Skip to main content
Log in

Arthritogenicity of CD11b + Gr1 + myeloid cells is dependent on dual specificity phosphatase 6 (DUSP6)

  • Research
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

The dual specificity phosphatase 6 (DUSP6) was recently implicated in autoimmune arthritis pathogenesis. However, it remains unclear which cell mediates its pathogenic activity in a mouse model of rheumatoid arthritis (RA).

Methods

Bone marrow (BM) CD11b + Gr1 + cells were isolated from DUSP6 +/+ mice and transferred into DUSP6 −/− recipients. Six weeks later mice were administered the KRN serum to induce arthritis (KSIA), and analyzed for arthritis severity clinical scores. The same strategy was used in the opposite direction with cells from DUSP6−/− cells transferred in DUSP6 +/+ mice. BM CD11b + Gr1 + cells from DUSP6 +/+ and DUSP6 −/ − were stimulated with PMA and used for RNA sequencing, and also used for real-time measurements of mitochondrial respiration with the Seahorse XF Analyzer.

Results

Transfer of CD11 + Gr1 + cells DUSP6+/+ mice into DUSP6−/− mice reversed the arthritis protection observed in the knockout mice, and developed severe disease. Transfer of cells from DUSP6−/− into DUSP6+/+ were not protective and mice still developed severe disease. Cells from DUSP6 +/+ mice had a significantly higher oxidative burst, and higher glycolysis, compared with reduced levels in DUSP6−/−. RNA sequencing analyses revealed an enrichment for differentially expressed genes implicated in RA, MAPK signaling, leukocyte differentiation and neutrophil degranulation, among others.

Conclusion

We describe a new arthritogenic role for DUSP6, which is mediated by CD11b + Gr1 + cells and their glycolytic activity and oxidative burst. Our findings also implicate these myeloid cells in arthritis pathogenesis and raise the possibility that DUSP6 may be a good target for the development of new therapies for RA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Aletaha D, Smolen JS. Remission in rheumatoid arthritis: missing objectives by using inadequate DAS28 targets. Nat Rev Rheumatol. 2019;15(11):633–4.

    Article  PubMed  Google Scholar 

  2. Wolfe F, Rasker JJ, Boers M, Wells GA, Michaud K. Minimal disease activity, remission, and the long-term outcomes of rheumatoid arthritis. Arthritis Rheum. 2007;57(6):935–42.

    Article  PubMed  Google Scholar 

  3. Laragione T, Brenner M, Lahiri A, Gao E, Harris C, Gulko PS. Huntingtin-interacting protein 1 (HIP1) regulates arthritis severity and synovial fibroblast invasiveness by altering PDGFR and Rac1 signalling. Ann Rheum Dis. 2018;77(11):1627–35.

    Article  CAS  PubMed  Google Scholar 

  4. Ahmad MK, Abdollah NA, Shafie NH, Yusof NM, Razak SRA. Dual-specificity phosphatase 6 (DUSP6): a review of its molecular characteristics and clinical relevance in cancer. Cancer Biol Med. 2018;15(1):14–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jurek A, Amagasaki K, Gembarska A, Heldin CH, Lennartsson J. Negative and positive regulation of MAPK phosphatase 3 controls platelet-derived growth factor-induced Erk activation. J Biol Chem. 2009;284(7):4626–34.

    Article  CAS  PubMed  Google Scholar 

  6. Marchetti S, Gimond C, Chambard JC, Touboul T, Roux D, Pouyssegur J, et al. Extracellular signal-regulated kinases phosphorylate mitogen-activated protein kinase phosphatase 3/DUSP6 at serines 159 and 197, two sites critical for its proteasomal degradation. Mol Cell Biol. 2005;25(2):854–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhou X, Zhang C, Wu X, Hu X, Zhang Y, Wang X, et al. Dusp6 deficiency attenuates neutrophil-mediated cardiac damage in the acute inflammatory phase of myocardial infarction. Nat Commun. 2022;13(1):6672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Laragione Harris C, Rice N, Gulko PS. DUSP6 deletion protects mice and reduces disease severity in autoimmune arthritis. iScience. 2024;27(6):110158.

    Article  PubMed  Google Scholar 

  9. Bhardwaj V, He J. Reactive oxygen species, metabolic plasticity, and drug resistance in cancer. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21103412.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Pinheiro CH, Silveira LR, Nachbar RT, Vitzel KF, Curi R. Regulation of glycolysis and expression of glucose metabolism-related genes by reactive oxygen species in contracting skeletal muscle cells. Free Radic Biol Med. 2010;48(7):953–60.

    Article  CAS  PubMed  Google Scholar 

  11. Laragione T, Cheng KF, Tanner MR, He M, Beeton C, Al-Abed Y, et al. The cation channel Trpv2 is a new suppressor of arthritis severity, joint damage, and synovial fibroblast invasion. Clin Immunol. 2015;158(2):183–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Laragione T, Brenner M, Lahiri A, Gao E, Harris C, Gulko PS. Huntingtin-interacting protein 1 (HIP1) regulates arthritis severity and synovial fibroblast invasiveness by altering PDGFR and Rac1 signalling. Ann Rheum Dis. 2018. https://doi.org/10.1136/annrheumdis-2018-213498.

    Article  PubMed  Google Scholar 

  13. Foks AC, Van Puijvelde GH, Wolbert J, Kroner MJ, Frodermann V, Van Der Heijden T, et al. CD11b+Gr-1+ myeloid-derived suppressor cells reduce atherosclerotic lesion development in LDLr deficient mice. Cardiovasc Res. 2016;111(3):252–61.

    Article  CAS  PubMed  Google Scholar 

  14. He Y, Wang B, Jia B, Guan J, Zeng H, Pan Z. Effects of adoptive transferring different sources of myeloid-derived suppressor cells in mice corneal transplant survival. Transplantation. 2015;99(10):2102–8.

    Article  PubMed  Google Scholar 

  15. Goedhart J, Luijsterburg MS. VolcaNoseR is a web app for creating, exploring, labeling and sharing volcano plots. Sci Rep. 2020;10(1):20560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhao Y, Wu T, Shao S, Shi B, Zhao Y. Phenotype, development, and biological function of myeloid-derived suppressor cells. Oncoimmunology. 2016;5(2):e1004983.

    Article  PubMed  Google Scholar 

  17. Yang L, Edwards CM, Mundy GR. Gr-1+CD11b+ myeloid-derived suppressor cells: formidable partners in tumor metastasis. J Bone Miner Res. 2010;25(8):1701–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tsubaki T, Kadonosono T, Sakurai S, Shiozawa T, Goto T, Sakai S, et al. Novel adherent CD11b(+) Gr-1(+) tumor-infiltrating cells initiate an immunosuppressive tumor microenvironment. Oncotarget. 2018;9(13):11209–26.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Li M, Zhu D, Wang T, Xia X, Tian J, Wang S. Roles of myeloid-derived suppressor cell subpopulations in autoimmune arthritis. Front Immunol. 2018;9:2849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Alshetaiwi H, Pervolarakis N, McIntyre LL, Ma D, Nguyen Q, Rath JA, et al. Defining the emergence of myeloid-derived suppressor cells in breast cancer using single-cell transcriptomics. Sci Immunol. 2020;5(44):eaay6017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang W, Jiao Z, Duan T, Liu M, Zhu B, Zhang Y, et al. Functional characterization of myeloid-derived suppressor cell subpopulations during the development of experimental arthritis. Eur J Immunol. 2015;45(2):464–73.

    Article  CAS  PubMed  Google Scholar 

  22. Fujii W, Ashihara E, Hirai H, Nagahara H, Kajitani N, Fujioka K, et al. Myeloid-derived suppressor cells play crucial roles in the regulation of mouse collagen-induced arthritis. J Immunol. 2013;191(3):1073–81.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang H, Wang S, Huang Y, Wang H, Zhao J, Gaskin F, et al. Myeloid-derived suppressor cells are proinflammatory and regulate collagen-induced arthritis through manipulating Th17 cell differentiation. Clin Immunol. 2015;157(2):175–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Moline-Velazquez V, Cuervo H, Vila-Del Sol V, Ortega MC, Clemente D, de Castro F. Myeloid-derived suppressor cells limit the inflammation by promoting T lymphocyte apoptosis in the spinal cord of a murine model of multiple sclerosis. Brain Pathol. 2011;21(6):678–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yi H, Guo C, Yu X, Zuo D, Wang XY. Mouse CD11b+Gr-1+ myeloid cells can promote Th17 cell differentiation and experimental autoimmune encephalomyelitis. J Immunol. 2012;189(9):4295–304.

    Article  CAS  PubMed  Google Scholar 

  26. Cai C, Hu W, Zhang Y, Hu X, Yang S, Qiu H, et al. BCI suppresses RANKL-mediated osteoclastogenesis and alleviates ovariectomy-induced bone loss. Front Pharmacol. 2021;12:772540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hu S, Lin Y, Tang Y, Zhang J, He Y, Li G, et al. Targeting dysregulated intracellular immunometabolism within synovial microenvironment in rheumatoid arthritis with natural products. Front Pharmacol. 2024;15:1403823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gan PR, Wu H, Zhu YL, Shu Y, Wei Y. Glycolysis, a driving force of rheumatoid arthritis. Int Immunopharmacol. 2024;132:111913.

    Article  CAS  PubMed  Google Scholar 

  29. Bustamante MF, Oliveira PG, Garcia-Carbonell R, Croft AP, Smith JM, Serrano RL, et al. Hexokinase 2 as a novel selective metabolic target for rheumatoid arthritis. Ann Rheum Dis. 2018;77(11):1636–43.

    Article  CAS  PubMed  Google Scholar 

  30. Ahmed S, Mahony CB, Torres A, Murillo-Saich J, Kemble S, Cedeno M, et al. Dual inhibition of glycolysis and glutaminolysis for synergistic therapy of rheumatoid arthritis. Arthritis Res Ther. 2023;25(1):176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hsu WC, Chen MY, Hsu SC, Huang LR, Kao CY, Cheng WH, et al. DUSP6 mediates T cell receptor-engaged glycolysis and restrains T(FH) cell differentiation. Proc Natl Acad Sci U S A. 2018;115(34):E8027–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chang CS, Liao YC, Huang CT, Lin CM, Cheung CHY, Ruan JW, et al. Identification of a gut microbiota member that ameliorates DSS-induced colitis in intestinal barrier enhanced Dusp6-deficient mice. Cell Rep. 2021;37(8):110016.

    Article  CAS  PubMed  Google Scholar 

  33. Laragione T, Harris C, Rice N, Gulko PS. DUSP6 deletion protects mice and reduces disease severity in autoimmune arthritis. iScience. 2024;27(6):110158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wu QN, Liao YF, Lu YX, Wang Y, Lu JH, Zeng ZL, et al. Pharmacological inhibition of DUSP6 suppresses gastric cancer growth and metastasis and overcomes cisplatin resistance. Cancer Lett. 2018;412:243–55.

    Article  CAS  PubMed  Google Scholar 

  35. Mortensen OV, Larsen MB, Prasad BM, Amara SG. Genetic complementation screen identifies a mitogen-activated protein kinase phosphatase, MKP3, as a regulator of dopamine transporter trafficking. Mol Biol Cell. 2008;19(7):2818–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jones FK, Stefan A, Kay AG, Hyland M, Morgan R, Forsyth NR, et al. Syndecan-3 regulates MSC adhesion, ERK and AKT signalling in vitro and its deletion enhances MSC efficacy in a model of inflammatory arthritis in vivo. Sci Rep. 2020;10(1):20487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Eustace AD, McNaughton EF, King S, Kehoe O, Kungl A, Mattey D, et al. Soluble syndecan-3 binds chemokines, reduces leukocyte migration in vitro and ameliorates disease severity in models of rheumatoid arthritis. Arthritis Res Ther. 2019;21(1):172.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Jeon Y, Kang H, Yang Y, Park D, Choi B, Kim J, et al. A novel selective Axl/Mer/CSF1R kinase inhibitor as a cancer immunotherapeutic agent targeting both immune and tumor cells in the tumor microenvironment. Cancers (Basel). 2022. https://doi.org/10.3390/cancers14194821.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lv Y, Zhu J, Ge S, Jiang T, Xu Y, Yao W, et al. The AXL-mediated modulation of myeloid-derived suppressor cells (MDSC) in nasopharyngeal carcinoma. Med Oncol. 2024;42(1):17.

    Article  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

TL, PSG develop the concept of this study. TL, PSG, BGS and LG designed the experiments and work plan. TL, CH, BGS and LG conducted all the experiments and analyzed the data. PSG analyzed the data and prepared the figures and tables. PSG and TL wrote the manuscript. All authors reviewed and approved the manuscript.

Corresponding author

Correspondence to Percio S. Gulko.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by Jason J. McDougall.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11_2025_2134_MOESM1_ESM.tif

Supplemental figure 1. Mitochondrial stress, respiration and ATP production. There was no significant different in mitochondrial stress, respiration and ATP production between DUSP6+/+ and DUSP6-/-.

11_2025_2134_MOESM2_ESM.tif

Supplemental figure 2. qPCR confirmation of selected differentially expressed genes (DEGs). Real-time qPCR analyses using the same samples used in the RNA sequencing analyses was used to confirm selected DEGs. The same direction of the DEG expression observed in the RNA sequencing analyses was observed on qPCR, with Axl and Sdc3 reaching statistical significance (** P<0.005).

Supplementary Material 3

Supplementary Material 4

Supplementary Material 5

Supplementary Material 6

Supplementary Material 7

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laragione, T., Dos Santos, B.G., Harris, C. et al. Arthritogenicity of CD11b + Gr1 + myeloid cells is dependent on dual specificity phosphatase 6 (DUSP6). Inflamm. Res. 74, 162 (2025). https://doi.org/10.1007/s00011-025-02134-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1007/s00011-025-02134-0

Keywords