Skip to main content

The Life of π: From Archimedes to ENIAC and Beyond

  • Chapter
  • First Online:
From Alexandria, Through Baghdad

Abstract

The desire to understand π, the challenge, and originally the need, to calculate ever more accurate values of π, the ratio of the circumference of a circle to its diameter, has captured mathematicians— great and less great — for many centuries. And, especially recently, π has provided compelling examples of computational mathematics. π, uniquely in mathematics, is pervasive in popular culture and the popular imagination. In this paper, I intersperse a largely chronological account of π’s mathematical and numerical status with examples of its ubiquity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

') var buybox = document.querySelector("[data-id=id_"+ timestamp +"]").parentNode var buyingOptions = buybox.querySelectorAll(".buying-option") ;[].slice.call(buyingOptions).forEach(initCollapsibles) var buyboxMaxSingleColumnWidth = 480 function initCollapsibles(subscription, index) { var toggle = subscription.querySelector(".buying-option-price") subscription.classList.remove("expanded") var form = subscription.querySelector(".buying-option-form") var priceInfo = subscription.querySelector(".price-info") var buyingOption = toggle.parentElement if (toggle && form && priceInfo) { toggle.setAttribute("role", "button") toggle.setAttribute("tabindex", "0") toggle.addEventListener("click", function (event) { var expandedBuyingOptions = buybox.querySelectorAll(".buying-option.expanded") var buyboxWidth = buybox.offsetWidth ;[].slice.call(expandedBuyingOptions).forEach(function(option) { if (buyboxWidth <= buyboxMaxSingleColumnWidth && option != buyingOption) { hideBuyingOption(option) } }) var expanded = toggle.getAttribute("aria-expanded") === "true" || false toggle.setAttribute("aria-expanded", !expanded) form.hidden = expanded if (!expanded) { buyingOption.classList.add("expanded") } else { buyingOption.classList.remove("expanded") } priceInfo.hidden = expanded }, false) } } function hideBuyingOption(buyingOption) { var toggle = buyingOption.querySelector(".buying-option-price") var form = buyingOption.querySelector(".buying-option-form") var priceInfo = buyingOption.querySelector(".price-info") toggle.setAttribute("aria-expanded", false) form.hidden = true buyingOption.classList.remove("expanded") priceInfo.hidden = true } function initKeyControls() { document.addEventListener("keydown", function (event) { if (document.activeElement.classList.contains("buying-option-price") && (event.code === "Space" || event.code === "Enter")) { if (document.activeElement) { event.preventDefault() document.activeElement.click() } } }, false) } function initialStateOpen() { var buyboxWidth = buybox.offsetWidth ;[].slice.call(buybox.querySelectorAll(".buying-option")).forEach(function (option, index) { var toggle = option.querySelector(".buying-option-price") var form = option.querySelector(".buying-option-form") var priceInfo = option.querySelector(".price-info") if (buyboxWidth > buyboxMaxSingleColumnWidth) { toggle.click() } else { if (index === 0) { toggle.click() } else { toggle.setAttribute("aria-expanded", "false") form.hidden = "hidden" priceInfo.hidden = "hidden" } } }) } initialStateOpen() if (window.buyboxInitialised) return window.buyboxInitialised = true initKeyControls() })()

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Amoroso, F., Viola, ?, 2008. Irrational and transcendental numbers. In: Bartocci, C, Odifreddi, P. (eds.), Mathematics and Culture, Volume II. La matematica: Problemi e teoremi. Turino: Guilio Einaudi Editori.

    Google Scholar 

  • Arndt, J., Haenel, C, 2001. Pi Unleashed. Springer-Verlag, New York.

    Book  MATH  Google Scholar 

  • Bailey, D.H., Borwein, J.M., 2011. Exploratory experimentation and computation. Notices of the American Mathematical Society 58, 1410–1419.

    MathSciNet  MATH  Google Scholar 

  • Bailey, D., Borwein, J., Calkin, N., Girgensohn, R., Luke, R., Moll, V, 2007. Experimental Mathematics in Action. A.K. Peters, Wellesley, MA.

    Google Scholar 

  • Bailey, D.H., Borwein, J.M., Mattingly, A., Wightwick, G., 2013. The computation of previously inaccessible digits of π2 and Catalan's Constant. Notices of the American Mathematical Society 50, 844–854.

    Article  MathSciNet  Google Scholar 

  • Berggren, L., Borwein, J.M., Borwein, P.B., 2004. Pi: A Source Book, 3rd edition. New York, Springer.

    Google Scholar 

  • Baruah, N.D., Berndt, B.C., Chan, H.H., 2009. Ramanujan's series for l/π: A survey. American Mathematical Monthly 116, 567–587.

    Article  MathSciNet  MATH  Google Scholar 

  • Blatner, D., 1997. The Joy of Pi. Walker and Co., New York.

    Google Scholar 

  • Borwein, J.M., 1998. Brouwer-Heyting sequences converge. Mathematical Intelligencer 20, 14–15.

    Article  MathSciNet  MATH  Google Scholar 

  • Borwein, J.M., 2008. La vita di pi greco: from Archimedes to ENIAC and beyond, in Bartocci, C, Odifreddi, P. (eds.), Mathematics and Culture, Volume II. La matematica: Problemi e teoremi, Guilio Einaudi Editori, Turino, pp. 249–285.

    Google Scholar 

  • Borwein, J.M., Bailey, D.H., 2008. Mathematics by Experiment: Plausible Reasoning in the 21st Century, 2nd expanded edition. A.K. Peters, Wellesley, MA. Ą

    Google Scholar 

  • Borwein, J.M., Borwein, P.B., 1987. Pi and the AGM. Wiley, New York.

    MATH  Google Scholar 

  • ——— 1988. Ramanujan and Pi. Scientific American 256, 112–117. Reprinted in: Berndt, B.C., Rankin, R.A. (eds.), 2001, Ramanujan: Essays and Surveys. American Mathematical Society, Providence, pp. 187–199. (Also in: Berggren, Borwein and Borwein [2004].)

    Google Scholar 

  • Borwein, J.M., Borwein, P.B., Bailey, D.H., 1989. Ramanujan, modular equations and approximations to pi or how to compute one billion digits of pi. American Mathematical Monthly 96, 201–219. Reprinted in: Organic Mathematics Proceedings, http://www.cecm.sfu.ca/organics, 1996. (Also in: Berggren, Borwein and Borwein [2004].)

  • Borwein, J., Nuyens, D., Straub, A., Wan, J., 2011 Some arithmetic properties of short random walk integrals. The Ramanujan Journal 26, 109–132.

    Article  MathSciNet  MATH  Google Scholar 

  • Churchland, P., 2007. Neurophilosophy at Work. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Eymard, P., Lafon, J.-R, 2003. The Number π. American Mathematical Society, Providence.

    Google Scholar 

  • Guillera, J., 2008a. Hypergeometric identities for 10 extended Ramanujan-type series. Ramanujan Journal 15, 219–234.

    Article  MathSciNet  MATH  Google Scholar 

  • ——— 2008b. Easy proofs of some Borwein algorithms for π. American Mathematical Monthly 115, 850–854.

    MathSciNet  MATH  Google Scholar 

  • Heath, T.L., 1912. The Works of Archimedes, Cambridge University Press, Cambridge.

    Google Scholar 

  • Lucas, S.K., 2009. Integral approximations to pi with nonnegative integrands. American Mathematical Monthly 116, 166–172.

    Article  MathSciNet  MATH  Google Scholar 

  • McCartney, S., 1999. ENIAC: The Triumphs and Tragedies of the World's First Computer. Walker and Co., New York.

    Google Scholar 

  • Schioper, H.C., The chronology of pi. Mathematics Magazine 23, 165–170, 216–228, 279–283. (Also in: Berggren, Borwein and Borwein [2004].)

    Google Scholar 

  • Singmaster, D., 1985. The legal values of Pi. Mathematical Intelligencer 7, 69–72. (Also in: Berggren, Borwein and Borwein [2004].)

    Article  MathSciNet  MATH  Google Scholar 

  • Tsumura, H., 2004. An elementary proof of Euler's formula for ζ(2η). American Mathematical Monthly, 430–431.

    Google Scholar 

  • von Baeyer, H.C., 2003. Information: The New Language of Science. Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Zudilin, W., 2008. Ramanujan-type formulae for Ι/π: A second wind. ArXiv:0712.1332v2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Borwein, J.M. (2014). The Life of π: From Archimedes to ENIAC and Beyond. In: Sidoli, N., Van Brummelen, G. (eds) From Alexandria, Through Baghdad. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36736-6_24

Download citation

Publish with us

Policies and ethics