.<\/p>');
�
When a star collapses and becomes a black hole, all the information
about its geometry, its making, and so on, are lost.
Three parameters are enough to fully describe a black hole : its mass, its electrical
charge, and its rotation speed (actually, its angular
momentum, but it's quite the same).
We are going to describe the three kinds of black holes :
This approach is very simplified, in particular we won't look at all the details, specially in general relativity and quantum mechanics.
�
Before diving inside a BH (black hole), we must have a look at three things, which will help us to understand the different phenomena.
One outstanding result of General Relativity is about time. The
proper time passes slower when the local gravitational field is stronger.
Consequently, for an outside observer, the apparent time of a remote object,
embedded in a gravitational field, is slowing down : for a clock near a black
hole, its proper time slows down, and the remote observer sees the delay.
This phenomenon will slow down the frequency of a wave radiated
by such an object : in other words, the emission spectrum shifts towards low
frequencies.
This shift is called the gravitational redshift, by analogy with the redshift
due to the expansion of universe, or Doppler effect.
The energy of a photon is in proportion to its frequency. So we can interpret the gravitational redshift as a loss of energy necessary to escape the gravitational field.
This effect is, of course, very weak for normal gravitational fields, like the Earth's, but it is of considerable significance near a black hole.
A space-time diagram is a simple and easy way to describe a space-time continuum, like ours.
Very often, one shows only one space dimension, in order to simplify.
Red diagonals are called the "light cone". Nothing can move faster than light, so the path of any object is necessarily inside this cone.
As a result of this, the two areas, marked area 1 and 2 are causally independent : no event from one of them can act upon a point of the other one ; to do such a thing, one would have to travel faster than light.
This diagram comes from the English physicist Roger Penrose. It's
a space-time diagram which has been closed (in the mathematical meaning) by
bringing the infinities back to lines.
Such a diagram is, by no way, an exact description of the universe. Its aim
is only to show causal relationships.
Here is such a diagram, always limited to one space dimension.
This diagram is the result of a compactification of space, by means of an appropriate change of coordinates. As it is drawn here, it shows an infinite space-time universe, without beginning nor end.
With this knowledge, we will be able to see what happens when we move near a black hole.
�
This is the most simple, idealized, model. Certainly, it doesn't
exist in the actual universe, but it allows us to start on the main concepts,
in the easiest way.
Its name comes from the German astronomer Schwarzschild, who was the first person
to succeed in solving the General Relativity equations near a massive object,
in an empty space.
Let's consider an observer moving towards a black hole. What will he notice?
�
�
�
We are now drawing the space around a BH, with the help of a Penrose space-time diagram. We shall use the coordinates system of Kruskal.
The thick diagonals show the horizon of the black hole. If something crosses it, following the blue path, it can't go back, and has no other choice but to strike the singularity.
On the Penrose diagram, we can notice two things :
Is this sketch an actual view of the universe ?
In fact, there is an hypothesis : the BH is everlasting. This is not true when
the BH comes from the collapse of a star.
There is no white hole, no parallel universe in this case.
�
Using a space-time diagram is another way
to depict a BH. On this diagram (with only two space dimensions), we shall draw
the light cones of some points around the BH.
Let's remember that around a BH, space-time
itself is curved, and light cannot travel in a straight line.
Space-time around a BH is curved, so the light cones are directed towards the "inside". At a characteristic distance from the singularity, these cones are so tilted that their "outer side" becomes vertical in the diagram. These "sides" form a surface (it's the red cylinder).
This surface is called the event horizon.
Source : Penrose (Scientific American)
On this surface, light is motionless in relation to the outer space. But the light speed is the same in all of the systems of reference, so it is the horizon itself which is moving at the light speed in the curved space-time of the black hole.
For an outside observer, no information can come from the horizon of the black hole : the time, in the vicinity of the black hole, has stopped.
�