Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience
See More

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Synaptic physiology of horizontal connections in the cat's visual cortex

JA Hirsch and CD Gilbert
Journal of Neuroscience 1 June 1991, 11 (6) 1800-1809; https://doi.org/10.1523/JNEUROSCI.11-06-01800.1991
JA Hirsch
Laboratory of Neurobiology, Rockefeller University, New York, New York 10021.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
CD Gilbert
Laboratory of Neurobiology, Rockefeller University, New York, New York 10021.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Horizontal connections are a principal component of intrinsic cortical circuitry. They arise mainly from pyramidal cells and course parallel to the brain's surface for distances as long as 8 mm, linking columns with shared orientation preference and allowing cells to integrate visual information from outside their receptive fields. We examined the synaptic physiology of the horizontal pathway in slices of the cat's striate cortex and found that activating lateral fibers produced both excitation and inhibition. We recorded the postsynaptic responses of identified pyramidal cells in layer 2 + 3 of area 17 to electrical shocks applied at three sites: in the home column of the impaled neuron either in layer 2 + 3 or 4, or at a lateral distance of 0.9–3 mm in layer 2 + 3. Within the home column, suprathreshold stimuli produced compound EPSPs with action potentials, followed by fast, GABAAergic IPSPs and a slower, GABABergic IPSP. For the distant stimulating site, the threshold response was an EPSP. Stronger shocks frequently evoked a disynaptic, GABAAergic IPSP that truncated the EPSP and could dominate the postsynaptic response. At the resting potential, the horizontally evoked EPSP was too small to elicit spikes. With depolarization of the membrane, however, it grew several hundred-fold. This amplification was blocked by N-(2,6-dimethylphenylcarbamoylmethyl)triethylammonium bromide (QX-314), but not by 2-amino-5-phosphonovalerate (APV), indicating that it was mediated by Na+ channels, rather than by NMDA receptors. We propose that the horizontal connections provide the means for stimuli outside the receptive field to modulate activity elicited within its confines. The voltage-dependent enhancement of the laterally evoked EPSP may explain why stimulating the surround by itself fails to drive cells but can facilitate their response to stimuli within the receptive field. The ability to initiate disynaptic inhibition from lateral sites shows that recruiting appropriate groups of horizontal fibers can also have a suppressive effect. Thus, the effect of horizontal input is state dependent, with the size and sign of the laterally evoked response changing according to the balance of converging inputs.

Back to top

In this issue

The Journal of Neuroscience: 11 (6)
Journal of Neuroscience
Vol. 11, Issue 6
1 Jun 1991
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Synaptic physiology of horizontal connections in the cat's visual cortex
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Synaptic physiology of horizontal connections in the cat's visual cortex
JA Hirsch, CD Gilbert
Journal of Neuroscience 1 June 1991, 11 (6) 1800-1809; DOI: 10.1523/JNEUROSCI.11-06-01800.1991

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Synaptic physiology of horizontal connections in the cat's visual cortex
JA Hirsch, CD Gilbert
Journal of Neuroscience 1 June 1991, 11 (6) 1800-1809; DOI: 10.1523/JNEUROSCI.11-06-01800.1991
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.