receptor (p‐GR) for predicting diabetic foot ulcer healing—a diabetic foot consortium study. Wound Repair Regen 33:e70044. https://doi.org/10.1111/wrr.70044

    Article  PubMed  PubMed Central  Google Scholar 

  127. Rusling JF, Forster RJ (2021) Biosensors designed for clinical applications. Biomedicines 9:702. https://doi.org/10.3390/biomedicines9070702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Mehrotra P (2016) Biosensors and their applications – a review. J Oral Biol Craniofac Res 6:153–159. https://doi.org/10.1016/j.jobcr.2015.12.002

    Article  PubMed  PubMed Central  Google Scholar 

  129. Hemdan M, Ali MA, Doghish AS, Mageed SSA, Elazab IM, Khalil MM et al (2024) Innovations in biosensor technologies for healthcare diagnostics and therapeutic drug monitoring: applications, recent progress, and future research challenges. Sensors 24:5143. https://doi.org/10.3390/s24165143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ren Y, Wang H, Song X, Wu Y, Lyu Y, Zeng W (2024) Advancements in diabetic foot insoles: a comprehensive review of design, manufacturing, and performance evaluation. Front Bioeng Biotechnol 12:1394758. https://doi.org/10.3389/fbioe.2024.1394758

    Article  PubMed  PubMed Central  Google Scholar 

  131. Littman AJ, Timmons AK, Korpak A, Chan KCG, Jones KT, Shirley S et al (2024) Remote foot temperature monitoring among veterans: large observational study of noncompliance and its correlates. JMIR Diabetes 9:e53083. https://doi.org/10.2196/53083

    Article  PubMed  PubMed Central  Google Scholar 

  132. Jones P, Bibb R, Davies M, Khunti K, McCarthy M, Webb D et al (2019) Prediction of diabetic foot ulceration: the value of using microclimate sensor arrays. J Diabetes Sci Technol 14:55–64. https://doi.org/10.1177/1932296819877194

    Article  PubMed  PubMed Central  Google Scholar 

  133. Sousa LB, Almeida I, Bernardes RA, Leite TR, Negrão R, Apóstolo J et al (2023) A three step protocol for the development of an innovative footwear (shoe and sensor based insole) to prevent diabetic foot ulceration. Front Public Health 11:1061383. https://doi.org/10.3389/fpubh.2023.1061383

    Article  PubMed  PubMed Central  Google Scholar 

  134. Byeon H (2025) Future of diabetic foot risk: unveiling predictive continuous glucose monitoring biomarkers. World J Diabetes 16:107006. https://doi.org/10.4239/wjd.v16.i6.107006

    Article  PubMed  PubMed Central  Google Scholar 

  135. Xia Y, Wu P, Chen H, Chen Z (2024) Advances in stem cell therapy for diabetic foot. Front Genet. https://doi.org/10.3389/fgene.2024.1427205

    Article  PubMed  PubMed Central  Google Scholar 

  136. Shi S, Hu L, Hu D, Ou X, Huang Y (2024) Emerging nanotherapeutic approaches for diabetic wound healing. Int J Nanomed 19:8815–8830. https://doi.org/10.2147/IJN.S476006

    Article  CAS  Google Scholar 

  137. Cerium oxide nanoparticles in wound care: a review of mechanisms and therapeutic applications - PMC [Internet]. [cited 2025 Aug 10]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11145637/. Accessed 10 Aug 2025

  138. Britton D, Almanzar D, Xiao Y, Shih H-W, Legocki J, Rabbani P et al (2024) Exosome loaded protein hydrogel for enhanced gelation kinetics and wound healing. ACS Appl Bio Mater 7:5992–6000. https://doi.org/10.1021/acsabm.4c00569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Volarevic V, Markovic BS, Gazdic M, Volarevic A, Jovicic N, Arsenijevic N et al (2018) Ethical and safety issues of stem cell-based therapy. Int J Med Sci 15:36–45. https://doi.org/10.7150/ijms.21666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Biofilm formation and antibiogram profile of bacteria from infected wounds in a general hospital in southern Ethiopia | Scientific Reports [Internet]. [cited 2025 Aug 10]. https://www.nature.com/articles/s41598-024-78283-9. Accessed 10 Aug 2025

  141. Van Netten JJ, Woodburn J, Bus SA (2020) The future for diabetic foot ulcer prevention: a paradigm shift from stratified healthcare towards personalized medicine. Diabetes Metab Res Rev 36(1):e3234. https://doi.org/10.1002/dmrr.3234

    Article  PubMed  Google Scholar 

  142. Huang C, Yuan W, Chen J, Wu L-P, You T (2023) Construction of smart biomaterials for promoting diabetic wound healing. Molecules 28:1110. https://doi.org/10.3390/molecules28031110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Scaffold-based delivery of mesenchymal stromal cells to diabetic wounds | Stem Cell Research & Therapy | Full Text [Internet]. [cited 2025 Aug 10]. https://stemcellres.biomedcentral.com/articles/https://doi.org/10.1186/s13287-022-03115-4. Accessed 10 Aug 2025

  144. Kamal R, Awasthi A, Pundir M, Thakur S (2024) Healing the diabetic wound: unlocking the secrets of genes and pathways. Eur J Pharmacol 975:176645. https://doi.org/10.1016/j.ejphar.2024.176645

    Article  CAS  PubMed  Google Scholar 

  145. Afonso AC, Oliveira D, Saavedra MJ, Borges A, Simões M (2021) Biofilms in diabetic foot ulcers: impact, risk factors and control strategies. Int J Mol Sci 22:8278. https://doi.org/10.3390/ijms22158278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Zielińska M, Pawłowska A, Orzeł A, Sulej L, Muzyka-Placzyńska K, Baran A et al (2023) Wound microbiota and its impact on wound healing. Int J Mol Sci 24:17318. https://doi.org/10.3390/ijms242417318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, India, for providing the necessary research facilities, infrastructure, academic support, and JSSAHER Research Grant (JSSAHER/REG/RES/URG/54/2023-24).

Author information

Authors and Affiliations

Authors

Contributions

Swati Swagatika Swain: Wring original draft. Data curation, Formal analysis. Veera Venkata Satyanarayana Reddy Karri: Conceptualization, Writing, Reviewing, and Editing, Supervision, Md Ekhtiar Uddin: Writing, Reviewing, and Editing, Kuppuswamy Gowthamarajan: Reviewing and Editing. Manimaran B: Reviewing and Editing. Vetriselvan Subramaniyan: Reviewing and Editing.

Corresponding author

Correspondence to Veera Venkata Satyanarayana Reddy Karri.

Ethics declarations

Conflict of interest

The Authors declare that no conflict of this study.

Additional information

Communicated by Salvatore Corrao, M.D.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swain, S.S., Karri, V.V.S.R., Uddin, M.E. et al. Advances in diabetic wound healing: from pathophysiology to emerging therapies. Acta Diabetol (2025). https://doi.org/10.1007/s00592-025-02629-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1007/s00592-025-02629-6

Keywords