Abstract
The development of bedaquiline holds promise for treating multidrug-resistant tuberculosis (MDR-TB). Still, the inflation in bedaquiline resistance has alarmed the global public health crisis, indicating the need for a new treatment strategy. Several scientific studies have reported a high incidence of resistance among MDR-TB patients who had prior exposure to bedaquiline for treating Mycobacterium tuberculosis infections. Disparate research findings indicate that individuals previously administered this drug exhibit a remarkable prevalence of resistance. Studies have further demonstrated that prior treatment often correlates with the emergence of resistant Mycobacterium tuberculosis strains. Overall, evidence from multiple investigations highlights a concerning trend of increased resistance in MDR-TB cases with a history of bedaquiline therapy. Moreover, bedaquiline resistance in MDR-TB strains has been linked to mutations in several chromosomal genes, including atpE, Rv0677c, Rv0678, and pepQ. Consequently, it is imperative to mitigate the burden of MDR-TB and bedaquiline resistance. Herein, this article emphasizes structural features, mechanism of action, emergence of underlying resistance mechanisms, pharmacokinetic & pharmacodynamic properties, clinical toxicity, and strategies to combat resistance associated with bedaquiline.


Similar content being viewed by others
Data Availability
Not applicable.
Code Availability
Not applicable.
References
Nguyen TV, Anthony RM, Bañuls AL, Nguyen TV, Vu DH, Alffenaar JW (2018) Bedaquiline resistance: its emergence, mechanism, and prevention. Clin Infect Dis 66(10):1625–1630. https://doi.org/10.1093/cid/cix992
WHO (2023) (https://www.who.int/news-room/fact-sheets/detail/tuberculosis)
Singla R, Khan S, Silsarma A, Chavan V, Mahajan R, Mansoor H, Devan RK, Singla N, Bhalla M, Kumar G, Singh P (2025) Bedaquiline resistance and treatment outcomes among patients with tuberculosis previously exposed to bedaquiline in India: a multicentric retrospective cohort study. Clin Infect Dis ciaf068. https://doi.org/10.1093/cid/ciaf068
Barilar I, Fernando T, Utpatel C, Abujate C, Madeira CM, José B, Mutaquiha C, Kranzer K, Niemann T, Ismael N, de Araujo L (2024) Emergence of bedaquiline-resistant tuberculosis and of multidrug-resistant and extensively drug-resistant Mycobacterium tuberculosis strains with rpoB Ile491Phe mutation not detected by Xpert MTB/RIF in Mozambique: a retrospective observational study. Lancet Infect Dis 1(3):297–307. https://doi.org/10.1016/S1473-3099(23)00498-X
Kakkar AK, Dahiya N (2014) Bedaquiline for the treatment of resistant tuberculosis: promises and pitfalls. Tuberculosis 94(4):357–. https://doi.org/10.1016/j.tube.2014.04.001. 62
Perumal R, Bionghi N, Nimmo C, Letsoalo M, Cummings MJ, Hopson M, Wolf A, Al Jubaer S, Padayatchi N, Naidoo K, Larsen MH (2023) Baseline and treatment-emergent bedaquiline resistance in drug-resistant tuberculosis: a systematic review and meta-analysis. Eur Respir J. https://doi.org/10.1183/13993003.00639-2023
Schnippel K, Ndjeka N, Maartens G, Meintjes G, Master I, Ismail N, Hughes J, Ferreira H, Padanilam X, Romero R, Te Riele J (2018) Effect of bedaquiline on mortality in South African patients with drug-resistant tuberculosis: a retrospective cohort study. Lancet Respir Med 6(9):699–706. https://doi.org/10.1016/s2213-2600(18)30235-2
Cocco N, Gargioni G, Gilpin C, Gonzalez-Angulo L, Grzemska M, Korobitsyn A, Merle C, Mirzayev F, Moja L, Olliaro PL, Reis AA (2019) WHO consolidated guidelines on drug-resistant tuberculosis treatment. World Health Organization
Diacon AH, Pym A, Grobusch MP, de Los Rios JM, Gotuzzo E, Vasilyeva I, Leimane V, Andries K, Bakare N, De Marez T, Haxaire-Theeuwes M (2014) Multidrug-resistant tuberculosis and culture conversion with bedaquiline. N Engl J Med 21(8):723–32. https://doi.org/10.1056/nejmoa1313865
Derendinger B, Dippenaar A, de Vos M, Huo S, Alberts R, Tadokera R, Limberis J, Sirgel F, Dolby T, Spies C, Reuter A (2023) Bedaquiline resistance in patients with drug-resistant tuberculosis in Cape Town, South Africa: a retrospective longitudinal cohort study. The Lancet Microbe 1(12):e972-82. https://doi.org/10.1016/s2666-5247(23)00172-6
Satapathy P, Itumalla R, Neyazi A, Taraki AM, Khatib MN, Gaidhane S, Zahiruddin QS, Rustagi S, Neyazi M (2024) Emerging bedaquiline resistance: a threat to the global fight against drug-resistant tuberculosis. J Biosaf Biosecur 6(1):13–15. https://doi.org/10.1016/j.jobb.2024.01.001
Mallick JS, Nair P, Abbew ET, Van Deun A, Decroo T (2022) Acquired bedaquiline resistance during the treatment of drug-resistant tuberculosis: a systematic review. JAC-antimicrobial resistance 1(2):dlac029. https://doi.org/10.1093/jacamr/dlac029
Rehman OU, Fatima E, Ali A, Akram U, Nashwan A, Yunus F (2024) Efficacy and safety of bedaquiline containing regimens in patients of drug-resistant tuberculosis: an updated systematic review and meta-analysis. J Clin Tuberculosis Other Mycobact Dis 34:100405. https://doi.org/10.1016/j.jctube.2023.100405
Zuur MA, Bolhuis MS, Anthony R, den Hertog A, van der Laan T, Wilffert B, de Lange W, van Soolingen D, Alffenaar JW (2016) Current status and opportunities for therapeutic drug monitoring in the treatment of tuberculosis. Expert Opin Drug Metab Toxicol 12(5):509–521. https://doi.org/10.1517/17425255.2016.1162785
Veziris N, Bernard C, Guglielmetti L, Le Du D, Marigot-Outtandy D, Jaspard M, Caumes E, Lerat I, Rioux C, Yazdanpanah Y, Tiotiu A (2017) Rapid emergence of Mycobacterium tuberculosis bedaquiline resistance: lessons to avoid repeating past errors. Eur Respir J. https://doi.org/10.1183/13993003.01719-2016
Hu X, Wu Z, Lei J, Zhu Y, Gao J (2025) Prevalence of bedaquiline resistance in patients with drug-resistant tuberculosis: a systematic review and meta-analysis. BMC Infect Dis 25(1):689. https://doi.org/10.1186/s12879-025-11067-2
Lange C, Vasiliu A, Mandalakas AM (2023) Emerging bedaquiline-resistant tuberculosis. Lancet Microbe 4(12):e964–e965. https://doi.org/10.1016/s2666-5247(23)00321-x
World Health Organization Companion handbook to the WHO guidelines for the programmatic management of drug-resistant tuberculosis. Available at: https://www.who.int/publications/i/item/9789241548809. Accessed 29 January 2017
Hoffmann H, Hofmann-Thiel S, Merker M, Kohl TA, Niemann S (2016) Reply: call for regular susceptibility testing of bedaquiline and delamanid. Am J Respir Crit Care Med 194(9):1171–1172. https://doi.org/10.1164/rccm.201605-1065le
Goulooze SC, Cohen AF, Rissmann R, Bedaquiline (2015) Br J Clin Pharmacol 80(2):182. https://doi.org/10.1111/bcp.12613
Matteelli A, Carvalho AC, Dooley KE, Kritski A (2010) TMC207: the first compound of a new class of potent anti-tuberculosis drugs. Future Microbiol 5(6):849–858. https://doi.org/10.2217/fmb.10.50
Khoshnood S, Goudarzi M, Taki E, Darbandi A, Kouhsari E, Heidary M, Motahar M, Moradi M, Bazyar H (2021) Bedaquiline: current status and future perspectives. J Glob Antimicrob Resist 25:48–59. https://doi.org/10.1016/j.jgar.2021.02.017
He C, Preiss L, Wang B, Fu L, Wen H, Zhang X, Cui H, Meier T, Yin D (2017) Structural simplification of bedaquiline: the discovery of 3-(4‐(N, N‐Dimethylaminomethyl) phenyl) quinoline‐derived antitubercular lead compounds. ChemMedChem 12:106–19. https://doi.org/10.1002/cmdc.201600441
Savini L, Chiasserini L, Gaeta A, Pellerano C (2002) Synthesis and anti-tubercular evaluation of 4-quinolylhydrazones. Bioorg Med Chem 10(7):2193–2198. https://doi.org/10.1016/s0968-0896(02)00071-8
Kunin CM, Ellis WY (2000) Antimicrobial activities of mefloquine and a series of related compounds. Antimicrob Agents Chemother 44(4):848–. https://doi.org/10.1128/aac.44.4.848-852.2000. 52
Kundu S, Biukovic G, Grüber G, Dick T (2016) Bedaquiline targets the ε subunit of mycobacterial F-ATP synthase. Antimicrob Agents Chemother 60(11):6977–6979. https://doi.org/10.1128/aac.01291-16
Aguilar-Ayala DA, Cnockaert M, André E, Andries K, Gonzalez-Y-Merchand JA, Vandamme P, Palomino JC, Martin A (2017) In vitro activity of bedaquiline against rapidly growing nontuberculous mycobacteria. J Med Microbiol 66(8):1140–1143. https://doi.org/10.1099/jmm.0.000537
Hards K, Robson JR, Berney M, Shaw L, Bald D, Koul A, Andries K, Cook GM (2015) Bactericidal mode of action of bedaquiline. J Antimicrob Chemother 70(7):2028–2037. https://doi.org/10.1093/jac/dkv054
Lohrasbi V, Talebi M, Bialvaei AZ, Fattorini L, Drancourt M, Heidary M, Darban-Sarokhalil D (2018) Trends in the discovery of new drugs for Mycobacterium tuberculosis therapy with a glance at resistance. Tuberculosis 109:17–27. https://doi.org/10.1016/j.tube.2017.12.002
Meier T, Polzer P, Diederichs K, Welte W, Dimroth P (2005) Structure of the rotor ring of F-Type Na+-ATPase from Ilyobactertartaricus. Science 308(29):659–62. https://doi.org/10.1126/science.1111199
Cholo MC, Mothiba MT, Fourie B, Anderson R (2016) Mechanisms of action and therapeutic efficacies of the lipophilic antimycobacterial agents clofazimine and bedaquiline. J Antimicrob Chemother (2):dkw426. https://doi.org/10.1093/jac/dkw426
Chahine EB, Karaoui LR, Mansour H (2014) Bedaquiline: a novel diarylquinoline for multidrug-resistant tuberculosis. Ann Pharmacother 48(1):107–115. https://doi.org/10.1177/1060028013504087
Philley JV, Wallace RJ Jr, Benwill JL, Taskar V, Brown-Elliott BA, Thakkar F, Aksamit TR, Griffith DE (2015) Preliminary results of bedaquiline as salvage therapy for patients with nontuberculous mycobacterial lung disease. Chest 148(2):499–506. https://doi.org/10.1378/chest.14-2764
Gold B, Roberts J, Ling Y, Quezada LL, Glasheen J, Ballinger E, Somersan-Karakaya S, Warrier T, Warren JD, Nathan C (2015) Rapid, semiquantitative assay to discriminate among compounds with activity against replicating or nonreplicating Mycobacterium tuberculosis. Antimicrob Agents Chemother 59(10):6521–6538. https://doi.org/10.1128/AAC.00803-15
Kamel B, Graham GG, Stocker SL, Liu Z, Williams KM, Carland JE, Pile KD, Day RO (2020) A pharmacokinetic-pharmacodynamic study of a single dose of febuxostat in healthy subjects. Br J Clin Pharmacol 86(12):2486–2496. https://doi.org/10.1111/bcp.14357
Fox GJ, Menzies D (2013) A review of the evidence for using bedaquiline (TMC207) to treat multidrug-resistant tuberculosis. Infect Dis Ther 2:123–144. https://doi.org/10.1007/s40121-013-0009-3
Yadav S, Rawal G, Baxi M (2016) Bedaquiline: a novel antitubercular agent for the treatment of multidrug-resistant tuberculosis. Journal of Clinical and Diagnostic Research: JCDR 10(8):FM01. https://doi.org/10.7860/JCDR/2016/19052.8286
Dheda K, Esmail A, Limberis J, Maartens G (2016) Selected questions and controversies about bedaquiline: a view from the field. Int J Tuberc Lung Dis 20(12):S24–32. https://doi.org/10.5588/ijtld.16.0065
Dhillon J, Andries K, Phillips PP, Mitchison DA (2010) Bactericidal activity of the diarylquinoline TMC207 against Mycobacterium tuberculosis outside and within cells. Tuberculosis 90(5):301–305. https://doi.org/10.1016/j.tube.2010.07.004
Van Heeswijk RP, Dannemann B, Hoetelmans RM (2014) Bedaquiline: a review of human pharmacokinetics and drug–drug interactions. J Antimicrob Chemother 69(9):2310–8. https://doi.org/10.1093/jac/dku171
McLeay SC, Vis P, Van Heeswijk RP, Green B (2014) Population pharmacokinetics of bedaquiline (TMC207), a novel antituberculosis drug. Antimicrob Agents Chemother 58(9):5315–24. https://doi.org/10.1128/aac.01418-13
Codecasa LR, Toumi M, D’Ausilio A, Aiello A, Damele F, Termini R, Uglietti A, Hettle R, Graziano G, De Lorenzo S (2017) Cost-effectiveness of bedaquiline in MDR and XDR tuberculosis in Italy. Journal of market access & health policy 5(1):1283105. https://doi.org/10.1080/20016689.2017.1283105
Ahuja SD, Ashkin D, Avendano M, Banerjee R, Bauer M, Bayona JN, Becerra MC, Benedetti A, Burgos M, Centis R, Chan ED (2012) Multidrug resistant pulmonary tuberculosis treatment regimens and patient outcomes: an individual patient data meta-analysis of 9,153 patients. PLoS Med e1001300. https://doi.org/10.1371/journal.pmed.1001300
Brigden G, Hewison C, Varaine F (2015) New developments in the treatment of drug-resistant tuberculosis: clinical utility of bedaquiline and delamanid. Infection and drug resistance. 30:367–378. https://doi.org/10.2147/idr.s68351
Diacon AH, Pym A, Grobusch M, Patientia R, Rustomjee R, Page-Shipp L, Pistorius C, Krause R, Bogoshi M, Churchyard G, Venter A (2009) The diarylquinoline TMC207 for multidrug-resistant tuberculosis. N Engl J Med 360(23):2397–2405. https://doi.org/10.1056/nejmoa0808427
Guglielmetti L, Le Dû D, Jachym M, Henry B, Martin D, Caumes E, Veziris N, Métivier N, Robert J (2015) Compassionate use of bedaquiline for the treatment of multidrug-resistant and extensively drug-resistant tuberculosis: interim analysis of a French cohort. Clin Infect Dis 60(2):188–94. https://doi.org/10.1093/cid/ciu786
Cohen K, Maartens G (2019) A safety evaluation of bedaquiline for the treatment of multi-drug resistant tuberculosis. Expert Opin Drug Saf 18(10):875–882. https://doi.org/10.1080/14740338.2019.1648429
Pontali E, Sotgiu G, D’Ambrosio L, Centis R, Migliori GB (2016) Bedaquiline and multidrug-resistant tuberculosis: a systematic and critical analysis of the evidence. Eur Respir J 47(2):394–402. https://doi.org/10.1183/13993003.01891-2015
Guglielmetti L, Jaspard M, Le Dû D, Lachâtre M, Marigot-Outtandy D, Bernard C, Veziris N, Robert J, Yazdanpanah Y, Caumes E, Fréchet-Jachym M (2017) Long-term outcome and safety of prolonged bedaquiline treatment for multidrug-resistant tuberculosis. Eur Respir J. https://doi.org/10.1183/13993003.01799-2016
Andries K, Verhasselt P, Guillemont J, Göhlmann HW, Neefs JM, Winkler H, Van Gestel J, Timmerman P, Zhu M, Lee E, Williams P (2005) A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307(5707):223–227. https://doi.org/10.1126/science.1106753
Huitric E, Verhasselt P, Koul A, Andries K, Hoffner S, Andersson DI (2010) Rates and mechanisms of resistance development in Mycobacterium tuberculosis to a novel diarylquinoline ATP synthase inhibitor. Antimicrob Agents Chemother 54(3):1022–1028. https://doi.org/10.1128/aac.01611-09
Centers for Disease Control and Prevention (2013) Provisional CDC guidelines for the use and safety monitoring of bedaquiline fumarate (Sirturo) for the treatment of multidrug-resistant tuberculosis. CDC, Atlanta, GA. https://www.cdc.gov/mmwr/preview/mmwrhtml/rr6209a1.htm
Pym AS, Diacon AH, Tang SJ, Conradie F, Danilovits M, Chuchottaworn C, Vasilyeva I, Andries K, Bakare N, De Marez T, Haxaire-Theeuwes M (2016) Bedaquiline in the treatment of multidrug-and extensively drug-resistant tuberculosis. Eur Respir J 47(2):564–574. https://doi.org/10.1183/13993003.00724-2015
Somoskovi A, Bruderer V, Hömke R, Bloemberg GV, Böttger EC (2015) A mutation associated with Clofazimine and bedaquiline cross-resistance in MDR-TB following bedaquiline treatment. Eur Respir J 45(2):554–557. https://doi.org/10.1183/09031936.00142914
Xu J, Wang B, Hu M, Huo F, Guo S, Jing W, Nuermberger E, Lu Y (2017) Primary Clofazimine and bedaquiline resistance among isolates from patients with multidrug-resistant tuberculosis. Antimicrob Agents Chemother 61(6):10–128. https://doi.org/10.1128/AAC.00239-17
Villellas C, Coeck N, Meehan CJ, Lounis N, de Jong B, Rigouts L, Andries K (2017) Unexpected high prevalence of resistance-associated Rv0678 variants in MDR-TB patients without documented prior use of Clofazimine or bedaquiline. J Antimicrob Chemother 72(3):684–690. https://doi.org/10.1093/jac/dkw502
Ghajavand H, KargarpourKamakoli M, Khanipour S, PourazarDizaji S, Masoumi M, RahimiJamnani F, Fateh A, Siadat SD, Vaziri F (2019) High prevalence of bedaquiline resistance in treatment-naive tuberculosis patients and verapamil effectiveness. Antimicrob Agents Chemother 63(3):10–128. https://doi.org/10.1128/aac.02530-18
Ghodousi A, Rizvi AH, Baloch AQ, Ghafoor A, Khanzada FM, Qadir M, Borroni E, Trovato A, Tahseen S, Cirillo DM (2019) Acquisition of cross-resistance to bedaquiline and Clofazimine following treatment for tuberculosis in Pakistan. Antimicrob Agents Chemother 63(9):10–128. https://doi.org/10.1128/aac.00915-19
Zimenkov DV, Nosova EY, Kulagina EV, Antonova OV, Arslanbaeva LR, Isakova AI, Krylova LY, Peretokina IV, Makarova MV, Safonova SG, Borisov SE (2017) Examination of bedaquiline-and linezolid-resistant Mycobacterium tuberculosis isolates from the Moscow region. J Antimicrob Chemother 72(7):1901–1906. https://doi.org/10.1093/jac/dkx094
Field SK (2015) Bedaquiline for the treatment of multidrug-resistant tuberculosis: great promise or disappointment? Ther Adv Chronic Dis 6(4):170–184. https://doi.org/10.1177/2040622315582325
Hameed HA, Islam MM, Chhotaray C, Wang C, Liu Y, Tan Y, Li X, Tan S, Delorme V, Yew WW, Liu J (2018) Molecular targets related drug resistance mechanisms in MDR-, XDR-, and TDR-Mycobacterium tuberculosis strains. Front Cell Infect Microbiol 8:114. https://doi.org/10.3389/fcimb.2018.00114
Almeida D, Ioerger T, Tyagi S, Li SY, Mdluli K, Andries K, Grosset J, Sacchettini J, Nuermberger E (2016) Mutations in PepQ confer low-level resistance to bedaquiline and clofazimine in Mycobacterium tuberculosis. Antimicrob Agents Chemother 60(8):4590–4599. https://doi.org/10.1128/aac.00753-16
Alexander DC, Vasireddy R, Vasireddy S, Philley JV, Brown-Elliott BA, Perry BJ, Griffith DE, Benwill JL, Cameron AD, Wallace Jr RJ (2017) Emergence of mmpT5 variants during bedaquiline treatment of Mycobacterium intracellulare lung disease. J Clin Microbiol 55(2):574–84. https://doi.org/10.1128/JCM.02087-16
Hoffmann H, Kohl TA, Hofmann-Thiel S, Merker M, Beckert P, Jaton K, Nedialkova L, Sahalchyk E, Rothe T, Keller PM, Niemann S (2016) Delamanid and bedaquiline resistance in Mycobacterium tuberculosis ancestral Beijing genotype causing extensively drug-resistant tuberculosis in a Tibetan refugee. Am J Respir Crit Care Med 193(3):337–340. https://doi.org/10.1164/rccm.201502-0372le
Segala E, Sougakoff W, Nevejans-Chauffour A, Jarlier V, Petrella S (2012) New mutations in the mycobacterial ATP synthase: new insights into the binding of the diarylquinoline TMC207 to the ATP synthase C-ring structure. Antimicrob Agents Chemother 56(5):2326–2334. https://doi.org/10.1128/AAC.06154-11
Huitric E, Verhasselt P, Andries K, Hoffner SE (2007) In vitro antimycobacterial spectrum of a diarylquinoline ATP synthase inhibitor. Antimicrob Agents Chemother 51(11):4202–4204. https://doi.org/10.1128/AAC.00181-07
Nguyen TV, Cao TB, Akkerman OW, Tiberi S, Vu DH, Alffenaar JW (2016) Bedaquiline as part of combination therapy in adults with pulmonary multidrug-resistant tuberculosis. Expert Rev Clin Pharmacol 9(8):1025–1037. https://doi.org/10.1080/17512433.2016.1200462
Gupta S, Cohen KA, Winglee K, Maiga M, Diarra B, Bishai WR (2014) Efflux Inhibition with verapamil potentiates bedaquiline in Mycobacterium tuberculosis. Antimicrob Agents Chemother 58(1):574–576. https://doi.org/10.1128/AAC.01462-13
Li XZ, Plésiat P, Nikaido H (2015) The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 28(2):337–418. https://doi.org/10.1128/cmr.00117-14
Pule CM, Sampson SL, Warren RM, Black PA, van Helden PD, Victor TC, Louw GE (2016) Efflux pump inhibitors: targeting mycobacterial efflux systems to enhance TB therapy. J Antimicrob Chemother 71(1):17–26. https://doi.org/10.1093/jac/dkv316
Hartkoorn RC, Uplekar S, Cole ST (2014) Cross-resistance between Clofazimine and bedaquiline through upregulation of MmpL5 in Mycobacterium tuberculosis. Antimicrob Agents Chemother 58(5):2979–2981. https://doi.org/10.1128/aac.00037-14
Coeck N, Villelas C, Meehan C, Lounis N, Niemann S, Rigouts L, de Jong B, Andries K (2015) Unexpected high frequency of Rv0678 mutations in MDR-TB patients without documented prior use of clofazimine or bedaquiline. Int J Tuberc Lung Dis 19:S45. https://doi.org/10.1093/jac/dkw502
Andries K, Villellas C, Coeck N, Thys K, Gevers T, Vranckx L, Lounis N, de Jong BC, Koul A (2014) Acquired resistance of Mycobacterium tuberculosis to bedaquiline. PLoS One 9(7):e102135. https://doi.org/10.1371/journal.pone.0102135
Bloemberg GV, Keller PM, Stucki D, Trauner A, Borrell S, Latshang T, Coscolla M, Rothe T, Hömke R, Ritter C, Feldmann J (2015) Acquired resistance to bedaquiline and Delamanid in therapy for tuberculosis. N Engl J Med 373(20):1986–1988. https://doi.org/10.1056/nejmc1505196
Sassetti CM, Boyd DH, Rubin EJ (2003) Genes required for mycobacterial growth defined by high-density mutagenesis. Mol Microbiol 48(1):77–84. https://doi.org/10.1046/j.1365-2958.2003.03425.x
Georghiou SB, de Vos M, Velen K, Miotto P, Colman RE, Cirillo DM, Ismail N, Rodwell TC, Suresh A, Ruhwald M (2023) Designing molecular diagnostics for current tuberculosis drug regimens. Emerging microbes & infections 12(1):2178243. https://doi.org/10.1080/22221751.2023.2178243
World Health Organization. Technical report on critical concentrations for drug susceptibility testing of medicines used in the treatment of drug-resistant tuberculosis. World Health Organization (2018) (https://www.who.int/publications/i/item/WHO-CDS-TB-2018.5)
Schön T, Köser CU, Werngren J, Viveiros M, Georghiou S, Kahlmeter G, Giske C, Maurer F, Lina G, Turnidge J, van Ingen J (2020) What is the role of the EUCAST reference method for MIC testing of the Mycobacterium tuberculosis complex? Clin Microbiol Infect 26(11):1453–5. https://doi.org/10.1016/j.cmi.2020.07.037
Nimmo C, Millard J, van Dorp L, Brien K, Moodley S, Wolf A, Grant AD, Padayatchi N, Pym AS, Balloux F, O’Donnell M (2020) Population-level emergence of bedaquiline and clofazimine resistance-associated variants among patients with drug-resistant tuberculosis in southern Africa: a phenotypic and phylogenetic analysis. The Lancet Microbe 1(4):e165-74. https://doi.org/10.1016/S2666-5247(20)30031-8
Operario DJ, Koeppel AF, Turner SD, Bao Y, Pholwat S, Banu S, Foongladda S, Mpagama S, Gratz J, Ogarkov O, Zhadova S (2017) Prevalence and extent of heteroresistance by next generation sequencing of multidrug-resistant tuberculosis. PLoS One 12(5):e0176522. https://doi.org/10.1371/journal.pone.0176522
Günther G, Guglielmetti L, Kherabi Y, Duarte R, Lange C, Tuberculosis Network European Trials group (2024) Availability of drugs and resistance testing for bedaquiline, pretomanid, linezolid, and moxifloxacin (BPaL (M)) regimen for rifampicin-resistant tuberculosis in Europe. Clin Microbiol Infect 30(9):1197-e1. https://doi.org/10.1016/j.cmi.2024.03.009
Koehler N, Andres S, Merker M, Dreyer V, John A, Kuhns M, Krieger D, Choong E, Verougstraete N, ZurWiesch PA, Wicha SG (2023) Pretomanid-resistant tuberculosis. J Infect 86(5):520–524. https://doi.org/10.1016/j.jinf.2023.01.039
Almeida DV, Converse PJ, Nuermberger EL (2023) Mutations in Rv0678 reduce susceptibility of Mycobacterium tuberculosis to the DprE1 inhibitor TBA-7371. Antimicrob Agents Chemother 67(3):e00052-23. https://doi.org/10.1128/aac.00052-23
Poulton NC, Azadian ZA, DeJesus MA, Rock JM (2022) Mutations in rv0678 confer low-level resistance to benzothiazinone DprE1 inhibitors in Mycobacterium tuberculosis. Antimicrob Agents Chemother 66(9):e00904-22. https://doi.org/10.1128/aac.00904-22
Diacon AH, Dawson R, von Groote-Bidlingmaier F, Symons G, Venter A, Donald PR, van Niekerk C, Everitt D, Winter H, Becker P, Mendel CM (2012) 14-day bactericidal activity of PA-824, bedaquiline, pyrazinamide, and moxifloxacin combinations: a randomised trial. Lancet 380(9846):986. https://doi.org/10.1016/s0140-6736(12)61080-0
Tahseen S, Van Deun A, de Jong BC, Decroo T (2021) Second-line injectable drugs for rifampicin-resistant tuberculosis: better the devil we know? J Antimicrob Chemother 76(4):831–5. https://doi.org/10.1093/jac/dkaa489
Goodall RL, Meredith SK, Nunn AJ, Bayissa A, Bhatnagar AK, Bronson G, Chiang CY, Conradie F, Gurumurthy M, Kirenga B, Kiria N (2022) Evaluation of two short standardised regimens for the treatment of rifampicin-resistant tuberculosis (STREAM stage 2): an open-label, multicentre, randomised, non-inferiority trial. Lancet 400(10366):1858–1868. https://doi.org/10.1016/S0140-6736(22)02078-5
Shaw ES, Stoker NG, Potter JL, Claassen H, Leslie A, Tweed CD, Chiang CY, Conradie F, Esmail H, Lange C, Pinto L (2024) Bedaquiline: what might the future hold? Lancet Microbe 5(12):100909. https://doi.org/10.1016/S2666-5247(24)00149-6
Achanta S, Jaju J, Kumar AM, Nagaraja SB, Shamrao SR, Bandi SK, Kumar A, Satyanarayana S, Harries AD, Nair SA, Dewan PK (2013) Tuberculosis management practices by private practitioners in Andhra Pradesh, India. PLoS One 8(8):e71119. https://doi.org/10.1371/journal.pone.0071119
Udwadia ZF, Pinto LM, Uplekar MW (2010) Tuberculosis management by private practitioners in Mumbai, India: has anything changed in two decades? PLoS One 5(8):e12023. https://doi.org/10.1371/journal.pone.0012023
Shrivastava SR, Shrivastava PS, Ramasamy J (2013) Notification of tuberculosis cases in India: moving ahead in Revised National Tuberculosis Control Program. Infect Ecol Epidemiol 3(1):23006. https://doi.org/10.3402/iee.v3i0.23006
Sharma D, Sharma S, Sharma J (2020) Potential strategies for the management of drug-resistant tuberculosis. J Glob Antimicrob Resist 2929:210–214. https://doi.org/10.1016/j.jgar.2020.02.029
Wang H, Li B, Sun Y, Ma Q, Feng Y, Jia Y, Wang Wei, Su Min, Liu Xueting, Shu Bowen, Zheng Jundun, Sang Shuo, Yan Yan, Wu Yanqiu, Zhang Yunlong, Gao Qiuxia, Li Peiran, Wang Jiamei, Ma Fei, Li Xiaoxue, Yan Dingyuan, Wang Dong, Zou Xiaoming, Liao Y (2024) NIR-II AIE luminogen-based erythrocyte-like nanoparticles with granuloma-targeting and self-oxygenation characteristics for combined phototherapy of tuberculosis. Adv Mater 36(38):2406143. https://doi.org/10.1002/adma.202406143
Sharma D, Singh I, Sharma J, Verma IK, Ratn A (2025) Bacteriophage therapy to combat microbial infections and antimicrobial resistance. J Basic Microbiol e70090. https://doi.org/10.1002/jobm.70090
Chen E, Chen C, Chen F, Yu P, Lin L (2019) Positive association between MIC gene polymorphism and tuberculosis in Chinese population. Immunol Lett 213:62–69. https://doi.org/10.1016/j.imlet.2019.07.008
Patil S, Singh I, Verma IK, Kumar A, Sharma J, Ratn A, Sharma D (2025) Vaccines as potential frontliners against antimicrobial resistance (AMR): a focused review. Infect Drug Resist 18:5023–5041. https://doi.org/10.2147/IDR.S544665
Acknowledgements
We acknowledge the Graphic Era (Deemed to be) University for sustainable research support.
Funding
None.
Author information
Authors and Affiliations
Contributions
DS conceived the idea. DS, IS, and JS curated data, wrote the initial draft, and prepared the figures. DS, MSD, AR, JD, MMAB, SS, and DB reviewed the manuscript. All authors approved the final version of the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflicts of interest.
Ethical Approval
Not applicable.
Consent to Participate
Not applicable.
Consent for Publication
Not applicable.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Singh, I., Sharma, J., Sharma, D. et al. Bedaquiline Resistance: A Looming Global Threat in Tuberculosis Management. Curr Microbiol 83, 57 (2026). https://doi.org/10.1007/s00284-025-04655-7
Received:
Accepted:
Published:
Version of record:
DOI: https://doi.org/10.1007/s00284-025-04655-7


