See More

%PDF-1.5 %ÐÔÅØ 1 0 obj << /S /GoTo /D (chapter*.1) >> endobj 4 0 obj (Preface) endobj 5 0 obj << /S /GoTo /D (chapter*.3) >> endobj 8 0 obj (Notations and conventions) endobj 9 0 obj << /S /GoTo /D (chapter.1) >> endobj 12 0 obj (Introduction) endobj 13 0 obj << /S /GoTo /D (section.1.1) >> endobj 16 0 obj (What is intersection homology?) endobj 17 0 obj << /S /GoTo /D (section.1.2) >> endobj 20 0 obj (Simplicial vs. PL vs. singular) endobj 21 0 obj << /S /GoTo /D (section.1.3) >> endobj 24 0 obj (A note about sheaves and their scarcity here) endobj 25 0 obj << /S /GoTo /D (section.1.4) >> endobj 28 0 obj (GM vs. non-GM intersection homology and an important note about notation) endobj 29 0 obj << /S /GoTo /D (section.1.5) >> endobj 32 0 obj (Outline) endobj 33 0 obj << /S /GoTo /D (chapter.2) >> endobj 36 0 obj (Stratified Spaces) endobj 37 0 obj << /S /GoTo /D (section.2.1) >> endobj 40 0 obj (First examples of stratified spaces) endobj 41 0 obj << /S /GoTo /D (section.2.2) >> endobj 44 0 obj (Filtered and stratified spaces) endobj 45 0 obj << /S /GoTo /D (subsection.2.2.1) >> endobj 48 0 obj (Filtered spaces) endobj 49 0 obj << /S /GoTo /D (subsection.2.2.2) >> endobj 52 0 obj (Stratified spaces) endobj 53 0 obj << /S /GoTo /D (section*.5) >> endobj 56 0 obj (Manifold stratified spaces) endobj 57 0 obj << /S /GoTo /D (subsection.2.2.3) >> endobj 60 0 obj (Depth) endobj 61 0 obj << /S /GoTo /D (section.2.3) >> endobj 64 0 obj (Locally conelike spaces and CS sets) endobj 65 0 obj << /S /GoTo /D (section.2.4) >> endobj 68 0 obj (Pseudomanifolds) endobj 69 0 obj << /S /GoTo /D (section.2.5) >> endobj 72 0 obj (PL spaces and PL pseudomanifolds) endobj 73 0 obj << /S /GoTo /D (subsection.2.5.1) >> endobj 76 0 obj (PL spaces) endobj 77 0 obj << /S /GoTo /D (subsection.2.5.2) >> endobj 80 0 obj (Piecewise linear and simplicial pseudomanifolds) endobj 81 0 obj << /S /GoTo /D (section*.6) >> endobj 84 0 obj (Classical simplicial pseudomanifolds) endobj 85 0 obj << /S /GoTo /D (section.2.6) >> endobj 88 0 obj (Normal pseudomanifolds) endobj 89 0 obj << /S /GoTo /D (section.2.7) >> endobj 92 0 obj (Pseudomanifolds with boundaries) endobj 93 0 obj << /S /GoTo /D (section.2.8) >> endobj 96 0 obj (Other species of stratified spaces) endobj 97 0 obj << /S /GoTo /D (subsection.2.8.1) >> endobj 100 0 obj (Whitney stratified spaces) endobj 101 0 obj << /S /GoTo /D (subsection.2.8.2) >> endobj 104 0 obj (Thom-Mather spaces) endobj 105 0 obj << /S /GoTo /D (subsection.2.8.3) >> endobj 108 0 obj (Homotopically stratified spaces) endobj 109 0 obj << /S /GoTo /D (section.2.9) >> endobj 112 0 obj (Maps of stratified spaces) endobj 113 0 obj << /S /GoTo /D (section.2.10) >> endobj 116 0 obj (Advanced topic: intrinsic filtrations) endobj 117 0 obj << /S /GoTo /D (subsection.2.10.1) >> endobj 120 0 obj (Intrinsic PL filtrations) endobj 121 0 obj << /S /GoTo /D (section*.7) >> endobj 124 0 obj (Intrinsic filtrations of PL pseudomanifolds with boundary) endobj 125 0 obj << /S /GoTo /D (section.2.11) >> endobj 128 0 obj (Advanced topic: products and joins) endobj 129 0 obj << /S /GoTo /D (subsection.2.11.1) >> endobj 132 0 obj (Products of intrinsic filtrations) endobj 133 0 obj << /S /GoTo /D (chapter.3) >> endobj 136 0 obj (Intersection homology) endobj 137 0 obj << /S /GoTo /D (section.3.1) >> endobj 140 0 obj (Perversities) endobj 141 0 obj << /S /GoTo /D (subsection.3.1.1) >> endobj 144 0 obj (GM perversities) endobj 145 0 obj << /S /GoTo /D (subsection.3.1.2) >> endobj 148 0 obj (Dual perversities) endobj 149 0 obj << /S /GoTo /D (section.3.2) >> endobj 152 0 obj (Simplicial intersection homology) endobj 153 0 obj << /S /GoTo /D (subsection.3.2.1) >> endobj 156 0 obj (First examples) endobj 157 0 obj << /S /GoTo /D (section*.8) >> endobj 160 0 obj (Allowability with respect to regular strata) endobj 161 0 obj << /S /GoTo /D (section*.9) >> endobj 164 0 obj (Effects of subdivision) endobj 165 0 obj << /S /GoTo /D (section*.10) >> endobj 168 0 obj (Some more advanced examples) endobj 169 0 obj << /S /GoTo /D (subsection.3.2.2) >> endobj 172 0 obj (Some remarks on the definition) endobj 173 0 obj << /S /GoTo /D (section*.11) >> endobj 176 0 obj (The motivation for the definition of intersection homology) endobj 177 0 obj << /S /GoTo /D (section*.12) >> endobj 180 0 obj (Strata vs. skeleta in the definition of intersection chains) endobj 181 0 obj << /S /GoTo /D (section.3.3) >> endobj 184 0 obj (PL intersection homology) endobj 185 0 obj << /S /GoTo /D (subsection.3.3.1) >> endobj 188 0 obj (PL homology) endobj 189 0 obj << /S /GoTo /D (section*.13) >> endobj 192 0 obj (PL chains and PL maps) endobj 193 0 obj << /S /GoTo /D (subsection.3.3.2) >> endobj 196 0 obj (A useful alternative characterization of PL chains) endobj 197 0 obj << /S /GoTo /D (section*.14) >> endobj 200 0 obj (Adding chains) endobj 201 0 obj << /S /GoTo /D (section*.15) >> endobj 204 0 obj (Compatibility with PL maps) endobj 205 0 obj << /S /GoTo /D (section*.16) >> endobj 208 0 obj (Realization) endobj 209 0 obj << /S /GoTo /D (subsection.3.3.3) >> endobj 212 0 obj (PL intersection homology) endobj 213 0 obj << /S /GoTo /D (subsection.3.3.4) >> endobj 216 0 obj (The relation between simplicial and PL intersection homology) endobj 217 0 obj << /S /GoTo /D (section.3.4) >> endobj 220 0 obj (Singular intersection homology) endobj 221 0 obj << /S /GoTo /D (chapter.4) >> endobj 224 0 obj (Basic properties of singular and PL intersection homology) endobj 225 0 obj << /S /GoTo /D (section.4.1) >> endobj 228 0 obj (Stratified maps, homotopies, and homotopy equivalences) endobj 229 0 obj << /S /GoTo /D (section.4.2) >> endobj 232 0 obj (The cone formula) endobj 233 0 obj << /S /GoTo /D (section.4.3) >> endobj 236 0 obj (Relative intersection homology) endobj 237 0 obj << /S /GoTo /D (subsection.4.3.1) >> endobj 240 0 obj (Further commentary on subspace filtrations) endobj 241 0 obj << /S /GoTo /D (subsection.4.3.2) >> endobj 244 0 obj (Stratified maps revisited) endobj 245 0 obj << /S /GoTo /D (subsection.4.3.3) >> endobj 248 0 obj (Reduced intersection homology and the relative cone formula) endobj 249 0 obj << /S /GoTo /D (section*.17) >> endobj 252 0 obj (Reduced intersection homology) endobj 253 0 obj << /S /GoTo /D (section*.18) >> endobj 256 0 obj (The relative cone formula) endobj 257 0 obj << /S /GoTo /D (section.4.4) >> endobj 260 0 obj (Mayer-Vietoris sequences and excision) endobj 261 0 obj << /S /GoTo /D (subsection.4.4.1) >> endobj 264 0 obj (PL excision and Mayer-Vietoris) endobj 265 0 obj << /S /GoTo /D (subsection.4.4.2) >> endobj 268 0 obj (Singular subdivision, excision, and Mayer-Vietoris) endobj 269 0 obj << /S /GoTo /D (section*.19) >> endobj 272 0 obj (Singular subdivision) endobj 273 0 obj << /S /GoTo /D (section*.24) >> endobj 276 0 obj (Excision) endobj 277 0 obj << /S /GoTo /D (section*.25) >> endobj 280 0 obj (Mayer-Vietoris) endobj 281 0 obj << /S /GoTo /D (section*.26) >> endobj 284 0 obj (Examples) endobj 285 0 obj << /S /GoTo /D (section*.27) >> endobj 288 0 obj (Relative Mayer-Vietoris sequences) endobj 289 0 obj << /S /GoTo /D (chapter.5) >> endobj 292 0 obj (Mayer-Vietoris arguments and further properties of intersection homology) endobj 293 0 obj << /S /GoTo /D (section.5.1) >> endobj 296 0 obj (Mayer-Vietoris arguments) endobj 297 0 obj << /S /GoTo /D (subsection.5.1.1) >> endobj 300 0 obj (First applications: high perversities and normalization) endobj 301 0 obj << /S /GoTo /D (section*.28) >> endobj 304 0 obj (High perversities) endobj 305 0 obj << /S /GoTo /D (section*.29) >> endobj 308 0 obj (Normalization) endobj 309 0 obj << /S /GoTo /D (section.5.2) >> endobj 312 0 obj (Cross products and the K\374nneth theorem with a manifold factor) endobj 313 0 obj << /S /GoTo /D (subsection.5.2.1) >> endobj 316 0 obj (The singular chain cross product) endobj 317 0 obj << /S /GoTo /D (subsection.5.2.2) >> endobj 320 0 obj (The PL cross product) endobj 321 0 obj << /S /GoTo /D (subsection.5.2.3) >> endobj 324 0 obj (Properties of the cross product) endobj 325 0 obj << /S /GoTo /D (subsection.5.2.4) >> endobj 328 0 obj (K\374nneth theorem when one factor is a manifold) endobj 329 0 obj << /S /GoTo /D (section.5.3) >> endobj 332 0 obj (Intersection homology with coefficients and universal coefficient theorems) endobj 333 0 obj << /S /GoTo /D (subsection.5.3.1) >> endobj 336 0 obj (Definitions of intersection homology with coefficients) endobj 337 0 obj << /S /GoTo /D (section*.30) >> endobj 340 0 obj (Comparing the options) endobj 341 0 obj << /S /GoTo /D (section*.31) >> endobj 344 0 obj (Basic properties of intersection homology with coefficients) endobj 345 0 obj << /S /GoTo /D (subsection.5.3.2) >> endobj 348 0 obj (Universal coefficient theorems) endobj 349 0 obj << /S /GoTo /D (section.5.4) >> endobj 352 0 obj (Equivalence of PL and singular intersection homology on PL CS sets) endobj 353 0 obj << /S /GoTo /D (subsection.5.4.1) >> endobj 356 0 obj (Barycentric subdivisions and maps from PL chains to singular chains) endobj 357 0 obj << /S /GoTo /D (subsection.5.4.2) >> endobj 360 0 obj (The isomorphism of PL and singular intersection homology) endobj 361 0 obj << /S /GoTo /D (section.5.5) >> endobj 364 0 obj (Topological invariance) endobj 365 0 obj << /S /GoTo /D (subsection.5.5.1) >> endobj 368 0 obj (What perversities work?) endobj 369 0 obj << /S /GoTo /D (subsection.5.5.2) >> endobj 372 0 obj (The statement of the theorem and some corollaries) endobj 373 0 obj << /S /GoTo /D (subsection.5.5.3) >> endobj 376 0 obj (Proof of topological invariance) endobj 377 0 obj << /S /GoTo /D (section.5.6) >> endobj 380 0 obj (Finite generation) endobj 381 0 obj << /S /GoTo /D (chapter.6) >> endobj 384 0 obj (Non-GM intersection homology) endobj 385 0 obj << /S /GoTo /D (section.6.1) >> endobj 388 0 obj (Motivation for non-GM intersection homology) endobj 389 0 obj << /S /GoTo /D (section.6.2) >> endobj 392 0 obj (Definitions of non-GM intersection homology) endobj 393 0 obj << /S /GoTo /D (subsection.6.2.1) >> endobj 396 0 obj (First definition of IH) endobj 397 0 obj << /S /GoTo /D (subsection.6.2.2) >> endobj 400 0 obj (Second definition of IH) endobj 401 0 obj << /S /GoTo /D (subsection.6.2.3) >> endobj 404 0 obj (Third definition of IH) endobj 405 0 obj << /S /GoTo /D (subsection.6.2.4) >> endobj 408 0 obj (Non-GM intersection homology below the top perversity) endobj 409 0 obj << /S /GoTo /D (subsection.6.2.5) >> endobj 412 0 obj (A new cone formula) endobj 413 0 obj << /S /GoTo /D (subsection.6.2.6) >> endobj 416 0 obj (Relative non-GM intersection homology and the relative cone formula) endobj 417 0 obj << /S /GoTo /D (section.6.3) >> endobj 420 0 obj (Properties of IH\(X;G\)) endobj 421 0 obj << /S /GoTo /D (subsection.6.3.1) >> endobj 424 0 obj (Basic properties) endobj 425 0 obj << /S /GoTo /D (section*.36) >> endobj 428 0 obj (Maps and homotopies) endobj 429 0 obj << /S /GoTo /D (section*.37) >> endobj 432 0 obj (Subdivision, excision, and Mayer-Vietoris) endobj 433 0 obj << /S /GoTo /D (section*.38) >> endobj 436 0 obj (Applications of Mayer-Vietoris arguments) endobj 437 0 obj << /S /GoTo /D (section*.39) >> endobj 440 0 obj (Cross products) endobj 441 0 obj << /S /GoTo /D (section*.40) >> endobj 444 0 obj (Coefficients) endobj 445 0 obj << /S /GoTo /D (section*.41) >> endobj 448 0 obj (Agreement of singular and PL intersection homology) endobj 449 0 obj << /S /GoTo /D (section*.42) >> endobj 452 0 obj (Finite generation) endobj 453 0 obj << /S /GoTo /D (subsection.6.3.2) >> endobj 456 0 obj (Dimensional homogeneity) endobj 457 0 obj << /S /GoTo /D (subsection.6.3.3) >> endobj 460 0 obj (Local coefficients) endobj 461 0 obj << /S /GoTo /D (section.6.4) >> endobj 464 0 obj (A general K\374nneth theorem) endobj 465 0 obj << /S /GoTo /D (subsection.6.4.1) >> endobj 468 0 obj (A key example: the product of cones) endobj 469 0 obj << /S /GoTo /D (subsection.6.4.2) >> endobj 472 0 obj (The K\374nneth Theorem) endobj 473 0 obj << /S /GoTo /D (subsection.6.4.3) >> endobj 476 0 obj (A relative K\374nneth theorem) endobj 477 0 obj << /S /GoTo /D (subsection.6.4.4) >> endobj 480 0 obj (Applications of the K\374nneth Theorem) endobj 481 0 obj << /S /GoTo /D (subsection.6.4.5) >> endobj 484 0 obj (Some technical stuff: the proof of Lemma 6.4.2) endobj 485 0 obj << /S /GoTo /D (section*.46) >> endobj 488 0 obj (Algebra of the algebraic K\374nneth theorem) endobj 489 0 obj << /S /GoTo /D (section*.49) >> endobj 492 0 obj (Splitting) endobj 493 0 obj << /S /GoTo /D (section*.50) >> endobj 496 0 obj (Intersection homology products with cones) endobj 497 0 obj << /S /GoTo /D (section.6.5) >> endobj 500 0 obj (Advanced topic: chain splitting) endobj 501 0 obj << /S /GoTo /D (chapter.7) >> endobj 504 0 obj (Intersection cohomology and products) endobj 505 0 obj << /S /GoTo /D (section.7.1) >> endobj 508 0 obj (Intersection cohomology) endobj 509 0 obj << /S /GoTo /D (section.7.2) >> endobj 512 0 obj (Cup, cap, and cross products) endobj 513 0 obj << /S /GoTo /D (subsection.7.2.1) >> endobj 516 0 obj (Philosophy) endobj 517 0 obj << /S /GoTo /D (subsection.7.2.2) >> endobj 520 0 obj (Intersection homology cup, cap, and cross products) endobj 521 0 obj << /S /GoTo /D (section*.51) >> endobj 524 0 obj (Hom of tensor products) endobj 525 0 obj << /S /GoTo /D (section*.52) >> endobj 528 0 obj (Intersection Alexander-Whitney maps) endobj 529 0 obj << /S /GoTo /D (section*.53) >> endobj 532 0 obj (The diagonal map) endobj 533 0 obj << /S /GoTo /D (section*.55) >> endobj 536 0 obj (The intersection cup, cap, and cross products) endobj 537 0 obj << /S /GoTo /D (section.7.3) >> endobj 540 0 obj (Properties of cup, cap, and cross products. ) endobj 541 0 obj << /S /GoTo /D (subsection.7.3.1) >> endobj 544 0 obj (Naturality) endobj 545 0 obj << /S /GoTo /D (section*.60) >> endobj 548 0 obj (Naturality of the cross product) endobj 549 0 obj << /S /GoTo /D (section*.62) >> endobj 552 0 obj (Naturality of cup and cap products) endobj 553 0 obj << /S /GoTo /D (section*.65) >> endobj 556 0 obj (Compatibility with classical products) endobj 557 0 obj << /S /GoTo /D (section*.66) >> endobj 560 0 obj (Topological invariance) endobj 561 0 obj << /S /GoTo /D (subsection.7.3.2) >> endobj 564 0 obj (Commutativity) endobj 565 0 obj << /S /GoTo /D (subsection.7.3.3) >> endobj 568 0 obj (Unitality and evaluation) endobj 569 0 obj << /S /GoTo /D (section*.69) >> endobj 572 0 obj (Projection maps) endobj 573 0 obj << /S /GoTo /D (section*.70) >> endobj 576 0 obj (Unital properties of products) endobj 577 0 obj << /S /GoTo /D (section*.73) >> endobj 580 0 obj (Products and evaluations) endobj 581 0 obj << /S /GoTo /D (subsection.7.3.4) >> endobj 584 0 obj (Associativity) endobj 585 0 obj << /S /GoTo /D (section*.74) >> endobj 588 0 obj (Associativity under broad assumptions) endobj 589 0 obj << /S /GoTo /D (section*.77) >> endobj 592 0 obj (Associativity in some more specific settings) endobj 593 0 obj << /S /GoTo /D (subsection.7.3.5) >> endobj 596 0 obj (Stability) endobj 597 0 obj << /S /GoTo /D (section*.78) >> endobj 600 0 obj (Stability of cap products) endobj 601 0 obj << /S /GoTo /D (section*.81) >> endobj 604 0 obj (Algebra of shifts and mapping cones ) endobj 605 0 obj << /S /GoTo /D (section*.84) >> endobj 608 0 obj (Stability of cross products and cup products ) endobj 609 0 obj << /S /GoTo /D (subsection.7.3.6) >> endobj 612 0 obj (Criss-crosses) endobj 613 0 obj << /S /GoTo /D (section*.87) >> endobj 616 0 obj (The relation between cup and cross products) endobj 617 0 obj << /S /GoTo /D (section*.88) >> endobj 620 0 obj (Interchange identities under broad assumptions) endobj 621 0 obj << /S /GoTo /D (section*.91) >> endobj 624 0 obj (Interchange identities in some more specific settings) endobj 625 0 obj << /S /GoTo /D (subsection.7.3.7) >> endobj 628 0 obj (Locality) endobj 629 0 obj << /S /GoTo /D (subsection.7.3.8) >> endobj 632 0 obj (The cohomology K\374nneth theorem) endobj 633 0 obj << /S /GoTo /D (subsection.7.3.9) >> endobj 636 0 obj (Summary of properties) endobj 637 0 obj << /S /GoTo /D (subsection.7.3.10) >> endobj 640 0 obj (Products on boundary-pseudomanifolds) endobj 641 0 obj << /S /GoTo /D (section.7.4) >> endobj 644 0 obj (Intersection cohomology with compact supports) endobj 645 0 obj << /S /GoTo /D (chapter.8) >> endobj 648 0 obj (Poincar\351 duality) endobj 649 0 obj << /S /GoTo /D (section.8.1) >> endobj 652 0 obj (Orientations and fundamental classes) endobj 653 0 obj << /S /GoTo /D (subsection.8.1.1) >> endobj 656 0 obj (Orientation and fundamental classes of manifolds) endobj 657 0 obj << /S /GoTo /D (subsection.8.1.2) >> endobj 660 0 obj (Orientation of CS sets ) endobj 661 0 obj << /S /GoTo /D (subsection.8.1.3) >> endobj 664 0 obj (Homological properties of orientable pseudomanifolds) endobj 665 0 obj << /S /GoTo /D (section*.95) >> endobj 668 0 obj (The orientation sheaf) endobj 669 0 obj << /S /GoTo /D (section*.96) >> endobj 672 0 obj (Homological theorems) endobj 673 0 obj << /S /GoTo /D (section*.101) >> endobj 676 0 obj (Useful corollaries) endobj 677 0 obj << /S /GoTo /D (subsection.8.1.4) >> endobj 680 0 obj (Lack of global fundamental classes for subzero perversities) endobj 681 0 obj << /S /GoTo /D (subsection.8.1.5) >> endobj 684 0 obj (Invariance of fundamental classes) endobj 685 0 obj << /S /GoTo /D (section*.102) >> endobj 688 0 obj (Fundamental classes under change of perversity) endobj 689 0 obj << /S /GoTo /D (section*.103) >> endobj 692 0 obj (Fundamental classes under change of stratification) endobj 693 0 obj << /S /GoTo /D (subsection.8.1.6) >> endobj 696 0 obj (Intersection homology factors the cap product) endobj 697 0 obj << /S /GoTo /D (section*.104) >> endobj 700 0 obj (More general factorizations) endobj 701 0 obj << /S /GoTo /D (subsection.8.1.7) >> endobj 704 0 obj (Product spaces) endobj 705 0 obj << /S /GoTo /D (section.8.2) >> endobj 708 0 obj (Poincar\351 duality) endobj 709 0 obj << /S /GoTo /D (subsection.8.2.1) >> endobj 712 0 obj (The duality map) endobj 713 0 obj << /S /GoTo /D (subsection.8.2.2) >> endobj 716 0 obj (The Poincar\351 Duality Theorem) endobj 717 0 obj << /S /GoTo /D (subsection.8.2.3) >> endobj 720 0 obj (Duality of torsion free conditions) endobj 721 0 obj << /S /GoTo /D (subsection.8.2.4) >> endobj 724 0 obj (Topological invariance of Poincar\351 duality) endobj 725 0 obj << /S /GoTo /D (section.8.3) >> endobj 728 0 obj (Lefschetz duality) endobj 729 0 obj << /S /GoTo /D (subsection.8.3.1) >> endobj 732 0 obj (Orientations and fundamental classes) endobj 733 0 obj << /S /GoTo /D (section*.114) >> endobj 736 0 obj (Topological invariance) endobj 737 0 obj << /S /GoTo /D (subsection.8.3.2) >> endobj 740 0 obj (Lefschetz duality) endobj 741 0 obj << /S /GoTo /D (section*.115) >> endobj 744 0 obj (Topological invariance) endobj 745 0 obj << /S /GoTo /D (section.8.4) >> endobj 748 0 obj (The cup product and torsion pairings) endobj 749 0 obj << /S /GoTo /D (subsection.8.4.1) >> endobj 752 0 obj (Some algebra) endobj 753 0 obj << /S /GoTo /D (section*.116) >> endobj 756 0 obj (Pairings) endobj 757 0 obj << /S /GoTo /D (section*.117) >> endobj 760 0 obj (Torsion submodules and torsion-free quotients) endobj 761 0 obj << /S /GoTo /D (subsection.8.4.2) >> endobj 764 0 obj (The cup product pairing) endobj 765 0 obj << /S /GoTo /D (subsection.8.4.3) >> endobj 768 0 obj (The torsion pairing) endobj 769 0 obj << /S /GoTo /D (section*.118) >> endobj 772 0 obj (The components of lambda) endobj 773 0 obj << /S /GoTo /D (section*.119) >> endobj 776 0 obj (Assembling lambda) endobj 777 0 obj << /S /GoTo /D (section*.120) >> endobj 780 0 obj (The torsion pairing made explicit) endobj 781 0 obj << /S /GoTo /D (section*.121) >> endobj 784 0 obj (Symmetry and nonsingularity) endobj 785 0 obj << /S /GoTo /D (section*.122) >> endobj 788 0 obj (Another approach to the torsion pairing) endobj 789 0 obj << /S /GoTo /D (subsection.8.4.4) >> endobj 792 0 obj (Topological invariance of pairings) endobj 793 0 obj << /S /GoTo /D (subsection.8.4.5) >> endobj 796 0 obj (Image pairings) endobj 797 0 obj << /S /GoTo /D (section*.123) >> endobj 800 0 obj (Nondegeneracy) endobj 801 0 obj << /S /GoTo /D (section*.124) >> endobj 804 0 obj (The intersection cohomology image pairing) endobj 805 0 obj << /S /GoTo /D (section.8.5) >> endobj 808 0 obj (The Goresky-MacPherson intersection pairing) endobj 809 0 obj << /S /GoTo /D (subsection.8.5.1) >> endobj 812 0 obj (The intersection pairing on manifolds) endobj 813 0 obj << /S /GoTo /D (section*.125) >> endobj 816 0 obj (What should the intersection product be?) endobj 817 0 obj << /S /GoTo /D (section*.126) >> endobj 820 0 obj (The PL intersection pairing) endobj 821 0 obj << /S /GoTo /D (subsection.8.5.2) >> endobj 824 0 obj (The intersection pairing on PL pseudomanifolds) endobj 825 0 obj << /S /GoTo /D (section*.128) >> endobj 828 0 obj (Almost full circle) endobj 829 0 obj << /S /GoTo /D (subsection.8.5.3) >> endobj 832 0 obj (An intersection pairing on topological pseudomanifolds and some relations of Goresky and MacPherson) endobj 833 0 obj << /S /GoTo /D (chapter.9) >> endobj 836 0 obj (Witt spaces and IP spaces) endobj 837 0 obj << /S /GoTo /D (section.9.1) >> endobj 840 0 obj (Witt and IP spaces) endobj 841 0 obj << /S /GoTo /D (subsection.9.1.1) >> endobj 844 0 obj (Witt spaces) endobj 845 0 obj << /S /GoTo /D (section*.129) >> endobj 848 0 obj (Dependence of Witt spaces on coefficient choices) endobj 849 0 obj << /S /GoTo /D (subsection.9.1.2) >> endobj 852 0 obj (IP spaces) endobj 853 0 obj << /S /GoTo /D (subsection.9.1.3) >> endobj 856 0 obj (Products and stratification independence) endobj 857 0 obj << /S /GoTo /D (section.9.2) >> endobj 860 0 obj (Self pairings) endobj 861 0 obj << /S /GoTo /D (section.9.3) >> endobj 864 0 obj (Witt signatures) endobj 865 0 obj << /S /GoTo /D (subsection.9.3.1) >> endobj 868 0 obj (Definitions and basic properties) endobj 869 0 obj << /S /GoTo /D (section*.132) >> endobj 872 0 obj (Signatures of matrices and pairings) endobj 873 0 obj << /S /GoTo /D (section*.133) >> endobj 876 0 obj (Witt signatures) endobj 877 0 obj << /S /GoTo /D (section*.135) >> endobj 880 0 obj (Topological invariance of Witt signatures) endobj 881 0 obj << /S /GoTo /D (subsection.9.3.2) >> endobj 884 0 obj (Properties of Witt signatures) endobj 885 0 obj << /S /GoTo /D (subsection.9.3.3) >> endobj 888 0 obj (Novikov additivity) endobj 889 0 obj << /S /GoTo /D (subsection.9.3.4) >> endobj 892 0 obj (Perverse signatures) endobj 893 0 obj << /S /GoTo /D (section.9.4) >> endobj 896 0 obj (L-classes) endobj 897 0 obj << /S /GoTo /D (subsection.9.4.1) >> endobj 900 0 obj (Outline of the construction of L-classes \(without proofs\)) endobj 901 0 obj << /S /GoTo /D (section*.136) >> endobj 904 0 obj (Maps to spheres and embedded subspaces) endobj 905 0 obj << /S /GoTo /D (section*.137) >> endobj 908 0 obj (Cohomotopy) endobj 909 0 obj << /S /GoTo /D (section*.138) >> endobj 912 0 obj (The L-classes) endobj 913 0 obj << /S /GoTo /D (section*.139) >> endobj 916 0 obj (L-classes on smooth manifolds) endobj 917 0 obj << /S /GoTo /D (section*.140) >> endobj 920 0 obj (L-classes for small degrees) endobj 921 0 obj << /S /GoTo /D (section*.141) >> endobj 924 0 obj (Characterizing the L-classes) endobj 925 0 obj << /S /GoTo /D (section*.145) >> endobj 928 0 obj (Some notation) endobj 929 0 obj << /S /GoTo /D (section*.146) >> endobj 932 0 obj (The proofs) endobj 933 0 obj << /S /GoTo /D (subsection.9.4.2) >> endobj 936 0 obj (Maps to spheres and embedded subspaces) endobj 937 0 obj << /S /GoTo /D (subsection.9.4.3) >> endobj 940 0 obj (Cohomotopy) endobj 941 0 obj << /S /GoTo /D (subsection.9.4.4) >> endobj 944 0 obj (The L-classes) endobj 945 0 obj << /S /GoTo /D (subsection.9.4.5) >> endobj 948 0 obj (L-classes in small degrees) endobj 949 0 obj << /S /GoTo /D (section*.154) >> endobj 952 0 obj (Extending properties to small degrees) endobj 953 0 obj << /S /GoTo /D (subsection.9.4.6) >> endobj 956 0 obj (Characterizing the L-classes) endobj 957 0 obj << /S /GoTo /D (section.9.5) >> endobj 960 0 obj (A survey of pseudomanifold bordism theories) endobj 961 0 obj << /S /GoTo /D (subsection.9.5.1) >> endobj 964 0 obj (Bordism) endobj 965 0 obj << /S /GoTo /D (section*.155) >> endobj 968 0 obj (Bordism groups) endobj 969 0 obj << /S /GoTo /D (section*.156) >> endobj 972 0 obj (Bordism homology theories) endobj 973 0 obj << /S /GoTo /D (subsection.9.5.2) >> endobj 976 0 obj (Pseudomanifold bordism) endobj 977 0 obj << /S /GoTo /D (chapter.10) >> endobj 980 0 obj (Suggestions for further reading) endobj 981 0 obj << /S /GoTo /D (section.10.1) >> endobj 984 0 obj (Background, foundations, and next texts) endobj 985 0 obj << /S /GoTo /D (subsection.10.1.1) >> endobj 988 0 obj (Deeper background) endobj 989 0 obj << /S /GoTo /D (section*.165) >> endobj 992 0 obj (Sheaf theory) endobj 993 0 obj << /S /GoTo /D (section*.166) >> endobj 996 0 obj (Derived categories and Verdier duality) endobj 997 0 obj << /S /GoTo /D (section.10.2) >> endobj 1000 0 obj (Bordism) endobj 1001 0 obj << /S /GoTo /D (section.10.3) >> endobj 1004 0 obj (Characteristic classes) endobj 1005 0 obj << /S /GoTo /D (section.10.4) >> endobj 1008 0 obj (Intersection spaces) endobj 1009 0 obj << /S /GoTo /D (section.10.5) >> endobj 1012 0 obj (Analytic approaches to intersection cohomology) endobj 1013 0 obj << /S /GoTo /D (subsection.10.5.1) >> endobj 1016 0 obj (L2 cohomology) endobj 1017 0 obj << /S /GoTo /D (subsection.10.5.2) >> endobj 1020 0 obj (Perverse forms) endobj 1021 0 obj << /S /GoTo /D (section*.167) >> endobj 1024 0 obj (Chataur-Saralegi-Tanr\351 theory) endobj 1025 0 obj << /S /GoTo /D (section.10.6) >> endobj 1028 0 obj (Stratified Morse Theory) endobj 1029 0 obj << /S /GoTo /D (section.10.7) >> endobj 1032 0 obj (Perverse sheaves and the Decomposition Theorem) endobj 1033 0 obj << /S /GoTo /D (section.10.8) >> endobj 1036 0 obj (Hodge theory) endobj 1037 0 obj << /S /GoTo /D (section.10.9) >> endobj 1040 0 obj (Miscellaneous) endobj 1041 0 obj << /S /GoTo /D (appendix.A) >> endobj 1044 0 obj (Algebra) endobj 1045 0 obj << /S /GoTo /D (section.A.1) >> endobj 1048 0 obj (Koszul sign conventions) endobj 1049 0 obj << /S /GoTo /D (subsection.A.1.1) >> endobj 1052 0 obj (Why sign?) endobj 1053 0 obj << /S /GoTo /D (subsection.A.1.2) >> endobj 1056 0 obj (Homological versus cohomological grading) endobj 1057 0 obj << /S /GoTo /D (subsection.A.1.3) >> endobj 1060 0 obj (The chain complex of maps of chain complexes) endobj 1061 0 obj << /S /GoTo /D (subsection.A.1.4) >> endobj 1064 0 obj (Chain maps and chain homotopies) endobj 1065 0 obj << /S /GoTo /D (subsection.A.1.5) >> endobj 1068 0 obj (Consequences) endobj 1069 0 obj << /S /GoTo /D (section.A.2) >> endobj 1072 0 obj (Some more facts about chain homotopies) endobj 1073 0 obj << /S /GoTo /D (section.A.3) >> endobj 1076 0 obj (Shifts and mapping cones) endobj 1077 0 obj << /S /GoTo /D (subsection.A.3.1) >> endobj 1080 0 obj (Shifts) endobj 1081 0 obj << /S /GoTo /D (subsection.A.3.2) >> endobj 1084 0 obj (Algebraic mapping cones) endobj 1085 0 obj << /S /GoTo /D (section.A.4) >> endobj 1088 0 obj (Projective modules and Dedekind domains) endobj 1089 0 obj << /S /GoTo /D (subsection.A.4.1) >> endobj 1092 0 obj (Projective modules) endobj 1093 0 obj << /S /GoTo /D (subsection.A.4.2) >> endobj 1096 0 obj (Dedekind domains) endobj 1097 0 obj << /S /GoTo /D (section.A.5) >> endobj 1100 0 obj (Linear algebra of signatures) endobj 1101 0 obj << /S /GoTo /D (appendix.B) >> endobj 1104 0 obj (An introduction to simplicial and PL topology) endobj 1105 0 obj << /S /GoTo /D (section.B.1) >> endobj 1108 0 obj (Simplicial complexes and Euclidean polyhedra) endobj 1109 0 obj << /S /GoTo /D (subsection.B.1.1) >> endobj 1112 0 obj (Simplicial complexes) endobj 1113 0 obj << /S /GoTo /D (subsection.B.1.2) >> endobj 1116 0 obj (Euclidean polyhedra) endobj 1117 0 obj << /S /GoTo /D (section.B.2) >> endobj 1120 0 obj (PL spaces and PL maps) endobj 1121 0 obj << /S /GoTo /D (section.B.3) >> endobj 1124 0 obj (Comparing our two notions of PL spaces) endobj 1125 0 obj << /S /GoTo /D (section.B.4) >> endobj 1128 0 obj (PL subspaces) endobj 1129 0 obj << /S /GoTo /D (section.B.5) >> endobj 1132 0 obj (Cones, joins, and products of PL spaces) endobj 1133 0 obj << /S /GoTo /D (section.B.6) >> endobj 1136 0 obj (The Eilenberg-Zilber shuffle triangulation of products) endobj 1137 0 obj << /S /GoTo /D (subsection.B.6.1) >> endobj 1140 0 obj (The definition of the Eilenberg-Zilber triangulation) endobj 1141 0 obj << /S /GoTo /D (subsection.B.6.2) >> endobj 1144 0 obj (Realization of partially ordered sets) endobj 1145 0 obj << /S /GoTo /D (subsection.B.6.3) >> endobj 1148 0 obj (Products of partially ordered sets and their product triangulations) endobj 1149 0 obj << /S /GoTo /D (subsection.B.6.4) >> endobj 1152 0 obj (Triangulations of products of simplicial complexes and PL spaces) endobj 1153 0 obj << /S /GoTo /D (subsection.B.6.5) >> endobj 1156 0 obj (The simplicial cross product) endobj 1157 0 obj << /S /GoTo /D (section*.173) >> endobj 1160 0 obj (Bibliography) endobj 1161 0 obj << /S /GoTo /D (section*.175) >> endobj 1164 0 obj (Index) endobj 1165 0 obj << /S /GoTo /D (section*.176) >> endobj 1168 0 obj (Glossary of symbols) endobj 1169 0 obj << /S /GoTo /D [1170 0 R /Fit] >> endobj 1172 0 obj << /Length 255 /Filter /FlateDecode >> stream xÚUÁnà Dïù Ž Å[X0Æ·ªU])×RµR•ƒ›86’ vªæï‹ƒ/=ÎjæÍì“Ý=4Rä 5–Ä^ˆ¨ TDÕIžÉ}s¾¿Žmd…äHg¨éÒŹ;-.ø|ÂÆÐßØÑ°"BTW  REQJ¨U•™¯±ëS2‘f®;O­_Ó¤¸–¤ÖÙo™AÚý¶óªèóݼ¸ÖgÆ»w?,Ó(·04ô¾ƒH“12Sš•â’!›ö™b?·þ8Vÿûû´¾á² }ì§Öp Ó=¢$hž>” „Þ><\Ç[æ¢ÚçBä¢^ý»»û³Äaï endstream endobj 1170 0 obj << /Type /Page /Contents 1172 0 R /Resources 1171 0 R /MediaBox [0 0 612 792] /Parent 1177 0 R >> endobj 1173 0 obj << /D [1170 0 R /XYZ 71 721 null] >> endobj 1174 0 obj << /D [1170 0 R /XYZ 72 720 null] >> endobj 1171 0 obj << /Font << /F36 1175 0 R /F37 1176 0 R >> /ProcSet [ /PDF /Text ] >> endobj 1180 0 obj << /Length 73 /Filter /FlateDecode >> stream xÚs áÒw36W04Ô³455RIS0±4Ò³°4W0±0Õ366QIQˆÖÑ´0ÒÈ×Ô562×pÌKÏLÕŒ ñâr á ÏÅ endstream endobj 1179 0 obj << /Type /Page /Contents 1180 0 R /Resources 1178 0 R /MediaBox [0 0 612 792] /Parent 1177 0 R >> endobj 1181 0 obj << /D [1179 0 R /XYZ 71 721 null] >> endobj 1178 0 obj << /Font << /F37 1176 0 R >> /ProcSet [ /PDF /Text ] >> endobj 1189 0 obj << /Length 2653 /Filter /FlateDecode >> stream xڝYK“Û¸¾Ï¯PåDU¸|€³›Ý$ko­³;•TÅö#B"<|h Òû’¿ž~¢fèªT3Ðøú}ÿp÷ÝOY²ITX”E¼y8nŠd“'yXªýæ¡Ú¼Þ æ¨fûñáçï~J‹M‡û¦ k´ÙeYÅÂùP[·Ý¥eb5FÛË®©¢‚XŠ`4p€ÅhÝ·xÀ¦?}öÚô×-¬nwy±~ìÉvºi¾°œCߌì¿â9xZÒÜufä~dÂe°ãhºµ4°™i€S«8 º~4îÚiÌêUqœñP™ >'³ý1Ù.ÿD[Âi0nÉ!{îÍ2Ú9HçзçÁÔ¦sxŠ22µûfj¥?âÍë‘;Ǿizd¸¸p톸N½n¸U Áà3¦ã.a ¾x. ¶•LÕüq¶;5B:ôµŸ‰)æùÌ(v–/‰¨gíwñ¨¨ˆšïÞò÷C”Egkæbp5¶3cñ:º·QJ{š’€”_kÂh”zì-€…T –  §ªh„ô‚óF«=.Æp‹tCæÙºñJBhk\ÜãSÁ¿¾Åœ}S™aí8ƒqS3âby«’ö HYÞt½R7 ÂW™QÛ†Lzã`ôØÖÈFÂ- ÚgÛO‘Š}:OÍØÈ‰]$7´¨Ñî¿y*ÚƒñÖèÈHè ÿ¤2~?jkì1³ýîÑȸ1uLpo¦Â©Éô|¶Ç³ŽÈU!e¡#Y׋­dOM/2e¯àÛÓˆwvã¸÷ì0ñûÚK!õ &ì½C–Þv d‚ÈNÒ­ÊÜ#W“E2LX6ê ç…”õúë ¦üÅTæÉú) ]ýÐL$öD/bÏò®þ½ŸŠp_ #1°Ù‡Y¹áJÛˆÿ=\´ :š?_ú1´§7`¹ŠÙ΃mõ SéRñ‚ãbÆÆB$… ‚7tÌó(®‘äR^FÞM@Øâï…B3œ©³ìÅÙ>á‘q SàݨõyÄ+ÀNŒ[-³µ£5:s$Ì;¢X è4Pú*(éQÔŠ<¿èቩ¸'Š Y±Áßz1J TÓï ㎢ 6jUˆQC£Ñ£´â}9n²g…†Ñù.ý°×Œ:!y=O¦C»·_Í-ݝ!)’éÁkeóލCè@Ö$‡hC>[DðKÇFÛ£‰Éž:‹Š=h‹ˆSªÆÝJhug!`V³