Stability of fast algorithms for structured linear systems
Abstract
We survey the numerical stability of some fast algorithms for solving systems of linear equations and linear least squares problems with a low displacement-rank structure. For example, the matrices involved may be Toeplitz or Hankel. We consider algorithms which incorporate pivoting without destroying the structure, and describe some recent results on the stability of these algorithms. We also compare these results with the corresponding stability results for the well known algorithms of Schur/Bareiss and Levinson, and for algorithms based on the semi-normal equations.
Description
Citation
Collections
Source
Book Title
Entity type
Access Statement
License Rights
DOI
Restricted until
Downloads
File
Description