|
SIGMA 13 (2017), 003, 44 pages ���� arXiv:1308.1005 ����
https://doi.org/10.3842/SIGMA.2017.003
The Profinite Dimensional Manifold Structure of Formal Solution Spaces of Formally Integrable PDEs
Batu G�neysu�a and Markus J.�Pflaum�b
a) Institut f�r Mathematik, Humboldt-Universit�t, Rudower Chaussee 25, 12489 Berlin, Germany
b) Department of Mathematics, University of Colorado, Boulder CO 80309, USA
Received March 30, 2016, in final form January 05, 2017; Published online January 10, 2017
Abstract
In this paper, we study the formal solution space of a nonlinear PDE in a�fiber bundle. To this end, we start with foundational material and introduce the notion of a pfd structure to build up a new concept of profinite dimensional manifolds. We show that the infinite jet space of the fiber bundle is a profinite dimensional manifold in a�natural way. The formal solution space of the nonlinear PDE then is a subspace of this jet space, and inherits from it the structure of a profinite dimensional manifold, if the PDE is formally integrable. We apply our concept to scalar PDEs and prove a�new criterion for formal integrability of such PDEs. In particular, this result entails that the Euler-Lagrange equation of a�relativistic scalar field with a polynomial self-interaction is formally integrable.
Key words:
profinite dimensional manifolds; jet bundles; geometric PDEs; formal integrability; scalar fields.
pdf (639 kb) �
tex (52 kb)
References
-
Abbati M.C., Mani� A., On differential structure for projective limits of manifolds, J.�Geom. Phys. 29 (1999), 35-63, math-ph/9804007.
-
Anderson I.M., The variational bicomplex, Technical report, Department of Mathematics, Utah State University, 1989.
-
Artin M., Algebraic approximation of structures over complete local rings, Inst. Hautes �tudes Sci. Publ. Math. (1969), 23-58.
-
Ashtekar A., Lewandowski J., Differential geometry on the space of connections via graphs and projective limits, J.�Geom. Phys. 17 (1995), 191-230.
-
Atiyah M.F., Hitchin N.J., Singer I.M., Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser.�A 362 (1978), 425-461.
-
Barnich G., Brackets in the jet-bundle approach to field theory, in Secondary Calculus and Cohomological Physics (Moscow, 1997), Contemp. Math., Vol.�219, Amer. Math. Soc., Providence, RI, 1998, 17-27, hep-th/9709164.
-
Bernstein I.N., Rosenfel'd B.I., Homogeneous spaces of infinite-dimensional Lie algebras and the characteristic classes of foliations, Russ. Math. Surv. 28 (1973), no.�4, 107-142.
-
Bickel H., Lie-projective groups, J.�Lie Theory 5 (1995), 15-24.
-
Bocharov A.V., Chetverikov V.N., Duzhin S.V., Khor'kova N.G., Krasil'shchik I.S., Samokhin A.V., Torkhov�Yu.N., Verbovetsky�A.M., Vinogradov A.M., Symmetries and conservation laws for differential equations of mathematical physics, Translations of Mathematical Monographs, Vol.�182, Amer. Math. Soc., Providence, RI, 1999.
-
Bourbaki N., Algebra�I, Chapters 1-3, Elements of Mathematics, Springer-Verlag, Berlin�- Heidelberg, 1989.
-
Bryant R.L., Chern S.S., Gardner R.B., Goldschmidt H.L., Griffiths P.A., Exterior differential systems, Mathematical Sciences Research Institute Publications, Vol.�18, Springer-Verlag, New York, 1991.
-
Chetverikov V.N., On the structure of integrable $\mathscr C$-fields, Differential Geom. Appl. 1 (1991), 309-325.
-
Constantine G.M., Savits T.H., A multivariate Faa di Bruno formula with applications, Trans. Amer. Math. Soc. 348 (1996), 503-520.
-
Dodson C.T.J., Galanis G., Vassiliou E., Geometry in a Fr�chet context. A�projective limit approach, London Mathematical Society Lecture Note Series, Vol.�428, Cambridge University Press, Cambridge, 2016.
-
Donaldson S.K., An application of gauge theory to four-dimensional topology, J.�Differential Geom. 18 (1983), 279-315.
-
D�tsch M., Fredenhagen K., Perturbative algebraic field theory, and deformation quantization, in Mathematical Physics in Mathematics and Physics (Siena, 2000), Fields Inst. Commun., Vol.�30, Amer. Math. Soc., Providence, RI, 2001, 151-160, hep-th/0101079.
-
Ehrenpreis L., Guillemin V.W., Sternberg S., On Spencer's estimate for $\delta $-Poincar�, Ann. of Math. 82 (1965), 128-138.
-
Eilenberg S., Steenrod N., Foundations of algebraic topology, Princeton University Press, Princeton, New Jersey, 1952.
-
Finster F., Tolksdorf J., Bosonic loop diagrams as perturbative solutions of the classical field equations in $\phi^4$-theory, J.�Math. Phys. 53 (2012), 052305, 32�pages, arXiv:1201.5497.
-
Freed D.S., Uhlenbeck K.K., Instantons and four-manifolds, Mathematical Sciences Research Institute Publications, Vol.�1, Springer-Verlag, New York, 1984.
-
Gharesifard B., Lewis A.D., Mansouri A.-R., A geometric framework for stabilization by energy shaping: sufficient conditions for existence of solutions, Commun. Inf. Syst. 8 (2008), 353-398.
-
Giachetta G., Mangiarotti L., Gauge invariance and formal integrability of the Yang-Mills-Higgs equations, Internat.�J. Theoret. Phys. 35 (1996), 1405-1422.
-
Giachetta G., Mangiarotti L., Sardanashvily G., Advanced classical field theory, World Sci. Publ., Hackensack, NJ, 2009.
-
Goldschmidt H., Integrability criteria for systems of nonlinear partial differential equations, J.�Differential Geometry 1 (1967), 269-307.
-
Grothendieck A., Produits tensoriels topologiques et espaces nucl�aires, Mem. Amer. Math. Soc. 16 (1955), 140�pages.
-
Hofmann K.H., Morris S.A., Projective limits of finite-dimensional Lie groups, Proc. London Math. Soc. 87 (2003), 647-676.
-
Krasil'shchik I.S., Lychagin V.V., Vinogradov A.M., Geometry of jet spaces and nonlinear partial differential equations, Advanced Studies in Contemporary Mathematics, Vol.�1, Gordon and Breach Science Publishers, New York, 1986.
-
Kruglikov B., Involutivity of field equations, J.�Math. Phys. 51 (2010), 032502, 16, arXiv:0902.1685.
-
Kruglikov B., Lychagin V., Mayer brackets and solvability of PDEs.�II, Trans. Amer. Math. Soc. 358 (2006), 1077-1103.
-
Kruglikov B., Lychagin V., Geometry of differential equations, in Handbook of Global Analysis, Elsevier Sci. B.V., Amsterdam, 2008, 725-771.
-
Kuranishi M., On E.�Cartan's prolongation theorem of exterior differential systems, Amer.�J. Math. 79 (1957), 1-47.
-
Lewis A.D., Geometric partial differential equations, definitions and properties, unpublished lecture notes.
-
Marsden J.E., Montgomery R., Morrison P.J., Thompson W.B., Covariant Poisson brackets for classical fields, Ann. Physics 169 (1986), 29-47.
-
Pflaum M.J., On the deformation quantization of symplectic orbispaces, Differential Geom. Appl. 19 (2003), 343-368, math-ph/0208020.
-
Pommaret J.-F., Systems of partial differential equations and Lie pseudogroups, Mathematics and its Applications, Vol.�14, Gordon & Breach Science Publishers, New York, 1978.
-
Pommaret J.-F., Lie pseudogroups and mechanics, Mathematics and its Applications, Vol.�16, Gordon & Breach Science Publishers, New York, 1988.
-
Pommaret J.-F., Partial differential equations and group theory. New perspectives for applications, Mathematics and its Applications, Vol.�293, Kluwer Academic Publishers Group, Dordrecht, 1994.
-
Rejzner K., Perturbative algebraic quantum field theory. An introduction for mathematicians, Mathematical Physics Studies, Springer, Cham, 2016.
-
Reyes E.G., Jet bundles, symmetries, Darboux transforms, in Algebraic Aspects of Darboux Transformations, Quantum Integrable Systems and Supersymmetric Quantum Mechanics, Contemp. Math., Vol.�563, Amer. Math. Soc., Providence, RI, 2012, 137-164.
-
Sardanashvily G., Fibre bundles, jet manifolds and Lagrangian theory, arXiv:0908.1886.
-
Saunders D.J., The geometry of jet bundles, London Mathematical Society Lecture Note Series, Vol.�142, Cambridge University Press, Cambridge, 1989.
-
Seiler W.M., Involution. The formal theory of differential equations and its applications in computer algebra, Algorithms and Computation in Mathematics, Vol.�24, Springer-Verlag, Berlin, 2010.
-
Spencer D.C., Deformation of structures on manifolds defined by transitive, continuous pseudogroups. II.�Deformations of structure, Ann. of Math. 76 (1962), 399-445.
-
Spencer D.C., Overdetermined systems of linear partial differential equations, Bull. Amer. Math. Soc. 75 (1969), 179-239.
-
Stasheff J., The (secret?) homological algebra of the Batalin-Vilkovisky approach, in Secondary Calculus and Cohomological Physics (Moscow, 1997), Contemp. Math., Vol.�219, Amer. Math. Soc., Providence, RI, 1998, 195-210, hep-th/9712157.
-
Taubes C.H., Self-dual connections on $4$-manifolds with indefinite intersection matrix, J.�Differential Geom. 19 (1984), 517-560.
-
Tr�ves F., Topological vector spaces, distributions and kernels, Academic Press, New York�- London, 1967.
-
Vinogradov A.M., Cohomological analysis of partial differential equations and secondary calculus, Translations of Mathematical Monographs, Vol.�204, Amer. Math. Soc., Providence, RI, 2001.
-
Vitagliano L., Secondary calculus and the covariant phase space, J.�Geom. Phys. 59 (2009), 426-447, arXiv:0809.4164.
-
Zuckerman G.J., Action principles and global geometry, in Mathematical Aspects of String Theory (San Diego, Calif., 1986), Adv. Ser. Math. Phys., Vol.�1, World Sci. Publ., Singapore, 1987, 259-284.
|
|