%PDF-1.5
%ÐÔÅØ
1 0 obj
<< /S /GoTo /D (chapter*.1) >>
endobj
4 0 obj
(Preface)
endobj
5 0 obj
<< /S /GoTo /D (chapter*.3) >>
endobj
8 0 obj
(Notations and conventions)
endobj
9 0 obj
<< /S /GoTo /D (chapter.1) >>
endobj
12 0 obj
(Introduction)
endobj
13 0 obj
<< /S /GoTo /D (section.1.1) >>
endobj
16 0 obj
(What is intersection homology?)
endobj
17 0 obj
<< /S /GoTo /D (section.1.2) >>
endobj
20 0 obj
(Simplicial vs. PL vs. singular)
endobj
21 0 obj
<< /S /GoTo /D (section.1.3) >>
endobj
24 0 obj
(A note about sheaves and their scarcity here)
endobj
25 0 obj
<< /S /GoTo /D (section.1.4) >>
endobj
28 0 obj
(GM vs. non-GM intersection homology and an important note about notation)
endobj
29 0 obj
<< /S /GoTo /D (section.1.5) >>
endobj
32 0 obj
(Outline)
endobj
33 0 obj
<< /S /GoTo /D (chapter.2) >>
endobj
36 0 obj
(Stratified Spaces)
endobj
37 0 obj
<< /S /GoTo /D (section.2.1) >>
endobj
40 0 obj
(First examples of stratified spaces)
endobj
41 0 obj
<< /S /GoTo /D (section.2.2) >>
endobj
44 0 obj
(Filtered and stratified spaces)
endobj
45 0 obj
<< /S /GoTo /D (subsection.2.2.1) >>
endobj
48 0 obj
(Filtered spaces)
endobj
49 0 obj
<< /S /GoTo /D (subsection.2.2.2) >>
endobj
52 0 obj
(Stratified spaces)
endobj
53 0 obj
<< /S /GoTo /D (section*.5) >>
endobj
56 0 obj
(Manifold stratified spaces)
endobj
57 0 obj
<< /S /GoTo /D (subsection.2.2.3) >>
endobj
60 0 obj
(Depth)
endobj
61 0 obj
<< /S /GoTo /D (section.2.3) >>
endobj
64 0 obj
(Locally conelike spaces and CS sets)
endobj
65 0 obj
<< /S /GoTo /D (section.2.4) >>
endobj
68 0 obj
(Pseudomanifolds)
endobj
69 0 obj
<< /S /GoTo /D (section.2.5) >>
endobj
72 0 obj
(PL spaces and PL pseudomanifolds)
endobj
73 0 obj
<< /S /GoTo /D (subsection.2.5.1) >>
endobj
76 0 obj
(PL spaces)
endobj
77 0 obj
<< /S /GoTo /D (subsection.2.5.2) >>
endobj
80 0 obj
(Piecewise linear and simplicial pseudomanifolds)
endobj
81 0 obj
<< /S /GoTo /D (section*.6) >>
endobj
84 0 obj
(Classical simplicial pseudomanifolds)
endobj
85 0 obj
<< /S /GoTo /D (section.2.6) >>
endobj
88 0 obj
(Normal pseudomanifolds)
endobj
89 0 obj
<< /S /GoTo /D (section.2.7) >>
endobj
92 0 obj
(Pseudomanifolds with boundaries)
endobj
93 0 obj
<< /S /GoTo /D (section.2.8) >>
endobj
96 0 obj
(Other species of stratified spaces)
endobj
97 0 obj
<< /S /GoTo /D (subsection.2.8.1) >>
endobj
100 0 obj
(Whitney stratified spaces)
endobj
101 0 obj
<< /S /GoTo /D (subsection.2.8.2) >>
endobj
104 0 obj
(Thom-Mather spaces)
endobj
105 0 obj
<< /S /GoTo /D (subsection.2.8.3) >>
endobj
108 0 obj
(Homotopically stratified spaces)
endobj
109 0 obj
<< /S /GoTo /D (section.2.9) >>
endobj
112 0 obj
(Maps of stratified spaces)
endobj
113 0 obj
<< /S /GoTo /D (section.2.10) >>
endobj
116 0 obj
(Advanced topic: intrinsic filtrations)
endobj
117 0 obj
<< /S /GoTo /D (subsection.2.10.1) >>
endobj
120 0 obj
(Intrinsic PL filtrations)
endobj
121 0 obj
<< /S /GoTo /D (section*.7) >>
endobj
124 0 obj
(Intrinsic filtrations of PL pseudomanifolds with boundary)
endobj
125 0 obj
<< /S /GoTo /D (section.2.11) >>
endobj
128 0 obj
(Advanced topic: products and joins)
endobj
129 0 obj
<< /S /GoTo /D (subsection.2.11.1) >>
endobj
132 0 obj
(Products of intrinsic filtrations)
endobj
133 0 obj
<< /S /GoTo /D (chapter.3) >>
endobj
136 0 obj
(Intersection homology)
endobj
137 0 obj
<< /S /GoTo /D (section.3.1) >>
endobj
140 0 obj
(Perversities)
endobj
141 0 obj
<< /S /GoTo /D (subsection.3.1.1) >>
endobj
144 0 obj
(GM perversities)
endobj
145 0 obj
<< /S /GoTo /D (subsection.3.1.2) >>
endobj
148 0 obj
(Dual perversities)
endobj
149 0 obj
<< /S /GoTo /D (section.3.2) >>
endobj
152 0 obj
(Simplicial intersection homology)
endobj
153 0 obj
<< /S /GoTo /D (subsection.3.2.1) >>
endobj
156 0 obj
(First examples)
endobj
157 0 obj
<< /S /GoTo /D (section*.8) >>
endobj
160 0 obj
(Allowability with respect to regular strata)
endobj
161 0 obj
<< /S /GoTo /D (section*.9) >>
endobj
164 0 obj
(Effects of subdivision)
endobj
165 0 obj
<< /S /GoTo /D (section*.10) >>
endobj
168 0 obj
(Some more advanced examples)
endobj
169 0 obj
<< /S /GoTo /D (subsection.3.2.2) >>
endobj
172 0 obj
(Some remarks on the definition)
endobj
173 0 obj
<< /S /GoTo /D (section*.11) >>
endobj
176 0 obj
(The motivation for the definition of intersection homology)
endobj
177 0 obj
<< /S /GoTo /D (section*.12) >>
endobj
180 0 obj
(Strata vs. skeleta in the definition of intersection chains)
endobj
181 0 obj
<< /S /GoTo /D (section.3.3) >>
endobj
184 0 obj
(PL intersection homology)
endobj
185 0 obj
<< /S /GoTo /D (subsection.3.3.1) >>
endobj
188 0 obj
(PL homology)
endobj
189 0 obj
<< /S /GoTo /D (section*.13) >>
endobj
192 0 obj
(PL chains and PL maps)
endobj
193 0 obj
<< /S /GoTo /D (subsection.3.3.2) >>
endobj
196 0 obj
(A useful alternative characterization of PL chains)
endobj
197 0 obj
<< /S /GoTo /D (section*.14) >>
endobj
200 0 obj
(Adding chains)
endobj
201 0 obj
<< /S /GoTo /D (section*.15) >>
endobj
204 0 obj
(Compatibility with PL maps)
endobj
205 0 obj
<< /S /GoTo /D (section*.16) >>
endobj
208 0 obj
(Realization)
endobj
209 0 obj
<< /S /GoTo /D (subsection.3.3.3) >>
endobj
212 0 obj
(PL intersection homology)
endobj
213 0 obj
<< /S /GoTo /D (subsection.3.3.4) >>
endobj
216 0 obj
(The relation between simplicial and PL intersection homology)
endobj
217 0 obj
<< /S /GoTo /D (section.3.4) >>
endobj
220 0 obj
(Singular intersection homology)
endobj
221 0 obj
<< /S /GoTo /D (chapter.4) >>
endobj
224 0 obj
(Basic properties of singular and PL intersection homology)
endobj
225 0 obj
<< /S /GoTo /D (section.4.1) >>
endobj
228 0 obj
(Stratified maps, homotopies, and homotopy equivalences)
endobj
229 0 obj
<< /S /GoTo /D (section.4.2) >>
endobj
232 0 obj
(The cone formula)
endobj
233 0 obj
<< /S /GoTo /D (section.4.3) >>
endobj
236 0 obj
(Relative intersection homology)
endobj
237 0 obj
<< /S /GoTo /D (subsection.4.3.1) >>
endobj
240 0 obj
(Further commentary on subspace filtrations)
endobj
241 0 obj
<< /S /GoTo /D (subsection.4.3.2) >>
endobj
244 0 obj
(Stratified maps revisited)
endobj
245 0 obj
<< /S /GoTo /D (subsection.4.3.3) >>
endobj
248 0 obj
(Reduced intersection homology and the relative cone formula)
endobj
249 0 obj
<< /S /GoTo /D (section*.17) >>
endobj
252 0 obj
(Reduced intersection homology)
endobj
253 0 obj
<< /S /GoTo /D (section*.18) >>
endobj
256 0 obj
(The relative cone formula)
endobj
257 0 obj
<< /S /GoTo /D (section.4.4) >>
endobj
260 0 obj
(Mayer-Vietoris sequences and excision)
endobj
261 0 obj
<< /S /GoTo /D (subsection.4.4.1) >>
endobj
264 0 obj
(PL excision and Mayer-Vietoris)
endobj
265 0 obj
<< /S /GoTo /D (subsection.4.4.2) >>
endobj
268 0 obj
(Singular subdivision, excision, and Mayer-Vietoris)
endobj
269 0 obj
<< /S /GoTo /D (section*.19) >>
endobj
272 0 obj
(Singular subdivision)
endobj
273 0 obj
<< /S /GoTo /D (section*.24) >>
endobj
276 0 obj
(Excision)
endobj
277 0 obj
<< /S /GoTo /D (section*.25) >>
endobj
280 0 obj
(Mayer-Vietoris)
endobj
281 0 obj
<< /S /GoTo /D (section*.26) >>
endobj
284 0 obj
(Examples)
endobj
285 0 obj
<< /S /GoTo /D (section*.27) >>
endobj
288 0 obj
(Relative Mayer-Vietoris sequences)
endobj
289 0 obj
<< /S /GoTo /D (chapter.5) >>
endobj
292 0 obj
(Mayer-Vietoris arguments and further properties of intersection homology)
endobj
293 0 obj
<< /S /GoTo /D (section.5.1) >>
endobj
296 0 obj
(Mayer-Vietoris arguments)
endobj
297 0 obj
<< /S /GoTo /D (subsection.5.1.1) >>
endobj
300 0 obj
(First applications: high perversities and normalization)
endobj
301 0 obj
<< /S /GoTo /D (section*.28) >>
endobj
304 0 obj
(High perversities)
endobj
305 0 obj
<< /S /GoTo /D (section*.29) >>
endobj
308 0 obj
(Normalization)
endobj
309 0 obj
<< /S /GoTo /D (section.5.2) >>
endobj
312 0 obj
(Cross products and the K\374nneth theorem with a manifold factor)
endobj
313 0 obj
<< /S /GoTo /D (subsection.5.2.1) >>
endobj
316 0 obj
(The singular chain cross product)
endobj
317 0 obj
<< /S /GoTo /D (subsection.5.2.2) >>
endobj
320 0 obj
(The PL cross product)
endobj
321 0 obj
<< /S /GoTo /D (subsection.5.2.3) >>
endobj
324 0 obj
(Properties of the cross product)
endobj
325 0 obj
<< /S /GoTo /D (subsection.5.2.4) >>
endobj
328 0 obj
(K\374nneth theorem when one factor is a manifold)
endobj
329 0 obj
<< /S /GoTo /D (section.5.3) >>
endobj
332 0 obj
(Intersection homology with coefficients and universal coefficient theorems)
endobj
333 0 obj
<< /S /GoTo /D (subsection.5.3.1) >>
endobj
336 0 obj
(Definitions of intersection homology with coefficients)
endobj
337 0 obj
<< /S /GoTo /D (section*.30) >>
endobj
340 0 obj
(Comparing the options)
endobj
341 0 obj
<< /S /GoTo /D (section*.31) >>
endobj
344 0 obj
(Basic properties of intersection homology with coefficients)
endobj
345 0 obj
<< /S /GoTo /D (subsection.5.3.2) >>
endobj
348 0 obj
(Universal coefficient theorems)
endobj
349 0 obj
<< /S /GoTo /D (section.5.4) >>
endobj
352 0 obj
(Equivalence of PL and singular intersection homology on PL CS sets)
endobj
353 0 obj
<< /S /GoTo /D (subsection.5.4.1) >>
endobj
356 0 obj
(Barycentric subdivisions and maps from PL chains to singular chains)
endobj
357 0 obj
<< /S /GoTo /D (subsection.5.4.2) >>
endobj
360 0 obj
(The isomorphism of PL and singular intersection homology)
endobj
361 0 obj
<< /S /GoTo /D (section.5.5) >>
endobj
364 0 obj
(Topological invariance)
endobj
365 0 obj
<< /S /GoTo /D (subsection.5.5.1) >>
endobj
368 0 obj
(What perversities work?)
endobj
369 0 obj
<< /S /GoTo /D (subsection.5.5.2) >>
endobj
372 0 obj
(The statement of the theorem and some corollaries)
endobj
373 0 obj
<< /S /GoTo /D (subsection.5.5.3) >>
endobj
376 0 obj
(Proof of topological invariance)
endobj
377 0 obj
<< /S /GoTo /D (section.5.6) >>
endobj
380 0 obj
(Finite generation)
endobj
381 0 obj
<< /S /GoTo /D (chapter.6) >>
endobj
384 0 obj
(Non-GM intersection homology)
endobj
385 0 obj
<< /S /GoTo /D (section.6.1) >>
endobj
388 0 obj
(Motivation for non-GM intersection homology)
endobj
389 0 obj
<< /S /GoTo /D (section.6.2) >>
endobj
392 0 obj
(Definitions of non-GM intersection homology)
endobj
393 0 obj
<< /S /GoTo /D (subsection.6.2.1) >>
endobj
396 0 obj
(First definition of IH)
endobj
397 0 obj
<< /S /GoTo /D (subsection.6.2.2) >>
endobj
400 0 obj
(Second definition of IH)
endobj
401 0 obj
<< /S /GoTo /D (subsection.6.2.3) >>
endobj
404 0 obj
(Third definition of IH)
endobj
405 0 obj
<< /S /GoTo /D (subsection.6.2.4) >>
endobj
408 0 obj
(Non-GM intersection homology below the top perversity)
endobj
409 0 obj
<< /S /GoTo /D (subsection.6.2.5) >>
endobj
412 0 obj
(A new cone formula)
endobj
413 0 obj
<< /S /GoTo /D (subsection.6.2.6) >>
endobj
416 0 obj
(Relative non-GM intersection homology and the relative cone formula)
endobj
417 0 obj
<< /S /GoTo /D (section.6.3) >>
endobj
420 0 obj
(Properties of IH\(X;G\))
endobj
421 0 obj
<< /S /GoTo /D (subsection.6.3.1) >>
endobj
424 0 obj
(Basic properties)
endobj
425 0 obj
<< /S /GoTo /D (section*.36) >>
endobj
428 0 obj
(Maps and homotopies)
endobj
429 0 obj
<< /S /GoTo /D (section*.37) >>
endobj
432 0 obj
(Subdivision, excision, and Mayer-Vietoris)
endobj
433 0 obj
<< /S /GoTo /D (section*.38) >>
endobj
436 0 obj
(Applications of Mayer-Vietoris arguments)
endobj
437 0 obj
<< /S /GoTo /D (section*.39) >>
endobj
440 0 obj
(Cross products)
endobj
441 0 obj
<< /S /GoTo /D (section*.40) >>
endobj
444 0 obj
(Coefficients)
endobj
445 0 obj
<< /S /GoTo /D (section*.41) >>
endobj
448 0 obj
(Agreement of singular and PL intersection homology)
endobj
449 0 obj
<< /S /GoTo /D (section*.42) >>
endobj
452 0 obj
(Finite generation)
endobj
453 0 obj
<< /S /GoTo /D (subsection.6.3.2) >>
endobj
456 0 obj
(Dimensional homogeneity)
endobj
457 0 obj
<< /S /GoTo /D (subsection.6.3.3) >>
endobj
460 0 obj
(Local coefficients)
endobj
461 0 obj
<< /S /GoTo /D (section.6.4) >>
endobj
464 0 obj
(A general K\374nneth theorem)
endobj
465 0 obj
<< /S /GoTo /D (subsection.6.4.1) >>
endobj
468 0 obj
(A key example: the product of cones)
endobj
469 0 obj
<< /S /GoTo /D (subsection.6.4.2) >>
endobj
472 0 obj
(The K\374nneth Theorem)
endobj
473 0 obj
<< /S /GoTo /D (subsection.6.4.3) >>
endobj
476 0 obj
(A relative K\374nneth theorem)
endobj
477 0 obj
<< /S /GoTo /D (subsection.6.4.4) >>
endobj
480 0 obj
(Applications of the K\374nneth Theorem)
endobj
481 0 obj
<< /S /GoTo /D (subsection.6.4.5) >>
endobj
484 0 obj
(Some technical stuff: the proof of Lemma 6.4.2)
endobj
485 0 obj
<< /S /GoTo /D (section*.46) >>
endobj
488 0 obj
(Algebra of the algebraic K\374nneth theorem)
endobj
489 0 obj
<< /S /GoTo /D (section*.49) >>
endobj
492 0 obj
(Splitting)
endobj
493 0 obj
<< /S /GoTo /D (section*.50) >>
endobj
496 0 obj
(Intersection homology products with cones)
endobj
497 0 obj
<< /S /GoTo /D (section.6.5) >>
endobj
500 0 obj
(Advanced topic: chain splitting)
endobj
501 0 obj
<< /S /GoTo /D (chapter.7) >>
endobj
504 0 obj
(Intersection cohomology and products)
endobj
505 0 obj
<< /S /GoTo /D (section.7.1) >>
endobj
508 0 obj
(Intersection cohomology)
endobj
509 0 obj
<< /S /GoTo /D (section.7.2) >>
endobj
512 0 obj
(Cup, cap, and cross products)
endobj
513 0 obj
<< /S /GoTo /D (subsection.7.2.1) >>
endobj
516 0 obj
(Philosophy)
endobj
517 0 obj
<< /S /GoTo /D (subsection.7.2.2) >>
endobj
520 0 obj
(Intersection homology cup, cap, and cross products)
endobj
521 0 obj
<< /S /GoTo /D (section*.51) >>
endobj
524 0 obj
(Hom of tensor products)
endobj
525 0 obj
<< /S /GoTo /D (section*.52) >>
endobj
528 0 obj
(Intersection Alexander-Whitney maps)
endobj
529 0 obj
<< /S /GoTo /D (section*.53) >>
endobj
532 0 obj
(The diagonal map)
endobj
533 0 obj
<< /S /GoTo /D (section*.55) >>
endobj
536 0 obj
(The intersection cup, cap, and cross products)
endobj
537 0 obj
<< /S /GoTo /D (section.7.3) >>
endobj
540 0 obj
(Properties of cup, cap, and cross products. )
endobj
541 0 obj
<< /S /GoTo /D (subsection.7.3.1) >>
endobj
544 0 obj
(Naturality)
endobj
545 0 obj
<< /S /GoTo /D (section*.60) >>
endobj
548 0 obj
(Naturality of the cross product)
endobj
549 0 obj
<< /S /GoTo /D (section*.62) >>
endobj
552 0 obj
(Naturality of cup and cap products)
endobj
553 0 obj
<< /S /GoTo /D (section*.65) >>
endobj
556 0 obj
(Compatibility with classical products)
endobj
557 0 obj
<< /S /GoTo /D (section*.66) >>
endobj
560 0 obj
(Topological invariance)
endobj
561 0 obj
<< /S /GoTo /D (subsection.7.3.2) >>
endobj
564 0 obj
(Commutativity)
endobj
565 0 obj
<< /S /GoTo /D (subsection.7.3.3) >>
endobj
568 0 obj
(Unitality and evaluation)
endobj
569 0 obj
<< /S /GoTo /D (section*.69) >>
endobj
572 0 obj
(Projection maps)
endobj
573 0 obj
<< /S /GoTo /D (section*.70) >>
endobj
576 0 obj
(Unital properties of products)
endobj
577 0 obj
<< /S /GoTo /D (section*.73) >>
endobj
580 0 obj
(Products and evaluations)
endobj
581 0 obj
<< /S /GoTo /D (subsection.7.3.4) >>
endobj
584 0 obj
(Associativity)
endobj
585 0 obj
<< /S /GoTo /D (section*.74) >>
endobj
588 0 obj
(Associativity under broad assumptions)
endobj
589 0 obj
<< /S /GoTo /D (section*.77) >>
endobj
592 0 obj
(Associativity in some more specific settings)
endobj
593 0 obj
<< /S /GoTo /D (subsection.7.3.5) >>
endobj
596 0 obj
(Stability)
endobj
597 0 obj
<< /S /GoTo /D (section*.78) >>
endobj
600 0 obj
(Stability of cap products)
endobj
601 0 obj
<< /S /GoTo /D (section*.81) >>
endobj
604 0 obj
(Algebra of shifts and mapping cones )
endobj
605 0 obj
<< /S /GoTo /D (section*.84) >>
endobj
608 0 obj
(Stability of cross products and cup products )
endobj
609 0 obj
<< /S /GoTo /D (subsection.7.3.6) >>
endobj
612 0 obj
(Criss-crosses)
endobj
613 0 obj
<< /S /GoTo /D (section*.87) >>
endobj
616 0 obj
(The relation between cup and cross products)
endobj
617 0 obj
<< /S /GoTo /D (section*.88) >>
endobj
620 0 obj
(Interchange identities under broad assumptions)
endobj
621 0 obj
<< /S /GoTo /D (section*.91) >>
endobj
624 0 obj
(Interchange identities in some more specific settings)
endobj
625 0 obj
<< /S /GoTo /D (subsection.7.3.7) >>
endobj
628 0 obj
(Locality)
endobj
629 0 obj
<< /S /GoTo /D (subsection.7.3.8) >>
endobj
632 0 obj
(The cohomology K\374nneth theorem)
endobj
633 0 obj
<< /S /GoTo /D (subsection.7.3.9) >>
endobj
636 0 obj
(Summary of properties)
endobj
637 0 obj
<< /S /GoTo /D (subsection.7.3.10) >>
endobj
640 0 obj
(Products on boundary-pseudomanifolds)
endobj
641 0 obj
<< /S /GoTo /D (section.7.4) >>
endobj
644 0 obj
(Intersection cohomology with compact supports)
endobj
645 0 obj
<< /S /GoTo /D (chapter.8) >>
endobj
648 0 obj
(Poincar\351 duality)
endobj
649 0 obj
<< /S /GoTo /D (section.8.1) >>
endobj
652 0 obj
(Orientations and fundamental classes)
endobj
653 0 obj
<< /S /GoTo /D (subsection.8.1.1) >>
endobj
656 0 obj
(Orientation and fundamental classes of manifolds)
endobj
657 0 obj
<< /S /GoTo /D (subsection.8.1.2) >>
endobj
660 0 obj
(Orientation of CS sets )
endobj
661 0 obj
<< /S /GoTo /D (subsection.8.1.3) >>
endobj
664 0 obj
(Homological properties of orientable pseudomanifolds)
endobj
665 0 obj
<< /S /GoTo /D (section*.95) >>
endobj
668 0 obj
(The orientation sheaf)
endobj
669 0 obj
<< /S /GoTo /D (section*.96) >>
endobj
672 0 obj
(Homological theorems)
endobj
673 0 obj
<< /S /GoTo /D (section*.101) >>
endobj
676 0 obj
(Useful corollaries)
endobj
677 0 obj
<< /S /GoTo /D (subsection.8.1.4) >>
endobj
680 0 obj
(Lack of global fundamental classes for subzero perversities)
endobj
681 0 obj
<< /S /GoTo /D (subsection.8.1.5) >>
endobj
684 0 obj
(Invariance of fundamental classes)
endobj
685 0 obj
<< /S /GoTo /D (section*.102) >>
endobj
688 0 obj
(Fundamental classes under change of perversity)
endobj
689 0 obj
<< /S /GoTo /D (section*.103) >>
endobj
692 0 obj
(Fundamental classes under change of stratification)
endobj
693 0 obj
<< /S /GoTo /D (subsection.8.1.6) >>
endobj
696 0 obj
(Intersection homology factors the cap product)
endobj
697 0 obj
<< /S /GoTo /D (section*.104) >>
endobj
700 0 obj
(More general factorizations)
endobj
701 0 obj
<< /S /GoTo /D (subsection.8.1.7) >>
endobj
704 0 obj
(Product spaces)
endobj
705 0 obj
<< /S /GoTo /D (section.8.2) >>
endobj
708 0 obj
(Poincar\351 duality)
endobj
709 0 obj
<< /S /GoTo /D (subsection.8.2.1) >>
endobj
712 0 obj
(The duality map)
endobj
713 0 obj
<< /S /GoTo /D (subsection.8.2.2) >>
endobj
716 0 obj
(The Poincar\351 Duality Theorem)
endobj
717 0 obj
<< /S /GoTo /D (subsection.8.2.3) >>
endobj
720 0 obj
(Duality of torsion free conditions)
endobj
721 0 obj
<< /S /GoTo /D (subsection.8.2.4) >>
endobj
724 0 obj
(Topological invariance of Poincar\351 duality)
endobj
725 0 obj
<< /S /GoTo /D (section.8.3) >>
endobj
728 0 obj
(Lefschetz duality)
endobj
729 0 obj
<< /S /GoTo /D (subsection.8.3.1) >>
endobj
732 0 obj
(Orientations and fundamental classes)
endobj
733 0 obj
<< /S /GoTo /D (section*.114) >>
endobj
736 0 obj
(Topological invariance)
endobj
737 0 obj
<< /S /GoTo /D (subsection.8.3.2) >>
endobj
740 0 obj
(Lefschetz duality)
endobj
741 0 obj
<< /S /GoTo /D (section*.115) >>
endobj
744 0 obj
(Topological invariance)
endobj
745 0 obj
<< /S /GoTo /D (section.8.4) >>
endobj
748 0 obj
(The cup product and torsion pairings)
endobj
749 0 obj
<< /S /GoTo /D (subsection.8.4.1) >>
endobj
752 0 obj
(Some algebra)
endobj
753 0 obj
<< /S /GoTo /D (section*.116) >>
endobj
756 0 obj
(Pairings)
endobj
757 0 obj
<< /S /GoTo /D (section*.117) >>
endobj
760 0 obj
(Torsion submodules and torsion-free quotients)
endobj
761 0 obj
<< /S /GoTo /D (subsection.8.4.2) >>
endobj
764 0 obj
(The cup product pairing)
endobj
765 0 obj
<< /S /GoTo /D (subsection.8.4.3) >>
endobj
768 0 obj
(The torsion pairing)
endobj
769 0 obj
<< /S /GoTo /D (section*.118) >>
endobj
772 0 obj
(The components of lambda)
endobj
773 0 obj
<< /S /GoTo /D (section*.119) >>
endobj
776 0 obj
(Assembling lambda)
endobj
777 0 obj
<< /S /GoTo /D (section*.120) >>
endobj
780 0 obj
(The torsion pairing made explicit)
endobj
781 0 obj
<< /S /GoTo /D (section*.121) >>
endobj
784 0 obj
(Symmetry and nonsingularity)
endobj
785 0 obj
<< /S /GoTo /D (section*.122) >>
endobj
788 0 obj
(Another approach to the torsion pairing)
endobj
789 0 obj
<< /S /GoTo /D (subsection.8.4.4) >>
endobj
792 0 obj
(Topological invariance of pairings)
endobj
793 0 obj
<< /S /GoTo /D (subsection.8.4.5) >>
endobj
796 0 obj
(Image pairings)
endobj
797 0 obj
<< /S /GoTo /D (section*.123) >>
endobj
800 0 obj
(Nondegeneracy)
endobj
801 0 obj
<< /S /GoTo /D (section*.124) >>
endobj
804 0 obj
(The intersection cohomology image pairing)
endobj
805 0 obj
<< /S /GoTo /D (section.8.5) >>
endobj
808 0 obj
(The Goresky-MacPherson intersection pairing)
endobj
809 0 obj
<< /S /GoTo /D (subsection.8.5.1) >>
endobj
812 0 obj
(The intersection pairing on manifolds)
endobj
813 0 obj
<< /S /GoTo /D (section*.125) >>
endobj
816 0 obj
(What should the intersection product be?)
endobj
817 0 obj
<< /S /GoTo /D (section*.126) >>
endobj
820 0 obj
(The PL intersection pairing)
endobj
821 0 obj
<< /S /GoTo /D (subsection.8.5.2) >>
endobj
824 0 obj
(The intersection pairing on PL pseudomanifolds)
endobj
825 0 obj
<< /S /GoTo /D (section*.128) >>
endobj
828 0 obj
(Almost full circle)
endobj
829 0 obj
<< /S /GoTo /D (subsection.8.5.3) >>
endobj
832 0 obj
(An intersection pairing on topological pseudomanifolds and some relations of Goresky and MacPherson)
endobj
833 0 obj
<< /S /GoTo /D (chapter.9) >>
endobj
836 0 obj
(Witt spaces and IP spaces)
endobj
837 0 obj
<< /S /GoTo /D (section.9.1) >>
endobj
840 0 obj
(Witt and IP spaces)
endobj
841 0 obj
<< /S /GoTo /D (subsection.9.1.1) >>
endobj
844 0 obj
(Witt spaces)
endobj
845 0 obj
<< /S /GoTo /D (section*.129) >>
endobj
848 0 obj
(Dependence of Witt spaces on coefficient choices)
endobj
849 0 obj
<< /S /GoTo /D (subsection.9.1.2) >>
endobj
852 0 obj
(IP spaces)
endobj
853 0 obj
<< /S /GoTo /D (subsection.9.1.3) >>
endobj
856 0 obj
(Products and stratification independence)
endobj
857 0 obj
<< /S /GoTo /D (section.9.2) >>
endobj
860 0 obj
(Self pairings)
endobj
861 0 obj
<< /S /GoTo /D (section.9.3) >>
endobj
864 0 obj
(Witt signatures)
endobj
865 0 obj
<< /S /GoTo /D (subsection.9.3.1) >>
endobj
868 0 obj
(Definitions and basic properties)
endobj
869 0 obj
<< /S /GoTo /D (section*.132) >>
endobj
872 0 obj
(Signatures of matrices and pairings)
endobj
873 0 obj
<< /S /GoTo /D (section*.133) >>
endobj
876 0 obj
(Witt signatures)
endobj
877 0 obj
<< /S /GoTo /D (section*.135) >>
endobj
880 0 obj
(Topological invariance of Witt signatures)
endobj
881 0 obj
<< /S /GoTo /D (subsection.9.3.2) >>
endobj
884 0 obj
(Properties of Witt signatures)
endobj
885 0 obj
<< /S /GoTo /D (subsection.9.3.3) >>
endobj
888 0 obj
(Novikov additivity)
endobj
889 0 obj
<< /S /GoTo /D (subsection.9.3.4) >>
endobj
892 0 obj
(Perverse signatures)
endobj
893 0 obj
<< /S /GoTo /D (section.9.4) >>
endobj
896 0 obj
(L-classes)
endobj
897 0 obj
<< /S /GoTo /D (subsection.9.4.1) >>
endobj
900 0 obj
(Outline of the construction of L-classes \(without proofs\))
endobj
901 0 obj
<< /S /GoTo /D (section*.136) >>
endobj
904 0 obj
(Maps to spheres and embedded subspaces)
endobj
905 0 obj
<< /S /GoTo /D (section*.137) >>
endobj
908 0 obj
(Cohomotopy)
endobj
909 0 obj
<< /S /GoTo /D (section*.138) >>
endobj
912 0 obj
(The L-classes)
endobj
913 0 obj
<< /S /GoTo /D (section*.139) >>
endobj
916 0 obj
(L-classes on smooth manifolds)
endobj
917 0 obj
<< /S /GoTo /D (section*.140) >>
endobj
920 0 obj
(L-classes for small degrees)
endobj
921 0 obj
<< /S /GoTo /D (section*.141) >>
endobj
924 0 obj
(Characterizing the L-classes)
endobj
925 0 obj
<< /S /GoTo /D (section*.145) >>
endobj
928 0 obj
(Some notation)
endobj
929 0 obj
<< /S /GoTo /D (section*.146) >>
endobj
932 0 obj
(The proofs)
endobj
933 0 obj
<< /S /GoTo /D (subsection.9.4.2) >>
endobj
936 0 obj
(Maps to spheres and embedded subspaces)
endobj
937 0 obj
<< /S /GoTo /D (subsection.9.4.3) >>
endobj
940 0 obj
(Cohomotopy)
endobj
941 0 obj
<< /S /GoTo /D (subsection.9.4.4) >>
endobj
944 0 obj
(The L-classes)
endobj
945 0 obj
<< /S /GoTo /D (subsection.9.4.5) >>
endobj
948 0 obj
(L-classes in small degrees)
endobj
949 0 obj
<< /S /GoTo /D (section*.154) >>
endobj
952 0 obj
(Extending properties to small degrees)
endobj
953 0 obj
<< /S /GoTo /D (subsection.9.4.6) >>
endobj
956 0 obj
(Characterizing the L-classes)
endobj
957 0 obj
<< /S /GoTo /D (section.9.5) >>
endobj
960 0 obj
(A survey of pseudomanifold bordism theories)
endobj
961 0 obj
<< /S /GoTo /D (subsection.9.5.1) >>
endobj
964 0 obj
(Bordism)
endobj
965 0 obj
<< /S /GoTo /D (section*.155) >>
endobj
968 0 obj
(Bordism groups)
endobj
969 0 obj
<< /S /GoTo /D (section*.156) >>
endobj
972 0 obj
(Bordism homology theories)
endobj
973 0 obj
<< /S /GoTo /D (subsection.9.5.2) >>
endobj
976 0 obj
(Pseudomanifold bordism)
endobj
977 0 obj
<< /S /GoTo /D (chapter.10) >>
endobj
980 0 obj
(Suggestions for further reading)
endobj
981 0 obj
<< /S /GoTo /D (section.10.1) >>
endobj
984 0 obj
(Background, foundations, and next texts)
endobj
985 0 obj
<< /S /GoTo /D (subsection.10.1.1) >>
endobj
988 0 obj
(Deeper background)
endobj
989 0 obj
<< /S /GoTo /D (section*.165) >>
endobj
992 0 obj
(Sheaf theory)
endobj
993 0 obj
<< /S /GoTo /D (section*.166) >>
endobj
996 0 obj
(Derived categories and Verdier duality)
endobj
997 0 obj
<< /S /GoTo /D (section.10.2) >>
endobj
1000 0 obj
(Bordism)
endobj
1001 0 obj
<< /S /GoTo /D (section.10.3) >>
endobj
1004 0 obj
(Characteristic classes)
endobj
1005 0 obj
<< /S /GoTo /D (section.10.4) >>
endobj
1008 0 obj
(Intersection spaces)
endobj
1009 0 obj
<< /S /GoTo /D (section.10.5) >>
endobj
1012 0 obj
(Analytic approaches to intersection cohomology)
endobj
1013 0 obj
<< /S /GoTo /D (subsection.10.5.1) >>
endobj
1016 0 obj
(L2 cohomology)
endobj
1017 0 obj
<< /S /GoTo /D (subsection.10.5.2) >>
endobj
1020 0 obj
(Perverse forms)
endobj
1021 0 obj
<< /S /GoTo /D (section*.167) >>
endobj
1024 0 obj
(Chataur-Saralegi-Tanr\351 theory)
endobj
1025 0 obj
<< /S /GoTo /D (section.10.6) >>
endobj
1028 0 obj
(Stratified Morse Theory)
endobj
1029 0 obj
<< /S /GoTo /D (section.10.7) >>
endobj
1032 0 obj
(Perverse sheaves and the Decomposition Theorem)
endobj
1033 0 obj
<< /S /GoTo /D (section.10.8) >>
endobj
1036 0 obj
(Hodge theory)
endobj
1037 0 obj
<< /S /GoTo /D (section.10.9) >>
endobj
1040 0 obj
(Miscellaneous)
endobj
1041 0 obj
<< /S /GoTo /D (appendix.A) >>
endobj
1044 0 obj
(Algebra)
endobj
1045 0 obj
<< /S /GoTo /D (section.A.1) >>
endobj
1048 0 obj
(Koszul sign conventions)
endobj
1049 0 obj
<< /S /GoTo /D (subsection.A.1.1) >>
endobj
1052 0 obj
(Why sign?)
endobj
1053 0 obj
<< /S /GoTo /D (subsection.A.1.2) >>
endobj
1056 0 obj
(Homological versus cohomological grading)
endobj
1057 0 obj
<< /S /GoTo /D (subsection.A.1.3) >>
endobj
1060 0 obj
(The chain complex of maps of chain complexes)
endobj
1061 0 obj
<< /S /GoTo /D (subsection.A.1.4) >>
endobj
1064 0 obj
(Chain maps and chain homotopies)
endobj
1065 0 obj
<< /S /GoTo /D (subsection.A.1.5) >>
endobj
1068 0 obj
(Consequences)
endobj
1069 0 obj
<< /S /GoTo /D (section.A.2) >>
endobj
1072 0 obj
(Some more facts about chain homotopies)
endobj
1073 0 obj
<< /S /GoTo /D (section.A.3) >>
endobj
1076 0 obj
(Shifts and mapping cones)
endobj
1077 0 obj
<< /S /GoTo /D (subsection.A.3.1) >>
endobj
1080 0 obj
(Shifts)
endobj
1081 0 obj
<< /S /GoTo /D (subsection.A.3.2) >>
endobj
1084 0 obj
(Algebraic mapping cones)
endobj
1085 0 obj
<< /S /GoTo /D (section.A.4) >>
endobj
1088 0 obj
(Projective modules and Dedekind domains)
endobj
1089 0 obj
<< /S /GoTo /D (subsection.A.4.1) >>
endobj
1092 0 obj
(Projective modules)
endobj
1093 0 obj
<< /S /GoTo /D (subsection.A.4.2) >>
endobj
1096 0 obj
(Dedekind domains)
endobj
1097 0 obj
<< /S /GoTo /D (section.A.5) >>
endobj
1100 0 obj
(Linear algebra of signatures)
endobj
1101 0 obj
<< /S /GoTo /D (appendix.B) >>
endobj
1104 0 obj
(An introduction to simplicial and PL topology)
endobj
1105 0 obj
<< /S /GoTo /D (section.B.1) >>
endobj
1108 0 obj
(Simplicial complexes and Euclidean polyhedra)
endobj
1109 0 obj
<< /S /GoTo /D (subsection.B.1.1) >>
endobj
1112 0 obj
(Simplicial complexes)
endobj
1113 0 obj
<< /S /GoTo /D (subsection.B.1.2) >>
endobj
1116 0 obj
(Euclidean polyhedra)
endobj
1117 0 obj
<< /S /GoTo /D (section.B.2) >>
endobj
1120 0 obj
(PL spaces and PL maps)
endobj
1121 0 obj
<< /S /GoTo /D (section.B.3) >>
endobj
1124 0 obj
(Comparing our two notions of PL spaces)
endobj
1125 0 obj
<< /S /GoTo /D (section.B.4) >>
endobj
1128 0 obj
(PL subspaces)
endobj
1129 0 obj
<< /S /GoTo /D (section.B.5) >>
endobj
1132 0 obj
(Cones, joins, and products of PL spaces)
endobj
1133 0 obj
<< /S /GoTo /D (section.B.6) >>
endobj
1136 0 obj
(The Eilenberg-Zilber shuffle triangulation of products)
endobj
1137 0 obj
<< /S /GoTo /D (subsection.B.6.1) >>
endobj
1140 0 obj
(The definition of the Eilenberg-Zilber triangulation)
endobj
1141 0 obj
<< /S /GoTo /D (subsection.B.6.2) >>
endobj
1144 0 obj
(Realization of partially ordered sets)
endobj
1145 0 obj
<< /S /GoTo /D (subsection.B.6.3) >>
endobj
1148 0 obj
(Products of partially ordered sets and their product triangulations)
endobj
1149 0 obj
<< /S /GoTo /D (subsection.B.6.4) >>
endobj
1152 0 obj
(Triangulations of products of simplicial complexes and PL spaces)
endobj
1153 0 obj
<< /S /GoTo /D (subsection.B.6.5) >>
endobj
1156 0 obj
(The simplicial cross product)
endobj
1157 0 obj
<< /S /GoTo /D (section*.173) >>
endobj
1160 0 obj
(Bibliography)
endobj
1161 0 obj
<< /S /GoTo /D (section*.175) >>
endobj
1164 0 obj
(Index)
endobj
1165 0 obj
<< /S /GoTo /D (section*.176) >>
endobj
1168 0 obj
(Glossary of symbols)
endobj
1169 0 obj
<< /S /GoTo /D [1170 0 R /Fit] >>
endobj
1172 0 obj
<<
/Length 255
/Filter /FlateDecode
>>
stream
xÚUÁnà Dïù
Å[X0Æ·ªU])×RµR86
vªæï/=ÎjæÍìÝ=4Rä 5Ä^¨ TDÕIÉ}s¾¿md
äHg¨éÒŹ;-.ø|ÂÆÐßØÑ°"BTW REQJ¨U¯±ëS2f®;O_Ó¤¸¤ÖÙoAÚý¶óªèóݼ¸ÖgÆ»w?,Ó(·04ô¾H12Sâ!öb?·þ8Vÿûû´¾á²
}ì§Öp
Ó=¢$h>
Þ><\Ç[æ¢ÚçBä¢^ý»»û³Äaï
endstream
endobj
1170 0 obj
<<
/Type /Page
/Contents 1172 0 R
/Resources 1171 0 R
/MediaBox [0 0 612 792]
/Parent 1177 0 R
>>
endobj
1173 0 obj
<<
/D [1170 0 R /XYZ 71 721 null]
>>
endobj
1174 0 obj
<<
/D [1170 0 R /XYZ 72 720 null]
>>
endobj
1171 0 obj
<<
/Font << /F36 1175 0 R /F37 1176 0 R >>
/ProcSet [ /PDF /Text ]
>>
endobj
1180 0 obj
<<
/Length 73
/Filter /FlateDecode
>>
stream
xÚs
áÒw36W04Ô³455RIS0±4Ò³°4W0±0Õ366QIQÖÑ´0ÒÈ×Ô562×pÌKÏLÕ
ñâr
á ÏÅ
endstream
endobj
1179 0 obj
<<
/Type /Page
/Contents 1180 0 R
/Resources 1178 0 R
/MediaBox [0 0 612 792]
/Parent 1177 0 R
>>
endobj
1181 0 obj
<<
/D [1179 0 R /XYZ 71 721 null]
>>
endobj
1178 0 obj
<<
/Font << /F37 1176 0 R >>
/ProcSet [ /PDF /Text ]
>>
endobj
1189 0 obj
<<
/Length 2653
/Filter /FlateDecode
>>
stream
xÚYKÛ¸¾Ï¯PåDU¸|³Ý$ko³;TÅö#B"<|h Òû¿~¢fèªT3Ðøú}ÿp÷ÝOY²ITXE¼y8nd'yXªýæ¡Ú¼Þ
æ¨fûñáçï~JMû¦ k´ÙeYÅÂùP[·Ý¥e