Skip to main content
Log in

Declining FXR expression coordinates neonatal beta cell mass development with microbial bile acid metabolism maturation in mice

  • Extended Article
  • Published:
Diabetologia Aims and scope Submit manuscript

Abstract

Aims/hypothesis

Diet switch during weaning induces gut microbiome maturation, accompanied by the formation of adequate functional beta cell mass. Bile acid (BA), an essential microbial metabolite, regulates host glucose homeostasis by binding to its main receptor, farnesoid X receptor (FXR, encoded by NR1H4). However, the precise roles of microbial BA metabolism and FXR signalling in neonatal beta cell development are still unclear.

Methods

Islet FXR levels were determined at different perinatal stages. Postnatal changes in gut microbiome and BA profiles were examined in mice, with changes in germ-free mouse BAs serving as the control. We genetically modified beta cells to sustain FXR expression after birth (using Nr1h4-knockin [βFxrKI] mice) and performed morphological and functional analysis on murine islets. Single-cell RNA-seq and single-cell assay for transposase-accessible chromatin sequencing of islet cells were used to study FXR-mediated downstream regulation in islets. Lineage tracing was performed to evaluate beta cell fate transition. Mendelian randomisation (MR) and human islet proteomics data analysis were applied to study the pathological relevance in human diabetes.

Results

FXR expression in beta cells declined after birth (positive cell proportion, 29.1 ± 3.1% at embryonic day 18.5 vs 4.2 ± 2.4% at 3 weeks postnatal in mice, p<0.001). This physiological change paralleled the ascending of FXR-agonistic BAs derived from gut microbiome maturation (unconjugated BA proportion, 0.9 ± 0.6% at 1 week vs 14.0 ± 5.6% at 3 weeks, p<0.05). βFxrKI mice had limited beta cell mass growth (approximately 70% of the control level at 1 week of age and only 15% of the control level at 8 weeks of age) and developed high blood glucose levels by weaning (random blood glucose, 15.2 ± 1.7 mmol/l in βFxrKI vs 7.7 ± 0.5 mmol/l in control, p<0.001), mainly resulting from elevated cell apoptosis (1.95-, 1.79-, and 3.27-fold increase vs control at 1, 2 and 3 weeks, respectively) and altered beta cell identity. Casp6 was identified as a key downstream target in beta cell FXR. Intervention with antibiotics or a specific caspase-6 (CASP6) inhibitor partially recovered the phenotypes of βFxrKI mice. Further validation in humans showed that islet FXR/CASP6 levels were elevated in individuals with type 2 diabetes (FXR, −0.039 ± 1.257 a.u. in donors without diabetes vs 0.646 ± 1.140 a.u. in donors with diabetes, p=0.0371; CASP6, −1.575 ± 0.307 a.u. in donors without diabetes vs −1.325 ± 0.381 a.u. in donors with diabetes, p=0.011). MR analysis further supported the effect of human islet FXR expression in elevating HbA1c (β=0.006, p<0.001) with lowering fasting insulin level (β=−0.009, p=0.02) and the effect of CASP6 expression in enhancing 2 h glucose (β=0.039, p=0.01).

Conclusions/interpretation

The declining FXR–CASP6 signals in neonatal beta cells could serve as a programmed host response to the maturing gut microbial BA metabolism to maintain normal postnatal beta cell mass development and ensure glycaemic homeostasis in adults.

Data availability

Raw data of scRNA-seq and scATAC-seq are deposited in the Gene Expression Omnibus (GEO) database under the accession number GSE241408. The code used in this Mendelian randomisation study is publicly available at https://github.com/Angela-linyt/Gene_Glu_MR.git.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

Abx:

Antibiotics

AMPK:

AMP-activated protein kinase

ATAC:

Assay for transposase-accessible chromatin

BA:

Bile acid

CASP6:

Caspase-6

ChIP:

Chromatin immunoprecipitation

Conv:

Conventional environment

DAR:

Differentially accessible region

DEG:

Differentially expressed gene

E18.5:

Embryonic day 18.5

FA:

Folic acid

FOLR1:

Folate receptor 1

FXR:

Farnesoid X receptor

FXRE:

FXR response element

GF:

Germ-free

GO:

Gene Ontology

GSEA:

Gene-set enrichment analysis

GSIS:

Glucose-stimulated insulin secretion

MafA:

Musculoaponeurotic fibrosarcoma oncogene family protein A

MR:

Mendelian randomisation

OCR:

Oxygen consumption rate

OXPHOS:

Oxidative phosphorylation

P1w:

Postnatal 1 week of age

P2w, P3w, P8w:

Postnatal 2, 3, 8 weeks of age

PBA:

Primary bile acid

PDX1:

Pancreatic and duodenal homeobox 1

PP (cells):

Pancreatic polypeptide (cells)

PPY:

Pancreatic polypeptide

qPCR:

Quantitative real-time PCR

SBA:

Secondary bile acid

scATAC-seq:

Single-cell assay for transposase-accessible chromatin sequencing

scRNA-seq:

Single-cell RNA-seq

TUNEL:

TdT-mediated dUTP nick-end labelling

UMAP:

Uniform Manifold Approximation and Projection

References

  1. Gregg BE, Moore PC, Demozay D et al (2012) Formation of a human β-cell population within pancreatic islets is set early in life. J Clin Endocrinol Metab 97(9):3197–3206. https://doi.org/10.1210/jc.2012-1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Meier JJ, Butler AE, Saisho Y et al (2008) Beta-cell replication is the primary mechanism subserving the postnatal expansion of beta-cell mass in humans. Diabetes 57(6):1584–1594. https://doi.org/10.2337/db07-1369

    Article  CAS  PubMed  Google Scholar 

  3. Rhodes CJ (2005) Type 2 diabetes-a matter of beta-cell life and death? Science (New York, NY) 307(5708):380–384. https://doi.org/10.1126/science.1104345

    Article  CAS  Google Scholar 

  4. Finegood DT, Scaglia L, Bonner-Weir S (1995) Dynamics of beta-cell mass in the growing rat pancreas. Estimation with a simple mathematical model. Diabetes 44(3):249–256. https://doi.org/10.2337/diab.44.3.249

    Article  CAS  PubMed  Google Scholar 

  5. Teta M, Long SY, Wartschow LM, Rankin MM, Kushner JA (2005) Very slow turnover of beta-cells in aged adult mice. Diabetes 54(9):2557–2567. https://doi.org/10.2337/diabetes.54.9.2557

    Article  CAS  PubMed  Google Scholar 

  6. Cnop M, Hughes SJ, Igoillo-Esteve M et al (2010) The long lifespan and low turnover of human islet beta cells estimated by mathematical modelling of lipofuscin accumulation. Diabetologia 53(2):321–330. https://doi.org/10.1007/s00125-009-1562-x

    Article  CAS  PubMed  Google Scholar 

  7. Helman A, Cangelosi AL, Davis JC et al (2020) A nutrient-sensing transition at birth triggers glucose-responsive insulin secretion. Cell Metab 31(5):1004-1016 e1005. https://doi.org/10.1016/j.cmet.2020.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zeng C, Mulas F, Sui Y et al (2017) Pseudotemporal ordering of single cells reveals metabolic control of postnatal β cell proliferation. Cell Metab 25(5):1160-1175.e1111. https://doi.org/10.1016/j.cmet.2017.04.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stolovich-Rain M, Enk J, Vikesa J et al (2015) Weaning triggers a maturation step of pancreatic β cells. Dev Cell 32(5):535–545. https://doi.org/10.1016/j.devcel.2015.01.002

    Article  CAS  PubMed  Google Scholar 

  10. Jaafar R, Tran S, Shah AN et al (2019) mTORC1 to AMPK switching underlies β-cell metabolic plasticity during maturation and diabetes. J Clin Investig 129(10):4124–4137. https://doi.org/10.1172/jci127021

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ouyang R, Ding J, Huang Y et al (2023) Maturation of the gut metabolome during the first year of life in humans. Gut Microbes 15(1):2231596. https://doi.org/10.1080/19490976.2023.2231596

    Article  PubMed  PubMed Central  Google Scholar 

  12. Roager HM, Stanton C, Hall LJ (2023) Microbial metabolites as modulators of the infant gut microbiome and host-microbial interactions in early life. Gut Microbes 15(1):2192151. https://doi.org/10.1080/19490976.2023.2192151

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ahrens AP, Hyötyläinen T, Petrone JR et al (2024) Infant microbes and metabolites point to childhood neurodevelopmental disorders. Cell 187(8):1853-1873.e1815. https://doi.org/10.1016/j.cell.2024.02.035

    Article  CAS  PubMed  Google Scholar 

  14. Shenhav L, Fehr K, Reyna ME et al (2024) Microbial colonization programs are structured by breastfeeding and guide healthy respiratory development. Cell 187(19):5431-5452.e5420. https://doi.org/10.1016/j.cell.2024.07.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lubin JB, Green J, Maddux S et al (2023) Arresting microbiome development limits immune system maturation and resistance to infection in mice. Cell Host Microbe 31(4):554-570 e557. https://doi.org/10.1016/j.chom.2023.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hill JH, Massaquoi MS, Sweeney EG et al (2022) BefA, a microbiota-secreted membrane disrupter, disseminates to the pancreas and increases β cell mass. Cell Metab 34(11):1779-1791.e1779. https://doi.org/10.1016/j.cmet.2022.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hill JH, Franzosa EA, Huttenhower C, Guillemin K (2016) A conserved bacterial protein induces pancreatic beta cell expansion during zebrafish development. eLife 5:e20145. https://doi.org/10.7554/eLife.20145

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhang Q, Pan Y, Zeng B et al (2019) Intestinal lysozyme liberates Nod1 ligands from microbes to direct insulin trafficking in pancreatic beta cells. Cell Res 29(7):516–532. https://doi.org/10.1038/s41422-019-0190-3

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wahlström A, Sayin SI, Marschall HU, Bäckhed F (2016) Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab 24(1):41–50. https://doi.org/10.1016/j.cmet.2016.05.005

    Article  CAS  PubMed  Google Scholar 

  20. Lynch SV, Pedersen O (2016) The human intestinal microbiome in health and disease. N Engl J Med 375(24):2369–2379. https://doi.org/10.1056/NEJMra1600266

    Article  CAS  PubMed  Google Scholar 

  21. Perino A, Schoonjans K (2022) Metabolic messengers: bile acids. Nat Metab 4(4):416–423. https://doi.org/10.1038/s42255-022-00559-z

    Article  CAS  PubMed  Google Scholar 

  22. Cai J, Sun L, Gonzalez FJ (2022) Gut microbiota-derived bile acids in intestinal immunity, inflammation, and tumorigenesis. Cell Host Microbe 30(3):289–300. https://doi.org/10.1016/j.chom.2022.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lamichhane S, Sen P, Dickens AM et al (2022) Dysregulation of secondary bile acid metabolism precedes islet autoimmunity and type 1 diabetes. Cell Rep Med 3(10):100762. https://doi.org/10.1016/j.xcrm.2022.100762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lu J, Wang S, Li M et al (2021) Association of serum bile acids profile and pathway dysregulation with the risk of developing diabetes among normoglycemic chinese adults: findings from the 4C study. Diabetes Care 44(2):499–510. https://doi.org/10.2337/dc20-0884

    Article  CAS  PubMed  Google Scholar 

  25. Parséus A, Sommer N, Sommer F et al (2017) Microbiota-induced obesity requires farnesoid X receptor. Gut 66(3):429–437. https://doi.org/10.1136/gutjnl-2015-310283

    Article  CAS  PubMed  Google Scholar 

  26. Prawitt J, Abdelkarim M, Stroeve JH et al (2011) Farnesoid X receptor deficiency improves glucose homeostasis in mouse models of obesity. Diabetes 60(7):1861–1871. https://doi.org/10.2337/db11-0030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Preidis GA, Kim KH, Moore DD (2017) Nutrient-sensing nuclear receptors PPARα and FXR control liver energy balance. J Clin Investig 127(4):1193–1201. https://doi.org/10.1172/jci88893

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gonzalez FJ, Jiang C, Patterson AD (2016) An intestinal microbiota-farnesoid x receptor axis modulates metabolic disease. Gastroenterology 151(5):845–859. https://doi.org/10.1053/j.gastro.2016.08.057

    Article  CAS  PubMed  Google Scholar 

  29. Clifford BL, Sedgeman LR, Williams KJ et al (2021) FXR activation protects against NAFLD via bile-acid-dependent reductions in lipid absorption. Cell Metab 33(8):1671-1684 e1674. https://doi.org/10.1016/j.cmet.2021.06.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sun L, Cai J, Gonzalez FJ (2021) The role of farnesoid X receptor in metabolic diseases, and gastrointestinal and liver cancer. Nat Rev Gastroenterol Hepatol 18(5):335–347. https://doi.org/10.1038/s41575-020-00404-2

    Article  CAS  PubMed  Google Scholar 

  31. Jiang C, Xie C, Li F et al (2015) Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease. J Clin Investig 125(1):386–402. https://doi.org/10.1172/jci76738

    Article  PubMed  Google Scholar 

  32. Fang S, Suh JM, Reilly SM et al (2015) Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nat Med 21(2):159–165. https://doi.org/10.1038/nm.3760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schittenhelm B, Wagner R, Kähny V et al (2015) Role of FXR in β-cells of lean and obese mice. Endocrinology 156(4):1263–1271. https://doi.org/10.1210/en.2014-1751

    Article  CAS  PubMed  Google Scholar 

  34. Zhou W, Anakk S (2022) Enterohepatic and non-canonical roles of farnesoid X receptor in controlling lipid and glucose metabolism. Mol Cell Endocrinol 549:111616. https://doi.org/10.1016/j.mce.2022.111616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Popescu IR, Helleboid-Chapman A, Lucas A et al (2010) The nuclear receptor FXR is expressed in pancreatic beta-cells and protects human islets from lipotoxicity. FEBS Lett 584(13):2845–2851. https://doi.org/10.1016/j.febslet.2010.04.068

    Article  CAS  PubMed  Google Scholar 

  36. Düfer M, Hörth K, Wagner R et al (2012) Bile acids acutely stimulate insulin secretion of mouse β-cells via farnesoid X receptor activation and K(ATP) channel inhibition. Diabetes 61(6):1479–1489. https://doi.org/10.2337/db11-0815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shao L, Kong X, Lv S et al (2024) FXR-regulated COX6A2 triggers mitochondrial apoptosis of pancreatic β-cell in type 2 diabetes. Cell Death Dis 15(12):920. https://doi.org/10.1038/s41419-024-07302-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kong X, Yang C, Li B et al (2024) FXR/Menin-mediated epigenetic regulation of E2F3 expression controls β-cell proliferation and is increased in islets from diabetic GK rats after RYGB. Biochim Biophys Acta Mol Basis Dis 1870(5):167136. https://doi.org/10.1016/j.bbadis.2024.167136

    Article  CAS  PubMed  Google Scholar 

  39. Gu Y, Lindner J, Kumar A, Yuan W, Magnuson MA (2011) Rictor/mTORC2 is essential for maintaining a balance between beta-cell proliferation and cell size. Diabetes 60(3):827–837. https://doi.org/10.2337/db10-1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ni Q, Gu Y, Xie Y et al (2017) Raptor regulates functional maturation of murine beta cells. Nat Commun 8:15755. https://doi.org/10.1038/ncomms15755

    Article  PubMed  PubMed Central  Google Scholar 

  41. Qiu Y, Shen L, Fu L et al (2020) The glucose-lowering effects of α-glucosidase inhibitor require a bile acid signal in mice. Diabetologia 63(5):1002–1016. https://doi.org/10.1007/s00125-020-05095-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Francis F, Varankovich N, Brook B et al (2019) Probiotic studies in neonatal mice using gavage. J Vis Exp: JoVE 143:e59074. https://doi.org/10.3791/59074

    Article  CAS  Google Scholar 

  43. Suez J, Zmora N, Zilberman-Schapira G et al (2018) Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell 174(6):1406-1423 e1416. https://doi.org/10.1016/j.cell.2018.08.047

    Article  CAS  PubMed  Google Scholar 

  44. Cui C, Li T, Xie Y et al (2021) Enhancing Acsl4 in absence of mTORC2/Rictor drove β-cell dedifferentiation via inhibiting FoxO1 and promoting ROS production. Biochim Biophys Acta Mol Basis Dis 186(12):166261. https://doi.org/10.1016/j.bbadis.2021.166261

    Article  CAS  Google Scholar 

  45. Shen L, Gu Y, Qiu Y et al (2020) Atorvastatin targets the islet mevalonate pathway to dysregulate mTOR signaling and reduce β-cell functional mass. Diabetes 69(1):48–59. https://doi.org/10.2337/db19-0178

    Article  CAS  PubMed  Google Scholar 

  46. Sidarala V, Pearson GL, Parekh VS et al (2020) Mitophagy protects β cells from inflammatory damage in diabetes. JCI Insight 5(24):e141138. https://doi.org/10.1172/jci.insight.141138

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ni Q, Song J, Wang Y et al (2021) Proper mTORC1 activity is required for glucose sensing and early adaptation in human pancreatic β cells. J Clin Endocrinol Metab 106(2):e562–e572. https://doi.org/10.1210/clinem/dgaa786

    Article  PubMed  Google Scholar 

  48. Kolic J, Sun WG, Cen HH et al (2024) Proteomic predictors of individualized nutrient-specific insulin secretion in health and disease. Cell Metab 36(7):1619-1633.e1615. https://doi.org/10.1016/j.cmet.2024.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lawlor DA, Tilling K, Davey Smith G (2016) Triangulation in aetiological epidemiology. Int J Epidemiol 45(6):1866–1886. https://doi.org/10.1093/ije/dyw314

    Article  PubMed  Google Scholar 

  50. Alonso L, Piron A, Morán I et al (2021) TIGER: The gene expression regulatory variation landscape of human pancreatic islets. Cell Rep 37(2):109807. https://doi.org/10.1016/j.celrep.2021.109807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. (2020) The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science (New York, NY) 369(6509):1318–1330. https://doi.org/10.1126/science.aaz1776

  52. Chen J, Spracklen CN, Marenne G et al (2021) The trans-ancestral genomic architecture of glycemic traits. Nat Genet 53(6):840–860. https://doi.org/10.1038/s41588-021-00852-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Suzuki K, Hatzikotoulas K, Southam L et al (2024) Genetic drivers of heterogeneity in type 2 diabetes pathophysiology. Nature 627(8003):347–357. https://doi.org/10.1038/s41586-024-07019-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Smith GD, Ebrahim S (2003) “Mendelian randomization”: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol 32(1):1–22. https://doi.org/10.1093/ije/dyg070

    Article  PubMed  Google Scholar 

  55. Wu X, Ying H, Yang Q et al (2024) Transcriptome-wide Mendelian randomization during CD4(+) T cell activation reveals immune-related drug targets for cardiometabolic diseases. Nat Commun 15(1):9302. https://doi.org/10.1038/s41467-024-53621-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Qiu WL, Zhang YW, Feng Y, Li LC, Yang L, Xu CR (2017) Deciphering pancreatic islet β cell and α cell maturation pathways and characteristic features at the single-cell level. Cell Metab 25(5):1194-1205.e1194. https://doi.org/10.1016/j.cmet.2017.04.003

    Article  CAS  PubMed  Google Scholar 

  57. Zhu H, Wang G, Nguyen-Ngoc KV et al (2023) Understanding cell fate acquisition in stem-cell-derived pancreatic islets using single-cell multiome-inferred regulomes. Dev Cell 58(9):727-743 e711. https://doi.org/10.1016/j.devcel.2023.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sayin SI, Wahlström A, Felin J et al (2013) Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab 17(2):225–235. https://doi.org/10.1016/j.cmet.2013.01.003

    Article  CAS  PubMed  Google Scholar 

  59. Jia W, Xie G, Jia W (2018) Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol 15(2):111–128. https://doi.org/10.1038/nrgastro.2017.119

    Article  CAS  PubMed  Google Scholar 

  60. Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102(43):15545–15550. https://doi.org/10.1073/pnas.0506580102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mootha VK, Lindgren CM, Eriksson KF et al (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34(3):267–273. https://doi.org/10.1038/ng1180

    Article  CAS  PubMed  Google Scholar 

  62. Pullen TJ, Rutter GA (2013) When less is more: the forbidden fruits of gene repression in the adult β-cell. Diabetes Obes Metab 15(6):503–512. https://doi.org/10.1111/dom.12029

    Article  CAS  PubMed  Google Scholar 

  63. Liao P, Chen L, Zhou H et al (2024) Osteocyte mitochondria regulate angiogenesis of transcortical vessels. Nat Commun 15(1):2529. https://doi.org/10.1038/s41467-024-46095-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fukaishi T, Nakagawa Y, Fukunaka A et al (2021) Characterisation of Ppy-lineage cells clarifies the functional heterogeneity of pancreatic beta cells in mice. Diabetologia 64(12):2803–2816. https://doi.org/10.1007/s00125-021-05560-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Perez-Frances M, van Gurp L, Abate MV et al (2021) Pancreatic Ppy-expressing γ-cells display mixed phenotypic traits and the adaptive plasticity to engage insulin production. Nat Commun 12(1):4458. https://doi.org/10.1038/s41467-021-24788-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang D, Wang J, Bai L et al (2020) Long-term expansion of pancreatic islet organoids from resident procr(+) progenitors. Cell 180(6):1198-1211.e1119. https://doi.org/10.1016/j.cell.2020.02.048

    Article  CAS  PubMed  Google Scholar 

  67. Collombat P, Hecksher-Sørensen J, Krull J et al (2007) Embryonic endocrine pancreas and mature beta cells acquire alpha and PP cell phenotypes upon Arx misexpression. J Clin Investig 117(4):961–970. https://doi.org/10.1172/jci29115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mathis D, Vence L, Benoist C (2001) beta-Cell death during progression to diabetes. Nature 414(6865):792–798. https://doi.org/10.1038/414792a

    Article  CAS  PubMed  Google Scholar 

  69. Scaglia L, Cahill CJ, Finegood DT, Bonner-Weir S (1997) Apoptosis participates in the remodeling of the endocrine pancreas in the neonatal rat. Endocrinology 138(4):1736–1741. https://doi.org/10.1210/endo.138.4.5069

    Article  CAS  PubMed  Google Scholar 

  70. Fuchs Y, Steller H (2011) Programmed cell death in animal development and disease. Cell 147(4):742–758. https://doi.org/10.1016/j.cell.2011.10.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ke FFS, Vanyai HK, Cowan AD et al (2018) Embryogenesis and adult life in the absence of intrinsic apoptosis effectors BAX, BAK, and BOK. Cell 173(5):1217-1230 e1217. https://doi.org/10.1016/j.cell.2018.04.036

    Article  CAS  PubMed  Google Scholar 

  72. Svandova E, Lesot H, Sharpe P, Matalova E (2022) Making the head: caspases in life and death. Front Cell Dev Biol 10:1075751. https://doi.org/10.3389/fcell.2022.1075751

    Article  PubMed  Google Scholar 

  73. Graham RK, Ehrnhoefer DE, Hayden MR (2011) Caspase-6 and neurodegeneration. Trends Neurosci 34(12):646–656. https://doi.org/10.1016/j.tins.2011.09.001

    Article  CAS  PubMed  Google Scholar 

  74. Graham RK, Deng Y, Slow EJ et al (2006) Cleavage at the caspase-6 site is required for neuronal dysfunction and degeneration due to mutant huntingtin. Cell 125(6):1179–1191. https://doi.org/10.1016/j.cell.2006.04.026

    Article  CAS  PubMed  Google Scholar 

  75. Zhao P, Sun X, Chaggan C et al (2020) An AMPK-caspase-6 axis controls liver damage in nonalcoholic steatohepatitis. Science (New York, NY) 367(6478):652–660. https://doi.org/10.1126/science.aay0542

    Article  CAS  Google Scholar 

  76. Lien F, Berthier A, Bouchaert E et al (2014) Metformin interferes with bile acid homeostasis through AMPK-FXR crosstalk. J Clin Investig 124(3):1037–1051. https://doi.org/10.1172/jci68815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yang H, Qin D, Xu S et al (2021) Folic acid promotes proliferation and differentiation of porcine pancreatic stem cells into insulin-secreting cells through canonical Wnt and ERK signaling pathway. J Steroid Biochem Mol Biol 205:105772. https://doi.org/10.1016/j.jsbmb.2020.105772

    Article  CAS  PubMed  Google Scholar 

  78. Mussai EX, Lofft ZA, Vanderkruk B et al (2023) Folic acid supplementation in a mouse model of diabetes in pregnancy alters insulin sensitivity in female mice and beta cell mass in offspring. Faseb J 37(11):e23200. https://doi.org/10.1096/fj.202301491R

    Article  CAS  PubMed  Google Scholar 

  79. Nawaz FZ, Kipreos ET (2022) Emerging roles for folate receptor FOLR1 in signaling and cancer. Trends Endocrinol Metab: TEM 33(3):159–174. https://doi.org/10.1016/j.tem.2021.12.003

    Article  CAS  PubMed  Google Scholar 

  80. Boshnjaku V, Shim KW, Tsurubuchi T et al (2012) Nuclear localization of folate receptor alpha: a new role as a transcription factor. Sci Rep 2:980. https://doi.org/10.1038/srep00980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Monick S, Mohanty V, Khan M et al (2019) A phenotypic switch of differentiated glial cells to dedifferentiated cells is regulated by folate receptor α. Stem Cells 37(11):1441–1454. https://doi.org/10.1002/stem.3067

    Article  CAS  PubMed  Google Scholar 

  82. Karampelias C, Rezanejad H, Rosko M et al (2021) Reinforcing one-carbon metabolism via folic acid/Folr1 promotes β-cell differentiation. Nat Commun 12(1):3362. https://doi.org/10.1038/s41467-021-23673-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ameri J, Borup R, Prawiro C et al (2017) Efficient generation of glucose-responsive beta cells from isolated GP2(+) human pancreatic progenitors. Cell Rep 19(1):36–49. https://doi.org/10.1016/j.celrep.2017.03.032

    Article  CAS  PubMed  Google Scholar 

  84. Herrera PL, Huarte J, Sanvito F, Meda P, Orci L, Vassalli JD (1991) Embryogenesis of the murine endocrine pancreas; early expression of pancreatic polypeptide gene. Development 113(4):1257–1265. https://doi.org/10.1242/dev.113.4.1257

    Article  CAS  PubMed  Google Scholar 

  85. Upchurch BH, Aponte GW, Leiter AB (1994) Expression of peptide YY in all four islet cell types in the developing mouse pancreas suggests a common peptide YY-producing progenitor. Development 120(2):245–252. https://doi.org/10.1242/dev.120.2.245

    Article  CAS  PubMed  Google Scholar 

  86. Herrera PL, Huarte J, Zufferey R et al (1994) Ablation of islet endocrine cells by targeted expression of hormone-promoter-driven toxigenes. Proc Natl Acad Sci U S A 91(26):12999–13003. https://doi.org/10.1073/pnas.91.26.12999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hill JH, Bell R, Barrios L et al (2025) Neonatal fungi promote lifelong metabolic health through macrophage-dependent β cell development. Science (New York, NY) 387(6738):eadn0953. https://doi.org/10.1126/science.adn0953

    Article  CAS  Google Scholar 

  88. Mohanty I, Mannochio-Russo H, Schweer JV et al (2024) The underappreciated diversity of bile acid modifications. Cell 187(7):1801-1818.e1820. https://doi.org/10.1016/j.cell.2024.02.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lin J, Nie Q, Cheng J et al (2025) A microbial amino-acid-conjugated bile acid, tryptophan-cholic acid, improves glucose homeostasis via the orphan receptor MRGPRE. Cell. https://doi.org/10.1016/j.cell.2025.05.010

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Zheng, Guang Ning or Yanyun Gu.

Ethics declarations

Acknowledgements

We thank D. Accili from Colombia University for profound discussion and instructive suggestions, and also thank Q. Wang, X. Wang, J. Wang and R. Liu (Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine) and X. Cheng (State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences). We thank Y. Huang, Q. Hang, and all members of the Core Facility of Basic Medical Sciences of Shanghai Jiao Tong University for their technical support. We thank X. Gao (Shanghai Profleader Biotechnology Co., China) for assisting in ultra-performance LC-MS/MS measurements of BA profiles. We thank XYZGenomics Co. for their assistance with single-cell data analysis.

Data availability

Raw data of scRNA-seq and scATAC-seq are deposited in the Gene Expression Omnibus (GEO) database under the accession number GSE241408.

Code availability

The code used in this Mendelian randomisation study is publicly available at https://github.com/Angela-linyt/Gene_Glu_MR.git.

Funding

This study was funded by grants from the National Natural Science Foundation of China (92157112, 82100835, 32570728, 82570934 ) and grants from National Key Research and Development Program of China (82088102), National Key Research and Development Program of China (2022YFC2505203), Noncommunicable Chronic Diseases–National Science and Technology Major Project (2024ZD0531500, 2024ZD0531502), Innovative research team of high-level local universities in Shanghai, European Union Horizon Health project NEMESIS, Walloon Region strategic axis Fonds de la Recherche Scientifique (FRFS)–Walloon Excellence in Life Sciences and Biotechnology (WELBIO), National Fund for Scientific Research (FNRS) and the Fondation Philippe Wiener–Maurice Anspach (FWA).

Authors’ relationships and activities

The authors declare that there are no relationships or activities that might bias, or be perceived to bias, their work.

Contribution statement

YG, CF and GN designed and conceptualised the study. CF, TL, YH, YL, YQ, CW, YJ, DH, TC and BL conducted experiments. CF, TL, YH, YL, CW, YJ, MC, AP, JZ and YG performed quality control. JY, YQ and CF did mouse husbandry. YG, CF, TL, BL, CW, QN, MC, JZ and GN analysed and discussed the data. CF and YG wrote the first draft of the manuscript. All the authors contributed to data interpretation, critically reviewed and edited the manuscript, and approved the final version. GN, JZ and YG had full access to all the data in the study and accept responsibility for the integrity of the data and the accuracy of the data analyses.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, C., Li, T., Hao, Y. et al. Declining FXR expression coordinates neonatal beta cell mass development with microbial bile acid metabolism maturation in mice. Diabetologia (2025). https://doi.org/10.1007/s00125-025-06618-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1007/s00125-025-06618-w

Keywords

Profiles

  1. Miriam Cnop
  2. Guang Ning