Skip to main content
Log in

Bedaquiline Resistance: A Looming Global Threat in Tuberculosis Management

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The development of bedaquiline holds promise for treating multidrug-resistant tuberculosis (MDR-TB). Still, the inflation in bedaquiline resistance has alarmed the global public health crisis, indicating the need for a new treatment strategy. Several scientific studies have reported a high incidence of resistance among MDR-TB patients who had prior exposure to bedaquiline for treating Mycobacterium tuberculosis infections. Disparate research findings indicate that individuals previously administered this drug exhibit a remarkable prevalence of resistance. Studies have further demonstrated that prior treatment often correlates with the emergence of resistant Mycobacterium tuberculosis strains. Overall, evidence from multiple investigations highlights a concerning trend of increased resistance in MDR-TB cases with a history of bedaquiline therapy. Moreover, bedaquiline resistance in MDR-TB strains has been linked to mutations in several chromosomal genes, including atpE, Rv0677c, Rv0678, and pepQ. Consequently, it is imperative to mitigate the burden of MDR-TB and bedaquiline resistance. Herein, this article emphasizes structural features, mechanism of action, emergence of underlying resistance mechanisms, pharmacokinetic & pharmacodynamic properties, clinical toxicity, and strategies to combat resistance associated with bedaquiline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Nguyen TV, Anthony RM, Bañuls AL, Nguyen TV, Vu DH, Alffenaar JW (2018) Bedaquiline resistance: its emergence, mechanism, and prevention. Clin Infect Dis 66(10):1625–1630. https://doi.org/10.1093/cid/cix992

    Article  PubMed  CAS  Google Scholar 

  2. WHO (2023) (https://www.who.int/news-room/fact-sheets/detail/tuberculosis)

  3. Singla R, Khan S, Silsarma A, Chavan V, Mahajan R, Mansoor H, Devan RK, Singla N, Bhalla M, Kumar G, Singh P (2025) Bedaquiline resistance and treatment outcomes among patients with tuberculosis previously exposed to bedaquiline in India: a multicentric retrospective cohort study. Clin Infect Dis ciaf068. https://doi.org/10.1093/cid/ciaf068

    Article  Google Scholar 

  4. Barilar I, Fernando T, Utpatel C, Abujate C, Madeira CM, José B, Mutaquiha C, Kranzer K, Niemann T, Ismael N, de Araujo L (2024) Emergence of bedaquiline-resistant tuberculosis and of multidrug-resistant and extensively drug-resistant Mycobacterium tuberculosis strains with rpoB Ile491Phe mutation not detected by Xpert MTB/RIF in Mozambique: a retrospective observational study. Lancet Infect Dis 1(3):297–307. https://doi.org/10.1016/S1473-3099(23)00498-X

    Article  Google Scholar 

  5. Kakkar AK, Dahiya N (2014) Bedaquiline for the treatment of resistant tuberculosis: promises and pitfalls. Tuberculosis 94(4):357–. https://doi.org/10.1016/j.tube.2014.04.001. 62

    Article  PubMed  CAS  Google Scholar 

  6. Perumal R, Bionghi N, Nimmo C, Letsoalo M, Cummings MJ, Hopson M, Wolf A, Al Jubaer S, Padayatchi N, Naidoo K, Larsen MH (2023) Baseline and treatment-emergent bedaquiline resistance in drug-resistant tuberculosis: a systematic review and meta-analysis. Eur Respir J. https://doi.org/10.1183/13993003.00639-2023

    Article  PubMed  PubMed Central  Google Scholar 

  7. Schnippel K, Ndjeka N, Maartens G, Meintjes G, Master I, Ismail N, Hughes J, Ferreira H, Padanilam X, Romero R, Te Riele J (2018) Effect of bedaquiline on mortality in South African patients with drug-resistant tuberculosis: a retrospective cohort study. Lancet Respir Med 6(9):699–706. https://doi.org/10.1016/s2213-2600(18)30235-2

    Article  PubMed  CAS  Google Scholar 

  8. Cocco N, Gargioni G, Gilpin C, Gonzalez-Angulo L, Grzemska M, Korobitsyn A, Merle C, Mirzayev F, Moja L, Olliaro PL, Reis AA (2019) WHO consolidated guidelines on drug-resistant tuberculosis treatment. World Health Organization

    Google Scholar 

  9. Diacon AH, Pym A, Grobusch MP, de Los Rios JM, Gotuzzo E, Vasilyeva I, Leimane V, Andries K, Bakare N, De Marez T, Haxaire-Theeuwes M (2014) Multidrug-resistant tuberculosis and culture conversion with bedaquiline. N Engl J Med 21(8):723–32. https://doi.org/10.1056/nejmoa1313865

    Article  Google Scholar 

  10. Derendinger B, Dippenaar A, de Vos M, Huo S, Alberts R, Tadokera R, Limberis J, Sirgel F, Dolby T, Spies C, Reuter A (2023) Bedaquiline resistance in patients with drug-resistant tuberculosis in Cape Town, South Africa: a retrospective longitudinal cohort study. The Lancet Microbe 1(12):e972-82. https://doi.org/10.1016/s2666-5247(23)00172-6

    Article  CAS  Google Scholar 

  11. Satapathy P, Itumalla R, Neyazi A, Taraki AM, Khatib MN, Gaidhane S, Zahiruddin QS, Rustagi S, Neyazi M (2024) Emerging bedaquiline resistance: a threat to the global fight against drug-resistant tuberculosis. J Biosaf Biosecur 6(1):13–15. https://doi.org/10.1016/j.jobb.2024.01.001

    Article  CAS  Google Scholar 

  12. Mallick JS, Nair P, Abbew ET, Van Deun A, Decroo T (2022) Acquired bedaquiline resistance during the treatment of drug-resistant tuberculosis: a systematic review. JAC-antimicrobial resistance 1(2):dlac029. https://doi.org/10.1093/jacamr/dlac029

    Article  Google Scholar 

  13. Rehman OU, Fatima E, Ali A, Akram U, Nashwan A, Yunus F (2024) Efficacy and safety of bedaquiline containing regimens in patients of drug-resistant tuberculosis: an updated systematic review and meta-analysis. J Clin Tuberculosis Other Mycobact Dis 34:100405. https://doi.org/10.1016/j.jctube.2023.100405

    Article  CAS  Google Scholar 

  14. Zuur MA, Bolhuis MS, Anthony R, den Hertog A, van der Laan T, Wilffert B, de Lange W, van Soolingen D, Alffenaar JW (2016) Current status and opportunities for therapeutic drug monitoring in the treatment of tuberculosis. Expert Opin Drug Metab Toxicol 12(5):509–521. https://doi.org/10.1517/17425255.2016.1162785

    Article  PubMed  CAS  Google Scholar 

  15. Veziris N, Bernard C, Guglielmetti L, Le Du D, Marigot-Outtandy D, Jaspard M, Caumes E, Lerat I, Rioux C, Yazdanpanah Y, Tiotiu A (2017) Rapid emergence of Mycobacterium tuberculosis bedaquiline resistance: lessons to avoid repeating past errors. Eur Respir J. https://doi.org/10.1183/13993003.01719-2016

    Article  PubMed  Google Scholar 

  16. Hu X, Wu Z, Lei J, Zhu Y, Gao J (2025) Prevalence of bedaquiline resistance in patients with drug-resistant tuberculosis: a systematic review and meta-analysis. BMC Infect Dis 25(1):689. https://doi.org/10.1186/s12879-025-11067-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Lange C, Vasiliu A, Mandalakas AM (2023) Emerging bedaquiline-resistant tuberculosis. Lancet Microbe 4(12):e964–e965. https://doi.org/10.1016/s2666-5247(23)00321-x

    Article  PubMed  PubMed Central  Google Scholar 

  18. World Health Organization Companion handbook to the WHO guidelines for the programmatic management of drug-resistant tuberculosis. Available at: https://www.who.int/publications/i/item/9789241548809. Accessed 29 January 2017

  19. Hoffmann H, Hofmann-Thiel S, Merker M, Kohl TA, Niemann S (2016) Reply: call for regular susceptibility testing of bedaquiline and delamanid. Am J Respir Crit Care Med 194(9):1171–1172. https://doi.org/10.1164/rccm.201605-1065le

    Article  PubMed  Google Scholar 

  20. Goulooze SC, Cohen AF, Rissmann R, Bedaquiline (2015) Br J Clin Pharmacol 80(2):182. https://doi.org/10.1111/bcp.12613

    Article  PubMed  PubMed Central  Google Scholar 

  21. Matteelli A, Carvalho AC, Dooley KE, Kritski A (2010) TMC207: the first compound of a new class of potent anti-tuberculosis drugs. Future Microbiol 5(6):849–858. https://doi.org/10.2217/fmb.10.50

    Article  PubMed  CAS  Google Scholar 

  22. Khoshnood S, Goudarzi M, Taki E, Darbandi A, Kouhsari E, Heidary M, Motahar M, Moradi M, Bazyar H (2021) Bedaquiline: current status and future perspectives. J Glob Antimicrob Resist 25:48–59. https://doi.org/10.1016/j.jgar.2021.02.017

    Article  PubMed  CAS  Google Scholar 

  23. He C, Preiss L, Wang B, Fu L, Wen H, Zhang X, Cui H, Meier T, Yin D (2017) Structural simplification of bedaquiline: the discovery of 3-(4‐(N, N‐Dimethylaminomethyl) phenyl) quinoline‐derived antitubercular lead compounds. ChemMedChem 12:106–19. https://doi.org/10.1002/cmdc.201600441

    Article  PubMed  CAS  Google Scholar 

  24. Savini L, Chiasserini L, Gaeta A, Pellerano C (2002) Synthesis and anti-tubercular evaluation of 4-quinolylhydrazones. Bioorg Med Chem 10(7):2193–2198. https://doi.org/10.1016/s0968-0896(02)00071-8

    Article  PubMed  CAS  Google Scholar 

  25. Kunin CM, Ellis WY (2000) Antimicrobial activities of mefloquine and a series of related compounds. Antimicrob Agents Chemother 44(4):848–. https://doi.org/10.1128/aac.44.4.848-852.2000. 52

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Kundu S, Biukovic G, Grüber G, Dick T (2016) Bedaquiline targets the ε subunit of mycobacterial F-ATP synthase. Antimicrob Agents Chemother 60(11):6977–6979. https://doi.org/10.1128/aac.01291-16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Aguilar-Ayala DA, Cnockaert M, André E, Andries K, Gonzalez-Y-Merchand JA, Vandamme P, Palomino JC, Martin A (2017) In vitro activity of bedaquiline against rapidly growing nontuberculous mycobacteria. J Med Microbiol 66(8):1140–1143. https://doi.org/10.1099/jmm.0.000537

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Hards K, Robson JR, Berney M, Shaw L, Bald D, Koul A, Andries K, Cook GM (2015) Bactericidal mode of action of bedaquiline. J Antimicrob Chemother 70(7):2028–2037. https://doi.org/10.1093/jac/dkv054

    Article  PubMed  CAS  Google Scholar 

  29. Lohrasbi V, Talebi M, Bialvaei AZ, Fattorini L, Drancourt M, Heidary M, Darban-Sarokhalil D (2018) Trends in the discovery of new drugs for Mycobacterium tuberculosis therapy with a glance at resistance. Tuberculosis 109:17–27. https://doi.org/10.1016/j.tube.2017.12.002

    Article  PubMed  CAS  Google Scholar 

  30. Meier T, Polzer P, Diederichs K, Welte W, Dimroth P (2005) Structure of the rotor ring of F-Type Na+-ATPase from Ilyobactertartaricus. Science 308(29):659–62. https://doi.org/10.1126/science.1111199

    Article  PubMed  CAS  Google Scholar 

  31. Cholo MC, Mothiba MT, Fourie B, Anderson R (2016) Mechanisms of action and therapeutic efficacies of the lipophilic antimycobacterial agents clofazimine and bedaquiline. J Antimicrob Chemother (2):dkw426. https://doi.org/10.1093/jac/dkw426

    Article  CAS  Google Scholar 

  32. Chahine EB, Karaoui LR, Mansour H (2014) Bedaquiline: a novel diarylquinoline for multidrug-resistant tuberculosis. Ann Pharmacother 48(1):107–115. https://doi.org/10.1177/1060028013504087

    Article  PubMed  CAS  Google Scholar 

  33. Philley JV, Wallace RJ Jr, Benwill JL, Taskar V, Brown-Elliott BA, Thakkar F, Aksamit TR, Griffith DE (2015) Preliminary results of bedaquiline as salvage therapy for patients with nontuberculous mycobacterial lung disease. Chest 148(2):499–506. https://doi.org/10.1378/chest.14-2764

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gold B, Roberts J, Ling Y, Quezada LL, Glasheen J, Ballinger E, Somersan-Karakaya S, Warrier T, Warren JD, Nathan C (2015) Rapid, semiquantitative assay to discriminate among compounds with activity against replicating or nonreplicating Mycobacterium tuberculosis. Antimicrob Agents Chemother 59(10):6521–6538. https://doi.org/10.1128/AAC.00803-15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Kamel B, Graham GG, Stocker SL, Liu Z, Williams KM, Carland JE, Pile KD, Day RO (2020) A pharmacokinetic-pharmacodynamic study of a single dose of febuxostat in healthy subjects. Br J Clin Pharmacol 86(12):2486–2496. https://doi.org/10.1111/bcp.14357

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Fox GJ, Menzies D (2013) A review of the evidence for using bedaquiline (TMC207) to treat multidrug-resistant tuberculosis. Infect Dis Ther 2:123–144. https://doi.org/10.1007/s40121-013-0009-3

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yadav S, Rawal G, Baxi M (2016) Bedaquiline: a novel antitubercular agent for the treatment of multidrug-resistant tuberculosis. Journal of Clinical and Diagnostic Research: JCDR 10(8):FM01. https://doi.org/10.7860/JCDR/2016/19052.8286

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Dheda K, Esmail A, Limberis J, Maartens G (2016) Selected questions and controversies about bedaquiline: a view from the field. Int J Tuberc Lung Dis 20(12):S24–32. https://doi.org/10.5588/ijtld.16.0065

    Article  Google Scholar 

  39. Dhillon J, Andries K, Phillips PP, Mitchison DA (2010) Bactericidal activity of the diarylquinoline TMC207 against Mycobacterium tuberculosis outside and within cells. Tuberculosis 90(5):301–305. https://doi.org/10.1016/j.tube.2010.07.004

    Article  PubMed  CAS  Google Scholar 

  40. Van Heeswijk RP, Dannemann B, Hoetelmans RM (2014) Bedaquiline: a review of human pharmacokinetics and drug–drug interactions. J Antimicrob Chemother 69(9):2310–8. https://doi.org/10.1093/jac/dku171

    Article  PubMed  CAS  Google Scholar 

  41. McLeay SC, Vis P, Van Heeswijk RP, Green B (2014) Population pharmacokinetics of bedaquiline (TMC207), a novel antituberculosis drug. Antimicrob Agents Chemother 58(9):5315–24. https://doi.org/10.1128/aac.01418-13

    Article  PubMed  PubMed Central  Google Scholar 

  42. Codecasa LR, Toumi M, D’Ausilio A, Aiello A, Damele F, Termini R, Uglietti A, Hettle R, Graziano G, De Lorenzo S (2017) Cost-effectiveness of bedaquiline in MDR and XDR tuberculosis in Italy. Journal of market access & health policy 5(1):1283105. https://doi.org/10.1080/20016689.2017.1283105

    Article  Google Scholar 

  43. Ahuja SD, Ashkin D, Avendano M, Banerjee R, Bauer M, Bayona JN, Becerra MC, Benedetti A, Burgos M, Centis R, Chan ED (2012) Multidrug resistant pulmonary tuberculosis treatment regimens and patient outcomes: an individual patient data meta-analysis of 9,153 patients. PLoS Med e1001300. https://doi.org/10.1371/journal.pmed.1001300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Brigden G, Hewison C, Varaine F (2015) New developments in the treatment of drug-resistant tuberculosis: clinical utility of bedaquiline and delamanid. Infection and drug resistance. 30:367–378. https://doi.org/10.2147/idr.s68351

  45. Diacon AH, Pym A, Grobusch M, Patientia R, Rustomjee R, Page-Shipp L, Pistorius C, Krause R, Bogoshi M, Churchyard G, Venter A (2009) The diarylquinoline TMC207 for multidrug-resistant tuberculosis. N Engl J Med 360(23):2397–2405. https://doi.org/10.1056/nejmoa0808427

    Article  PubMed  CAS  Google Scholar 

  46. Guglielmetti L, Le Dû D, Jachym M, Henry B, Martin D, Caumes E, Veziris N, Métivier N, Robert J (2015) Compassionate use of bedaquiline for the treatment of multidrug-resistant and extensively drug-resistant tuberculosis: interim analysis of a French cohort. Clin Infect Dis 60(2):188–94. https://doi.org/10.1093/cid/ciu786

    Article  PubMed  CAS  Google Scholar 

  47. Cohen K, Maartens G (2019) A safety evaluation of bedaquiline for the treatment of multi-drug resistant tuberculosis. Expert Opin Drug Saf 18(10):875–882. https://doi.org/10.1080/14740338.2019.1648429

    Article  PubMed  CAS  Google Scholar 

  48. Pontali E, Sotgiu G, D’Ambrosio L, Centis R, Migliori GB (2016) Bedaquiline and multidrug-resistant tuberculosis: a systematic and critical analysis of the evidence. Eur Respir J 47(2):394–402. https://doi.org/10.1183/13993003.01891-2015

    Article  PubMed  CAS  Google Scholar 

  49. Guglielmetti L, Jaspard M, Le Dû D, Lachâtre M, Marigot-Outtandy D, Bernard C, Veziris N, Robert J, Yazdanpanah Y, Caumes E, Fréchet-Jachym M (2017) Long-term outcome and safety of prolonged bedaquiline treatment for multidrug-resistant tuberculosis. Eur Respir J. https://doi.org/10.1183/13993003.01799-2016

    Article  PubMed  Google Scholar 

  50. Andries K, Verhasselt P, Guillemont J, Göhlmann HW, Neefs JM, Winkler H, Van Gestel J, Timmerman P, Zhu M, Lee E, Williams P (2005) A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307(5707):223–227. https://doi.org/10.1126/science.1106753

    Article  PubMed  CAS  Google Scholar 

  51. Huitric E, Verhasselt P, Koul A, Andries K, Hoffner S, Andersson DI (2010) Rates and mechanisms of resistance development in Mycobacterium tuberculosis to a novel diarylquinoline ATP synthase inhibitor. Antimicrob Agents Chemother 54(3):1022–1028. https://doi.org/10.1128/aac.01611-09

    Article  PubMed  CAS  Google Scholar 

  52. Centers for Disease Control and Prevention (2013) Provisional CDC guidelines for the use and safety monitoring of bedaquiline fumarate (Sirturo) for the treatment of multidrug-resistant tuberculosis. CDC, Atlanta, GA. https://www.cdc.gov/mmwr/preview/mmwrhtml/rr6209a1.htm

    Google Scholar 

  53. Pym AS, Diacon AH, Tang SJ, Conradie F, Danilovits M, Chuchottaworn C, Vasilyeva I, Andries K, Bakare N, De Marez T, Haxaire-Theeuwes M (2016) Bedaquiline in the treatment of multidrug-and extensively drug-resistant tuberculosis. Eur Respir J 47(2):564–574. https://doi.org/10.1183/13993003.00724-2015

    Article  PubMed  CAS  Google Scholar 

  54. Somoskovi A, Bruderer V, Hömke R, Bloemberg GV, Böttger EC (2015) A mutation associated with Clofazimine and bedaquiline cross-resistance in MDR-TB following bedaquiline treatment. Eur Respir J 45(2):554–557. https://doi.org/10.1183/09031936.00142914

    Article  PubMed  Google Scholar 

  55. Xu J, Wang B, Hu M, Huo F, Guo S, Jing W, Nuermberger E, Lu Y (2017) Primary Clofazimine and bedaquiline resistance among isolates from patients with multidrug-resistant tuberculosis. Antimicrob Agents Chemother 61(6):10–128. https://doi.org/10.1128/AAC.00239-17

    Article  Google Scholar 

  56. Villellas C, Coeck N, Meehan CJ, Lounis N, de Jong B, Rigouts L, Andries K (2017) Unexpected high prevalence of resistance-associated Rv0678 variants in MDR-TB patients without documented prior use of Clofazimine or bedaquiline. J Antimicrob Chemother 72(3):684–690. https://doi.org/10.1093/jac/dkw502

    Article  PubMed  CAS  Google Scholar 

  57. Ghajavand H, KargarpourKamakoli M, Khanipour S, PourazarDizaji S, Masoumi M, RahimiJamnani F, Fateh A, Siadat SD, Vaziri F (2019) High prevalence of bedaquiline resistance in treatment-naive tuberculosis patients and verapamil effectiveness. Antimicrob Agents Chemother 63(3):10–128. https://doi.org/10.1128/aac.02530-18

    Article  CAS  Google Scholar 

  58. Ghodousi A, Rizvi AH, Baloch AQ, Ghafoor A, Khanzada FM, Qadir M, Borroni E, Trovato A, Tahseen S, Cirillo DM (2019) Acquisition of cross-resistance to bedaquiline and Clofazimine following treatment for tuberculosis in Pakistan. Antimicrob Agents Chemother 63(9):10–128. https://doi.org/10.1128/aac.00915-19

    Article  CAS  Google Scholar 

  59. Zimenkov DV, Nosova EY, Kulagina EV, Antonova OV, Arslanbaeva LR, Isakova AI, Krylova LY, Peretokina IV, Makarova MV, Safonova SG, Borisov SE (2017) Examination of bedaquiline-and linezolid-resistant Mycobacterium tuberculosis isolates from the Moscow region. J Antimicrob Chemother 72(7):1901–1906. https://doi.org/10.1093/jac/dkx094

    Article  PubMed  CAS  Google Scholar 

  60. Field SK (2015) Bedaquiline for the treatment of multidrug-resistant tuberculosis: great promise or disappointment? Ther Adv Chronic Dis 6(4):170–184. https://doi.org/10.1177/2040622315582325

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Hameed HA, Islam MM, Chhotaray C, Wang C, Liu Y, Tan Y, Li X, Tan S, Delorme V, Yew WW, Liu J (2018) Molecular targets related drug resistance mechanisms in MDR-, XDR-, and TDR-Mycobacterium tuberculosis strains. Front Cell Infect Microbiol 8:114. https://doi.org/10.3389/fcimb.2018.00114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Almeida D, Ioerger T, Tyagi S, Li SY, Mdluli K, Andries K, Grosset J, Sacchettini J, Nuermberger E (2016) Mutations in PepQ confer low-level resistance to bedaquiline and clofazimine in Mycobacterium tuberculosis. Antimicrob Agents Chemother 60(8):4590–4599. https://doi.org/10.1128/aac.00753-16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Alexander DC, Vasireddy R, Vasireddy S, Philley JV, Brown-Elliott BA, Perry BJ, Griffith DE, Benwill JL, Cameron AD, Wallace Jr RJ (2017) Emergence of mmpT5 variants during bedaquiline treatment of Mycobacterium intracellulare lung disease. J Clin Microbiol 55(2):574–84. https://doi.org/10.1128/JCM.02087-16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Hoffmann H, Kohl TA, Hofmann-Thiel S, Merker M, Beckert P, Jaton K, Nedialkova L, Sahalchyk E, Rothe T, Keller PM, Niemann S (2016) Delamanid and bedaquiline resistance in Mycobacterium tuberculosis ancestral Beijing genotype causing extensively drug-resistant tuberculosis in a Tibetan refugee. Am J Respir Crit Care Med 193(3):337–340. https://doi.org/10.1164/rccm.201502-0372le

    Article  PubMed  CAS  Google Scholar 

  65. Segala E, Sougakoff W, Nevejans-Chauffour A, Jarlier V, Petrella S (2012) New mutations in the mycobacterial ATP synthase: new insights into the binding of the diarylquinoline TMC207 to the ATP synthase C-ring structure. Antimicrob Agents Chemother 56(5):2326–2334. https://doi.org/10.1128/AAC.06154-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Huitric E, Verhasselt P, Andries K, Hoffner SE (2007) In vitro antimycobacterial spectrum of a diarylquinoline ATP synthase inhibitor. Antimicrob Agents Chemother 51(11):4202–4204. https://doi.org/10.1128/AAC.00181-07

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Nguyen TV, Cao TB, Akkerman OW, Tiberi S, Vu DH, Alffenaar JW (2016) Bedaquiline as part of combination therapy in adults with pulmonary multidrug-resistant tuberculosis. Expert Rev Clin Pharmacol 9(8):1025–1037. https://doi.org/10.1080/17512433.2016.1200462

    Article  PubMed  CAS  Google Scholar 

  68. Gupta S, Cohen KA, Winglee K, Maiga M, Diarra B, Bishai WR (2014) Efflux Inhibition with verapamil potentiates bedaquiline in Mycobacterium tuberculosis. Antimicrob Agents Chemother 58(1):574–576. https://doi.org/10.1128/AAC.01462-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Li XZ, Plésiat P, Nikaido H (2015) The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 28(2):337–418. https://doi.org/10.1128/cmr.00117-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Pule CM, Sampson SL, Warren RM, Black PA, van Helden PD, Victor TC, Louw GE (2016) Efflux pump inhibitors: targeting mycobacterial efflux systems to enhance TB therapy. J Antimicrob Chemother 71(1):17–26. https://doi.org/10.1093/jac/dkv316

    Article  PubMed  CAS  Google Scholar 

  71. Hartkoorn RC, Uplekar S, Cole ST (2014) Cross-resistance between Clofazimine and bedaquiline through upregulation of MmpL5 in Mycobacterium tuberculosis. Antimicrob Agents Chemother 58(5):2979–2981. https://doi.org/10.1128/aac.00037-14

    Article  PubMed  PubMed Central  Google Scholar 

  72. Coeck N, Villelas C, Meehan C, Lounis N, Niemann S, Rigouts L, de Jong B, Andries K (2015) Unexpected high frequency of Rv0678 mutations in MDR-TB patients without documented prior use of clofazimine or bedaquiline. Int J Tuberc Lung Dis 19:S45. https://doi.org/10.1093/jac/dkw502

    Article  CAS  Google Scholar 

  73. Andries K, Villellas C, Coeck N, Thys K, Gevers T, Vranckx L, Lounis N, de Jong BC, Koul A (2014) Acquired resistance of Mycobacterium tuberculosis to bedaquiline. PLoS One 9(7):e102135. https://doi.org/10.1371/journal.pone.0102135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Bloemberg GV, Keller PM, Stucki D, Trauner A, Borrell S, Latshang T, Coscolla M, Rothe T, Hömke R, Ritter C, Feldmann J (2015) Acquired resistance to bedaquiline and Delamanid in therapy for tuberculosis. N Engl J Med 373(20):1986–1988. https://doi.org/10.1056/nejmc1505196

    Article  PubMed  PubMed Central  Google Scholar 

  75. Sassetti CM, Boyd DH, Rubin EJ (2003) Genes required for mycobacterial growth defined by high-density mutagenesis. Mol Microbiol 48(1):77–84. https://doi.org/10.1046/j.1365-2958.2003.03425.x

    Article  PubMed  CAS  Google Scholar 

  76. Georghiou SB, de Vos M, Velen K, Miotto P, Colman RE, Cirillo DM, Ismail N, Rodwell TC, Suresh A, Ruhwald M (2023) Designing molecular diagnostics for current tuberculosis drug regimens. Emerging microbes & infections 12(1):2178243. https://doi.org/10.1080/22221751.2023.2178243

    Article  Google Scholar 

  77. World Health Organization. Technical report on critical concentrations for drug susceptibility testing of medicines used in the treatment of drug-resistant tuberculosis. World Health Organization (2018) (https://www.who.int/publications/i/item/WHO-CDS-TB-2018.5)

  78. Schön T, Köser CU, Werngren J, Viveiros M, Georghiou S, Kahlmeter G, Giske C, Maurer F, Lina G, Turnidge J, van Ingen J (2020) What is the role of the EUCAST reference method for MIC testing of the Mycobacterium tuberculosis complex? Clin Microbiol Infect 26(11):1453–5. https://doi.org/10.1016/j.cmi.2020.07.037

    Article  PubMed  Google Scholar 

  79. Nimmo C, Millard J, van Dorp L, Brien K, Moodley S, Wolf A, Grant AD, Padayatchi N, Pym AS, Balloux F, O’Donnell M (2020) Population-level emergence of bedaquiline and clofazimine resistance-associated variants among patients with drug-resistant tuberculosis in southern Africa: a phenotypic and phylogenetic analysis. The Lancet Microbe 1(4):e165-74. https://doi.org/10.1016/S2666-5247(20)30031-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Operario DJ, Koeppel AF, Turner SD, Bao Y, Pholwat S, Banu S, Foongladda S, Mpagama S, Gratz J, Ogarkov O, Zhadova S (2017) Prevalence and extent of heteroresistance by next generation sequencing of multidrug-resistant tuberculosis. PLoS One 12(5):e0176522. https://doi.org/10.1371/journal.pone.0176522

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Günther G, Guglielmetti L, Kherabi Y, Duarte R, Lange C, Tuberculosis Network European Trials group (2024) Availability of drugs and resistance testing for bedaquiline, pretomanid, linezolid, and moxifloxacin (BPaL (M)) regimen for rifampicin-resistant tuberculosis in Europe. Clin Microbiol Infect 30(9):1197-e1. https://doi.org/10.1016/j.cmi.2024.03.009

    Article  CAS  Google Scholar 

  82. Koehler N, Andres S, Merker M, Dreyer V, John A, Kuhns M, Krieger D, Choong E, Verougstraete N, ZurWiesch PA, Wicha SG (2023) Pretomanid-resistant tuberculosis. J Infect 86(5):520–524. https://doi.org/10.1016/j.jinf.2023.01.039

    Article  PubMed  Google Scholar 

  83. Almeida DV, Converse PJ, Nuermberger EL (2023) Mutations in Rv0678 reduce susceptibility of Mycobacterium tuberculosis to the DprE1 inhibitor TBA-7371. Antimicrob Agents Chemother 67(3):e00052-23. https://doi.org/10.1128/aac.00052-23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Poulton NC, Azadian ZA, DeJesus MA, Rock JM (2022) Mutations in rv0678 confer low-level resistance to benzothiazinone DprE1 inhibitors in Mycobacterium tuberculosis. Antimicrob Agents Chemother 66(9):e00904-22. https://doi.org/10.1128/aac.00904-22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Diacon AH, Dawson R, von Groote-Bidlingmaier F, Symons G, Venter A, Donald PR, van Niekerk C, Everitt D, Winter H, Becker P, Mendel CM (2012) 14-day bactericidal activity of PA-824, bedaquiline, pyrazinamide, and moxifloxacin combinations: a randomised trial. Lancet 380(9846):986. https://doi.org/10.1016/s0140-6736(12)61080-0

    Article  PubMed  CAS  Google Scholar 

  86. Tahseen S, Van Deun A, de Jong BC, Decroo T (2021) Second-line injectable drugs for rifampicin-resistant tuberculosis: better the devil we know? J Antimicrob Chemother 76(4):831–5. https://doi.org/10.1093/jac/dkaa489

    Article  PubMed  CAS  Google Scholar 

  87. Goodall RL, Meredith SK, Nunn AJ, Bayissa A, Bhatnagar AK, Bronson G, Chiang CY, Conradie F, Gurumurthy M, Kirenga B, Kiria N (2022) Evaluation of two short standardised regimens for the treatment of rifampicin-resistant tuberculosis (STREAM stage 2): an open-label, multicentre, randomised, non-inferiority trial. Lancet 400(10366):1858–1868. https://doi.org/10.1016/S0140-6736(22)02078-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Shaw ES, Stoker NG, Potter JL, Claassen H, Leslie A, Tweed CD, Chiang CY, Conradie F, Esmail H, Lange C, Pinto L (2024) Bedaquiline: what might the future hold? Lancet Microbe 5(12):100909. https://doi.org/10.1016/S2666-5247(24)00149-6

    Article  PubMed  CAS  Google Scholar 

  89. Achanta S, Jaju J, Kumar AM, Nagaraja SB, Shamrao SR, Bandi SK, Kumar A, Satyanarayana S, Harries AD, Nair SA, Dewan PK (2013) Tuberculosis management practices by private practitioners in Andhra Pradesh, India. PLoS One 8(8):e71119. https://doi.org/10.1371/journal.pone.0071119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Udwadia ZF, Pinto LM, Uplekar MW (2010) Tuberculosis management by private practitioners in Mumbai, India: has anything changed in two decades? PLoS One 5(8):e12023. https://doi.org/10.1371/journal.pone.0012023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Shrivastava SR, Shrivastava PS, Ramasamy J (2013) Notification of tuberculosis cases in India: moving ahead in Revised National Tuberculosis Control Program. Infect Ecol Epidemiol 3(1):23006. https://doi.org/10.3402/iee.v3i0.23006

    Article  Google Scholar 

  92. Sharma D, Sharma S, Sharma J (2020) Potential strategies for the management of drug-resistant tuberculosis. J Glob Antimicrob Resist 2929:210–214. https://doi.org/10.1016/j.jgar.2020.02.029

    Article  Google Scholar 

  93. Wang H, Li B, Sun Y, Ma Q, Feng Y, Jia Y, Wang Wei, Su Min, Liu Xueting, Shu Bowen, Zheng Jundun, Sang Shuo, Yan Yan, Wu Yanqiu, Zhang Yunlong, Gao Qiuxia, Li Peiran, Wang Jiamei, Ma Fei, Li Xiaoxue, Yan Dingyuan, Wang Dong, Zou Xiaoming, Liao Y (2024) NIR-II AIE luminogen-based erythrocyte-like nanoparticles with granuloma-targeting and self-oxygenation characteristics for combined phototherapy of tuberculosis. Adv Mater 36(38):2406143. https://doi.org/10.1002/adma.202406143

    Article  CAS  Google Scholar 

  94. Sharma D, Singh I, Sharma J, Verma IK, Ratn A (2025) Bacteriophage therapy to combat microbial infections and antimicrobial resistance. J Basic Microbiol e70090. https://doi.org/10.1002/jobm.70090

    Article  PubMed  Google Scholar 

  95. Chen E, Chen C, Chen F, Yu P, Lin L (2019) Positive association between MIC gene polymorphism and tuberculosis in Chinese population. Immunol Lett 213:62–69. https://doi.org/10.1016/j.imlet.2019.07.008

    Article  PubMed  CAS  Google Scholar 

  96. Patil S, Singh I, Verma IK, Kumar A, Sharma J, Ratn A, Sharma D (2025) Vaccines as potential frontliners against antimicrobial resistance (AMR): a focused review. Infect Drug Resist 18:5023–5041. https://doi.org/10.2147/IDR.S544665

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the Graphic Era (Deemed to be) University for sustainable research support.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

DS conceived the idea. DS, IS, and JS curated data, wrote the initial draft, and prepared the figures. DS, MSD, AR, JD, MMAB, SS, and DB reviewed the manuscript. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Divakar Sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, I., Sharma, J., Sharma, D. et al. Bedaquiline Resistance: A Looming Global Threat in Tuberculosis Management. Curr Microbiol 83, 57 (2026). https://doi.org/10.1007/s00284-025-04655-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1007/s00284-025-04655-7