Abstract
The use of molecular techniques to study the mycobacteria has advanced greatly since the first genomic libraries of Mycobacterium tuberculosis and M. leprae were constructed in 1985. However, there are still pitfalls for the unwary. Most of the problems associated with the use of molecular techniques to study mycobacteria can be related to one of the following problems: slow growth rate causing problems with contamination; the formation of macroscopic clumps when grown in culture; resistance to standard chemical lysis procedures; the requirement for containment facilities for pathogenic species; the lack of suitable genetic vectors; and the problems of spontaneous antibiotic resistance. Despite these problems, considerable progress has been made and standard techniques have been developed for the preparation of protein, nucleic acids (DNA and RNA) and cell wall components, chemical and transposon mutagenesis and gene replacement methods, the use of reporter genes and expression vectors, and improved detection and drug sensitivity testing.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Clark-Curtiss, J. E. (1990). Genome structure of mycobacteria, in Molecular Biology of the Mycobacteria (McFadden, J. J.) Academic Press Ltd, London, pp. 77–96.
Clark-Curtiss, J. E., Jacobs, W. R., Docherty, M. A., Ritchie, L. R., and Curtiss III R. (1985). Molecular analysis of DNA and construction of genomic libraries of Mycobacterium leprae. J. Bacteriol. 161, 1093–1102.
Thole, J. E. R., Dauwerse, H. G., Das, P. K., Groothius, D. G., Schouls, L. M., and van Embden, J. D. A. (1985). Cloning of Mycobacterium bovis BCG DNA and expression of antigens in Escherichia coli. Inf. Immun. 50, 800–806.
Young, R. A., Mehra, V., Sweetser, D., Buchanan, T., Clark-Curtiss, J., Davis, R. W., and Bloom, B. R. (1985). Genes for the major protein antigens of the leprosy parasite Mycobacterium leprae. Nature 316, 450–452.
Young, R. A., Bloom, B. R., Grosskinsky, C. M., Ivanyi, J., Thomas, D., and Davis, R. W. (1985). Dissection of Mycobacterium tuberculosis antigens using recombinant DNA. Proc. Natl. Acad. Sci. USA 82, 2583–2587.
Jacobs, W. R., Docherty, M. A., Curtiss III R., and Clark-Curtiss, J. E. (1986). Expression of Mycobacterium leprae genes from a Streptococcus mutans promoter in Esherichia coli K12. Proc. Natl. Acad. Sci. USA 83, 1926–1930.
Snapper, S. B., Melton, R. E., Mustafa, S., Kieser, T., and Jacobs, W. R. (1990). Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Molec. Microbiol. 4, 1911–1919.
Houssaini-Iraqui, M., Clavel-Seres, S., Rastogi, N., and David, H. L. (1992). The expression of the Mycobacterium aurum carotenogenesis operon is not repressed by the repressor of Mycobacterium vaccae photoinducible carotenogenesis. FEMS Microbiol. Lett. 99, 233–236.
Garbe, T. R., Barathi, J., Barnini, S., Zhang, Y., Abouzeid, C., Tang, D., Mukherjee, R., and Young, D. B. (1994). Transformation of mycobacterial species using hygromycin resistance as selectable marker. Microbiol. 140, 133–138.
Rauzier, J., Moniz-Pereira, J., and Gicquel-Sanzey, B. (1988). Complete nucleotide sequence of pAL5000, a plasmid from Mycobacterium fortuitum. Gene 71, 315–321.
Hermans, J., Martin, C., Huijberts, G. N. M., Goosen, T., and Debont, J. A. M. (1991). Transformation of Mycobacterium aurum and Mycobacterium smegmatis with the broad host-range gram-negative cosmid vector pJRD215. Molec. Microbiol. 5, 1561–1566.
Dellagostin, O. A., Wall, S., Norman, E., O’Shaughnessy, T., Dale, J. W., and McFadden, J. (1993). Construction and use of integrative vectors to express foreign genes in mycobacteria. Molec. Microbiol. 10, 983–993.
Stover, C. K., Delacruz, V. F., Fuerst, T. R., Burlein, J. E., Benson, L. A., Bennett, L. T., Bansal, G. P., Young, J. F., Lee, M. H., Hatfull, G. F., Snapper, S. B., Barletta, R. G., Jacobs, W. R., and Bloom, B. R. (1991). New use of BCG for recombinant vaccines. Nature 351, 456–460.
Radford, A. J. and Hodgson, A. L. M. (1991). Construction and characterization of a Mycobacterium-Escherichia coli shuttle vector. Plasmid 25, 149–153.
Qin, M., Taniguchi, H. and Mizuguchi, Y. (1994). Analysis of the replication region of a mycobacterial plasmid, pMSC262. J. Bacteriol. 176, 419–425.
Beggs, M. L., Crawford, J. T., and Eisenach, K. D. (1995). Isolation and sequencing of the replication region of Mycobacterium avium plasmid pLR7. J. Bacteriol. 177, 4836–4840.
Ribeiro, G., Viveiros, M., David, H. L., and Costa, J. V. (1997). Mycobacteriophage D29 contains an integration system similar to that of the temperate mycobacteriophage L5. Microbiol. 143, 2701–2708.
Seoane, A., Navas, J., and Lobo, J. M. G. (1997). Targets for pSAM2 integrase-mediated site-specific integration in the Mycobacterium smegmatis chromosome. Microbiol. 143, 3375–3380.
Gavigan, J. A., Ainsa, J. A., Perez, E., Otal, I., and Martin, C. (1997). Isolation by genetic labeling of a new mycobacterial plasmid, pJAZ38, from Mycobacterium fortuitum. J. Bacteriol. 179, 4115–4122.
Gavigan, J. A., Guilhot, C., Gicquel, B., and Martin, C. (1995). Use of conjugative and thermosensitive cloning vectors for transposon delivery to Mycobacterium smegmatis. FEMS Microbiol. Lett. 127, 35–39.
Bardarov, S., Kriakov, J., Carriere, C., Yu, S. W., Vaamonde, C., McAdam, R. A., Bloom, B. R., Hatfull, G. F., and Jacobs, W. R. (1997). Conditionally replicating mycobacteriophages: A system for transposon delivery to Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 94, 10961–10966.
Hinds, J., Mahenthiralingam, E., Kempsell, K. E., Duncan, K., Stokes, R. W., Parish, T., and Stoker, N. G. (1999). Enhanced gene replacement in mycobacteria. Microbiol. 145, 519–527.
Berthet, F. X., Lagranderie, M., Gounon, P., LaurentWinter, C., Ensergueix, D., Chavarot, P., Thouron, F., Maranghi, E., Pelicic, V., Portnoi, D., Marchal, G., and Gicquel, B. (1998). Attenuation of virulence by disruption of the Mycobacterium tuberculosis erp gene. Science 282, 759–762.
Pelicic, V., Reyrat, J. M., and Gicquel, B. (1996). Generation of unmarked directed mutations in mycobacteria, using sucrose counter-selectable suicide vectors. Molec. Microbiol. 20, 919–925.
Aldovini, A., Husson, R. N., and Young, R. A. (1993). The uraA locus and homologous recombination in Mycobacterium bovis BCG. J. Bacteriol. 175, 7282–7289.
Azad, A. K., Sirakova, T. D., Rogers, L. M., and Kolattukudy, P. E. (1996). Targeted replacement of the mycocerosic acid synthase gene in Mycobacterium bovis BCG produces a mutant that lacks mycosides. Proc. Natl. Acad. Sci. USA 93, 4787–4792.
Balasubramanian, V., Pavelka, M. S., Bardarov, S., Martin, J., Weisbrod, T., McAdam, R. A., Bloom, B., and Jacobs, W. R. (1996). Allelic exchange in Mycobacterium tuberculosis with long linear recombination substrates. J. Bacteriol. 178, 273–279.
Marklund, B. I., Speert, D. P., and Stokes, R. W. (1995). Gene replacement through homologous recombination in Mycobacterium intracellulare. J. Bacteriol. 177, 6100–6105.
Marklund, B. I., Mahenthiralingam, E., and Stokes, R. W. (1998). Site-directed mutagenesis and virulence assessment of the katG gene of Mycobacterium intracellulare. Molec. Microbiol. 29, 999–1008.
Norman, E., Dellagostin, O. A., Mcfadden, J., and Dale, J. W. (1995). Gene replacement by homologous recombination in Mycobacterium bovis BCG. Molec. Microbiol. 16, 755–760.
Ramakrishnan, L., Tran, H. T., Federspiel, N. A., and Falkow, S. (1997). A crtB homolog essential for photochromogenicity in Mycobacterium marinum: Isolation, characterization, and gene disruption via homologous recombination. J. Bacteriol. 179, 5862–5868.
Reyrat, J. M., Berthet, F. X., and Gicquel, B. (1995). The urease locus of Mycobacterium tuberculosis and its utilization for the demonstration of allelic exchange in Mycobacterium bovis bacillus Calmette Guerin. Proc. Natl. Acad. Sci. USA 92, 8768–8772.
Pelicic, V., Jackson, M., Reyrat, J. M., Jacobs, W. R., Gicquel, B., and Guilhot, C. (1997). Efficient allelic exchange and transposon mutagenesis in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 94, 10955–10960.
Prammananan, T., Sander, P., Springer, B., and Bottger, E. C. (1999). RecA-mediated gene conversion and aminoglycoside resistance in strains heterozygous for rRNA. Antimicrob. Ag. Chemother. 43, 447–453.
Papavinasasundaram, K. G., Colston, M. J., and Davis, E. O. (1998). Construction and complementation of a recA deletion mutant of Mycobacterium smegmatis reveals that the intein in Mycobacterium tuberculosis recA does not affect RecA function. Molec. Microbiol. 30, 525–534.
Bottger, E. C. (1994). Resistance to drugs targeting protein synthesis in mycobacteria. Trends in Microbiol. 2, 416–421.
Belisle, J. T. and Sonnenberg, M. G. (1998). Isolation of genomic DNA from Mycobacteria, in Methods in Molecular Biology, vol 101: Mycobacteria Protocols (Parish, T. and Stoker, N. G. eds.) Humana Press, Totowa, NJ. 31–44.
Mangan, J. A., Sole, K. M., Mitchison, D. A., and Butcher, P. D. (1997). An effective method of RNA extraction from bacteria refractory to disruption, including mycobacteria. Nucl. Acids Res. 25, 675–676.
Patel, B. K. R., Banerjee, D. K., and Butcher, P. D. (1991). Extraction and characterization of messenger RNA from mycobacteria implication for virulence gene identification. J. Microbiol. Meth. 13, 99–111.
RiveraMarrero, C. A., Burroughs, M. A., Masse, R. A., Vannberg, F. O., Leimbach, D. L., Roman, J., and Murtagh, J. J. (1998). Identification of genes differentially expressed in Mycobacterium tuberculosis by differential display PCR. Microb. Pathogen. 25, 307–316.
Alland, D., Kramnik, I., Weisbrod, T. R., Otsubo, L., Cerny, R., Miller, L. P., Jacobs, W. R., and Bloom, B. R. (1998). Identification of differentially expressed mRNA in prokaryotic organisms by customized amplification libraries (DECAL): The effect of isoniazid on gene expression in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 95, 13227–13232.
Besra, G. S. (1998). Preparation of cell wall fractions from mycobacteria, in Methods in Molecular Biology, vol 101: Mycobacteria Protocols (Parish, T. and Stoker, N. G. eds.) Humana Press, Totowa, NJ, pp. 91–108.
Guilhot, C., Gicquel, B., and Martin, C. (1992). Temperature-sensitive mutants of the mycobacterium plasmid pAL5000. FEMS Microb. Lett. 98, 181–186.
Stolt, P. and Stoker, N. G. (1996). Functional definition of regions necessary for replication and incompatibility in the Mycobacterium fortuitum plasmid pAL5000. Microbiol. 142, 2795–2802.
King, C. H., Plikaytis, B. B., and Shinnick, T. M. (1995). Isolation of plasmid DNA from mycobacteria using a resin-based alkaline lysis kit. Biotechniques 19, 362+328+330.
Stolt, P. and Stoker, N. G. (1997). Mutational analysis of the regulatory region of the mycobacterium plasmid pAL5000. Nucl. Acids Res. 25, 3840–3846.
Haeseleer, F. (1994). Structural instability of recombinant plasmids in mycobacteria. Res.Microbiol. 145, 683–687.
Kumar, D., Srivastava, B. S., and Srivastava, R. (1998). Genetic rearrangements leading to disruption of heterologous gene expression in mycobacteria: An observation with Escherichia coli beta-galactosidase in Mycobacterium smegmatis and its implication in vaccine development. Vaccine 16, 1212–1215.
Dellagostin, O. A., Esposito, G., Eales, L. J., Dale, J. W., and Mcfadden, J. (1995). Activity of mycobacterial promoters during intracellular and extracellular growth. Microbiol. 141, 1785–1792.
Timm, J., Eng Mong Lim, and Gicquel, B. (1994). Escherichia coli-mycobacteria shuttle vectors for operon and gene fusions to lacZ: The pJEM series. J. Bacteriol. 176, 6749–6753.
Bannantine, J. P., Barletta, R. G., Thoen, C. O., and Andrews R., Jr. (1997). Identification of Mycobacterium paratuberculosis gene expression signals. Microbiol. 143, 921–928.
Parish, T., Mahenthiralingam, E., Draper, P., Davis, E. O., and Colston, M. J. (1997). Regulation of the inducible acetamidase gene of Mycobacterium smegmatis. Microbiol. 143, 2267–2276.
Das Gupta, S. K., Bashyam, M. D., and Tyagi, A. K. (1993). Cloning and assessment of mycobacterial promoters by using a plasmid shuttle vector. J. Bacteriol. 175, 5186–5192.
Curcic, R., Dhandayuthapani, S., and Deretic, V. (1994). Gene expression in mycobacteria: transcriptional fusions based on xyIE and analysis of the promoter region of the response regulator mtrA from Mycobacterium tuberculosis. Molec. Microbiol. 13, 1057–1064.
Gordon, S., Parish, T., Roberts, I. S., and Andrew, P. W. (1994). The application of luciferase as a reporter of environmental regulation of gene expression in mycobacteria. Lett. App. Microbiol. 19, 336–340.
Andrew, P. W. and Roberts, I. S. (1993). Construction of a bioluminescent mycobacterium and its use for assay of antimycobacterial agents. J. Clin. Microbiol 31, 2251–2254.
Dhandayuthapani, S., Via, L. E., Thomas, C. A., Horowitz, P. M., Deretic, D., and Deretic, V. (1995). Green fluorescent protein as a marker for gene expression and cell biology of mycobacterial interactions with macrophages. Molec. Microbiol. 17, 901–912.
Strohl, W. R. (1992). Compilation and analysis of DNA sequences associated with apparent streptomycete promoters. Nucl. Acids Res. 20, 961–974.
Bashyam, M. D. and Tyagi, A. K. (1998). Identification and analysis of “extended-10” promoters from mycobacteria. J. Bacteriol. 180, 2568–2573.
Mulder, M. A., Zappe, H., and Steyn, L. M. (1997). Mycobacterial promoters. Tubercle and Lung Disease 78, 211–223.
O’Gaora, P., Barnini, S., Hayward, C., Filley, E., Rook, G., Young, D., and Thole, J. (1997). Mycobacteria as immunogens: development of expression vectors for use in multiple mycobacterial species. Med. Principles Prac. 6.
Triccas, J. A., Parish, T., Britton, W. J., and Gicquel, B. (1998). An inducible expression system permitting the efficient purification of a recombinant antigen from Mycobacterium smegmatis. FEMS Microbiol. Lett. 167, 151–156.
Hinshelwood, S. and Stoker, N. G. (1992). Cloning of mycobacterial histidine synthesis genes by complementation of a Mycobacterium smegmatis auxotroph. Molec. Microbiol. 6, 2887–2895.
Holland, K. T. and Ratledge, C. (1971). A procedure for selecting and isolating specific auxotrophic mutants of Mycobacterium smegmatis. J. Gen. Microbiol. 66, 115–118.
Konickova-Radochova, M., Konicek, J., and Malek, I. (1970). The study of mutagenisis in Mycobacterium phlei. Folia Microbiologica 15, 88–102.
Kundu, M., Basu, J., and Chakrabarti, P. (1991). Defective mycolic acid biosynthesis in a mutant of Mycobacterium sme gmatis. J. Gen. Microbiol. 137, 2197–2200.
Liu, J. and Nikaido, H. (1999). A mutant of Mycobacteriu smegmatis defective in the biosynthesis of mycolic acids accumulate meromycolates. Proc. Natl. Acad. Sci. USA 96, 4011–4016.
Guilhot, C., Otal, I., Van Rompaey, I., Martin, C., and Gicquel, B. (1994). Efficient transposition in mycobacteria: Construction of Mycobacterium smegmatis insertional mutant libraries. J. Bacteriol. 176, 535–539.
McAdam, R. A., Weisbrod, T. R., Martin, J., Scuderi, J. D., Brown, A. M., Cirillo, J. D., Bloom, B. R., and Jacobs, W. R., Jr. (1995). In vivo growth characteristics of leucine and methionine auxotrophic mutants of Mycobacterium bovis BCG generated by transposon mutagenesis. Inf. Immun. 63, 1004–1012.
Hatfull, G. F. (1996). The molecular genetics of Mycobacterium tuberculosis. Curr. Topics Microbiol. Immunol. 215, 29–47.
Sander, P., Meier, A., and Bottger, E. C. (1995). RpsL+: A dominant selectable marker for gene replacement in mycobacteria. Molec. Microbiol. 16, 991–1000.
Cole, S. T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S. V., Eiglmeier, K., Gas, S., Barry, C. E., Tekaia, F., Badcock, K., Basham, D., Brown, D., Chillingworth, T., Connor, R., Davies, R., Devlin, K., Feltwell, T., Gentles, S., Hamlin, N., Holroyd, S., Hornby, T., Jagels, K., Krogh, A., McLean, J., Moule, S., Murphy, L., Oliver, K., Osborne, J., Quail, M. A., Rajandream, M. A., Rogers, J., Rutter, S., Seeger, K., Skelton, J., Squares, R., Squares, S., Sulston, J. E., Taylor, K., Whitehead, S., and Barrell, B. G. (1998). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537.
Lander, E. S. (1999). Array of hope. Nature Genetics 21, 3–4.
Hawkey, P. M. (1994). The role of the polymerase chain reaction in the diagnosis of mycobacterial infections. Rev. Med. Microbiol. 5, 21–32.
Bottger, E. C. (1991). The polymerase chain reaction in the diagnosis of Mycobacteria. Deutsche Medizinische Wochenschrift. 116, 777–779.
Otal, I., Martin, C., Levy-Frebault, V., Thierry, D., and Gicquel, B. (1991). Restriction fragment length polymorphism analysis using IS6110 as an epidemiological marker in tuberculosis. J. Clin. Microbiol. 29, 1252–1254.
Kamerbeek, J., Schouls, L., Kolk, A., Van Agterveld, M., Van Soolingen, D., Kuijper, S., Bunschoten, A., Molhuizen, H., Shaw, R., Goyal, M., and Van Embden, J. (1997). Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J. Clin. Microbiol. 35, 907–914.
Rogall, T., Flohr, T., and Bottger, E. C. (1990). Differentiation of mycobacterial species by direct sequencing of amplified DNA. J. Gen. Microbiol. 136, 1915–1920.
Hayashi, K. (1991). PCR-SSCP: a rapid and sensitive method for detection of mutations in the genomic DNA. PCR Meth. Appl. USA 1, 34–38.
Shim, T. S., Yoo, C. G., Han, S. K., Shim, Y. S., and Kim, Y. W. (1996). Rapid detection of rifampicinresistant M. tuberculosis by PCR- SSCP of rpoB gene. Tuberculosis Resp. Dis. 43, 842–851.
Wilson, S. M., AlSuwaidi, Z., McNerney, R., Porter, J., and Drobniewski, F. (1997). Evaluation of a new rapid bacteriophage-based method for the drug susceptibility testing of Mycobacterium tuberculosis. Nature Medicine 3, 465–468.
Carriere, C., Riska, P. F., Zimhony, O., Kriakov, J., Bardarov, S., Burns, J., Chan, J., and Jacobs, W. R. (1997). Conditionally replicating luciferase reporter phages: Improved sensitivity for rapid detection and assessment of drug susceptibility of Mycobacterium tuberculosis. J. Clin. Microbiol. 35, 3232–3239.
Parish, T., Gordhan, B. G., McAdam, R. A., Mizrahi, V., and Stoker, N. G. (1999). Production of mutants in amino acid biosynthesis genes of Mycobacterium tuberculosis by homologous recombination. Microbiol. 145, 3479–3503.
Wilson, M., DeRisi, J., Kristensen, H.-H., Imboden, P., Rane, S., Brown, P. O., and Schoolnik, G. K. (1999). Exploring drug-induced alterations in gene expression in Mycobacterium tuberculosis by microarray hybridization. Proc. Natl. Acad. Sci. USA 96, 12833–12838.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Parish, T., Stoker, N.G. Mycobacteria: Bugs and bugbears (Two steps forward and one step back). Mol Biotechnol 13, 191–200 (1999). https://doi.org/10.1385/MB:13:3:191
Issue Date:
DOI: https://doi.org/10.1385/MB:13:3:191