A symplectic prolegomenon
HTML articles powered by AMS MathViewer
- by Ivan Smith PDF
- Bull. Amer. Math. Soc. 52 (2015), 415-464 Request permission
Abstract:
A symplectic manifold gives rise to a triangulated $A_{\infty }$-category, the derived Fukaya category, which encodes information on Lagrangian submanifolds and dynamics as probed by Floer cohomology. This survey aims to give some insight into what the Fukaya category is, where it comes from, and what symplectic topologists want to do with it.References
- Mohammed Abouzaid, Framed bordism and Lagrangian embeddings of exotic spheres, Ann. of Math. (2) 175 (2012), no. 1, 71–185. MR 2874640, DOI 10.4007/annals.2012.175.1.4
- Mohammed Abouzaid, Nearby Lagrangians with vanishing Maslov class are homotopy equivalent, Invent. Math. 189 (2012), no. 2, 251–313. MR 2947545, DOI 10.1007/s00222-011-0365-0
- Mohammed Abouzaid, A geometric criterion for generating the Fukaya category, Publ. Math. Inst. Hautes Études Sci. 112 (2010), 191–240. MR 2737980, DOI 10.1007/s10240-010-0028-5
- Mohammed Abouzaid and Ivan Smith, Homological mirror symmetry for the 4-torus, Duke Math. J. 152 (2010), no. 3, 373–440. MR 2654219, DOI 10.1215/00127094-2010-015
- Mohammed Abouzaid and Ivan Smith, Exact Lagrangians in plumbings, Geom. Funct. Anal. 22 (2012), no. 4, 785–831. MR 2984118, DOI 10.1007/s00039-012-0162-y
- M. Abouzaid and I. Smith. The symplectic arc algebra is formal. Preprint, available at arXiv:1311.5535.
- Peter Albers, On the extrinsic topology of Lagrangian submanifolds, Int. Math. Res. Not. 38 (2005), 2341–2371. MR 2180810, DOI 10.1155/IMRN.2005.2341
- Paul S. Aspinwall, Tom Bridgeland, Alastair Craw, Michael R. Douglas, Mark Gross, Anton Kapustin, Gregory W. Moore, Graeme Segal, Balázs Szendrői, and P. M. H. Wilson, Dirichlet branes and mirror symmetry, Clay Mathematics Monographs, vol. 4, American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2009. MR 2567952
- Michèle Audin and Mihai Damian, Théorie de Morse et homologie de Floer, Savoirs Actuels (Les Ulis). [Current Scholarship (Les Ulis)], EDP Sciences, Les Ulis; CNRS Éditions, Paris, 2010 (French). MR 2839638
- D. Auroux. A beginner’s introduction to Fukaya categories. Preprint, available at arXiv:1301.7056.
- Denis Auroux, Special Lagrangian fibrations, wall-crossing, and mirror symmetry, Surveys in differential geometry. Vol. XIII. Geometry, analysis, and algebraic geometry: forty years of the Journal of Differential Geometry, Surv. Differ. Geom., vol. 13, Int. Press, Somerville, MA, 2009, pp. 1–47. MR 2537081, DOI 10.4310/SDG.2008.v13.n1.a1
- Matthew Robert Ballard, Meet homological mirror symmetry, Modular forms and string duality, Fields Inst. Commun., vol. 54, Amer. Math. Soc., Providence, RI, 2008, pp. 191–224. MR 2454326
- Matthew Ballard, David Favero, and Ludmil Katzarkov, Orlov spectra: bounds and gaps, Invent. Math. 189 (2012), no. 2, 359–430. MR 2947547, DOI 10.1007/s00222-011-0367-y
- A. Bayer and T. Bridgeland. Derived automorphism groups of $K3$ surfaces of Picard rank 1. Preprint, available at arXiv:1310.8266.
- Arnaud Beauville, Quantum cohomology of complete intersections, Mat. Fiz. Anal. Geom. 2 (1995), no. 3-4, 384–398 (English, with English, Russian and Ukrainian summaries). MR 1484335
- Paul Biran and Octav Cornea, Rigidity and uniruling for Lagrangian submanifolds, Geom. Topol. 13 (2009), no. 5, 2881–2989. MR 2546618, DOI 10.2140/gt.2009.13.2881
- Paul Biran and Octav Cornea, Lagrangian cobordism. I, J. Amer. Math. Soc. 26 (2013), no. 2, 295–340. MR 3011416, DOI 10.1090/S0894-0347-2012-00756-5
- Tom Bridgeland, Stability conditions on triangulated categories, Ann. of Math. (2) 166 (2007), no. 2, 317–345. MR 2373143, DOI 10.4007/annals.2007.166.317
- Tom Bridgeland, Stability conditions on $K3$ surfaces, Duke Math. J. 141 (2008), no. 2, 241–291. MR 2376815, DOI 10.1215/S0012-7094-08-14122-5
- T. Bridgeland and I. Smith. Quadratic differentials as stability conditions. Preprint, available at arXiv:1302.7030.
- Lev Buhovsky, Homology of Lagrangian submanifolds in cotangent bundles, Israel J. Math. 143 (2004), 181–187. MR 2106982, DOI 10.1007/BF02803498
- Lev Buhovsky, The Maslov class of Lagrangian tori and quantum products in Floer cohomology, J. Topol. Anal. 2 (2010), no. 1, 57–75. MR 2646989, DOI 10.1142/S1793525310000240
- Ana Cannas da Silva, Lectures on symplectic geometry, Lecture Notes in Mathematics, vol. 1764, Springer-Verlag, Berlin, 2001. MR 1853077, DOI 10.1007/978-3-540-45330-7
- Cheol-Hyun Cho, Holomorphic discs, spin structures, and Floer cohomology of the Clifford torus, Int. Math. Res. Not. 35 (2004), 1803–1843. MR 2057871, DOI 10.1155/S1073792804132716
- Cheol-Hyun Cho and Yong-Geun Oh, Floer cohomology and disc instantons of Lagrangian torus fibers in Fano toric manifolds, Asian J. Math. 10 (2006), no. 4, 773–814. MR 2282365, DOI 10.4310/AJM.2006.v10.n4.a10
- Cheol-Hyun Cho and Sangwook Lee, Potentials of homotopy cyclic $A_\infty$-algebras, Homology Homotopy Appl. 14 (2012), no. 1, 203–220. MR 2954673, DOI 10.4310/HHA.2012.v14.n1.a10
- Kai Cieliebak and Yakov Eliashberg, From Stein to Weinstein and back, American Mathematical Society Colloquium Publications, vol. 59, American Mathematical Society, Providence, RI, 2012. Symplectic geometry of affine complex manifolds. MR 3012475, DOI 10.1090/coll/059
- C. Herbert Clemens, Double solids, Adv. in Math. 47 (1983), no. 2, 107–230. MR 690465, DOI 10.1016/0001-8708(83)90025-7
- Alessio Corti and Ivan Smith, Conifold transitions and Mori theory, Math. Res. Lett. 12 (2005), no. 5-6, 767–778. MR 2189237, DOI 10.4310/MRL.2005.v12.n5.a13
- V. de Silva. Products in the symplectic Floer homology of Lagrangian intersections. D.Phil thesis, University of Oxford, 1998.
- S. K. Donaldson, Floer homology and algebraic geometry, Vector bundles in algebraic geometry (Durham, 1993) London Math. Soc. Lecture Note Ser., vol. 208, Cambridge Univ. Press, Cambridge, 1995, pp. 119–138. MR 1338415, DOI 10.1017/CBO9780511569319.006
- Alexander I. Efimov, Homological mirror symmetry for curves of higher genus, Adv. Math. 230 (2012), no. 2, 493–530. MR 2914956, DOI 10.1016/j.aim.2012.02.022
- T. Ekholm and I. Smith. Exact Lagrangian immersions with a single double point. Preprint, available at arXiv:1111.5932.
- Tobias Ekholm, Yakov Eliashberg, Emmy Murphy, and Ivan Smith, Constructing exact Lagrangian immersions with few double points, Geom. Funct. Anal. 23 (2013), no. 6, 1772–1803. MR 3132903, DOI 10.1007/s00039-013-0243-6
- David A. Ellwood, Peter S. Ozsváth, András I. Stipsicz, and Zoltán Szabó (eds.), Floer homology, gauge theory, and low-dimensional topology, Clay Mathematics Proceedings, vol. 5, American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2006. MR 2233609
- A. Fathi, F. Laudenbach and V. Poenaru. Travaux de Thurston sur les surfaces. Asterisque 66-67. Soc. Math. de France, (1991).
- Andreas Floer, Morse theory for Lagrangian intersections, J. Differential Geom. 28 (1988), no. 3, 513–547. MR 965228
- Andreas Floer, Helmut Hofer, and Dietmar Salamon, Transversality in elliptic Morse theory for the symplectic action, Duke Math. J. 80 (1995), no. 1, 251–292. MR 1360618, DOI 10.1215/S0012-7094-95-08010-7
- Urs Frauenfelder and Felix Schlenk, Fiberwise volume growth via Lagrangian intersections, J. Symplectic Geom. 4 (2006), no. 2, 117–148. MR 2275001
- K. Fukaya. Cyclic symmetry and adic convergence in Lagrangian Floer theory. Preprint, arXiv:0907.4219.
- Kenji Fukaya, Application of Floer homology of Langrangian submanifolds to symplectic topology, Morse theoretic methods in nonlinear analysis and in symplectic topology, NATO Sci. Ser. II Math. Phys. Chem., vol. 217, Springer, Dordrecht, 2006, pp. 231–276. MR 2276953, DOI 10.1007/1-4020-4266-3_{0}6
- Kenji Fukaya and Kaoru Ono, Arnold conjecture and Gromov-Witten invariant, Topology 38 (1999), no. 5, 933–1048. MR 1688434, DOI 10.1016/S0040-9383(98)00042-1
- K. Fukaya, Y.-G. Oh, K. Ohta and K. Ono. Lagrangian intersection Floer theory – Anomaly and obstruction, I & II. AMS Studies in Advanced Mathematics Vol. 46, International Press, (2009).
- K. Fukaya, Y.-G. Oh, K. Ohta and K. Ono. Technical details on Kuranishi structure and virtual fundamental chain. Preprint book manuscript, available at arXiv:1209.4410.
- Kenji Fukaya, Yong-Geun Oh, Hiroshi Ohta, and Kaoru Ono, Lagrangian Floer theory on compact toric manifolds. I, Duke Math. J. 151 (2010), no. 1, 23–174. MR 2573826, DOI 10.1215/00127094-2009-062
- Kenji Fukaya, Paul Seidel, and Ivan Smith, Exact Lagrangian submanifolds in simply-connected cotangent bundles, Invent. Math. 172 (2008), no. 1, 1–27. MR 2385665, DOI 10.1007/s00222-007-0092-8
- K. Fukaya, P. Seidel, and I. Smith, The symplectic geometry of cotangent bundles from a categorical viewpoint, Homological mirror symmetry, Lecture Notes in Phys., vol. 757, Springer, Berlin, 2009, pp. 1–26. MR 2596633, DOI 10.1007/978-3-540-68030-7_{1}
- Robert E. Gompf, A new construction of symplectic manifolds, Ann. of Math. (2) 142 (1995), no. 3, 527–595. MR 1356781, DOI 10.2307/2118554
- Mark Gross, Tropical geometry and mirror symmetry, CBMS Regional Conference Series in Mathematics, vol. 114, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2011. MR 2722115, DOI 10.1090/cbms/114
- Mark Gross and Bernd Siebert, From real affine geometry to complex geometry, Ann. of Math. (2) 174 (2011), no. 3, 1301–1428. MR 2846484, DOI 10.4007/annals.2011.174.3.1
- M. Gromov, Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), no. 2, 307–347. MR 809718, DOI 10.1007/BF01388806
- Helmut Hofer and Eduard Zehnder, Symplectic invariants and Hamiltonian dynamics, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 1994. MR 1306732, DOI 10.1007/978-3-0348-8540-9
- H. Hofer, K. Wysocki, and E. Zehnder, A general Fredholm theory. I. A splicing-based differential geometry, J. Eur. Math. Soc. (JEMS) 9 (2007), no. 4, 841–876. MR 2341834, DOI 10.4171/JEMS/99
- T. V. Kadeishvili, The algebraic structure in the homology of an $A(\infty )$-algebra, Soobshch. Akad. Nauk Gruzin. SSR 108 (1982), no. 2, 249–252 (1983) (Russian, with English and Georgian summaries). MR 720689
- Ludmil Katzarkov, Generalized homological mirror symmetry and rationality questions, Cohomological and geometric approaches to rationality problems, Progr. Math., vol. 282, Birkhäuser Boston, Boston, MA, 2010, pp. 163–208. MR 2605169, DOI 10.1007/978-0-8176-4934-0_{7}
- Ludmil Katzarkov and Gabriel Kerr, Orlov spectra as a filtered cohomology theory, Adv. Math. 243 (2013), 232–261. MR 3062746, DOI 10.1016/j.aim.2013.04.002
- Mikhail Khovanov and Paul Seidel, Quivers, Floer cohomology, and braid group actions, J. Amer. Math. Soc. 15 (2002), no. 1, 203–271. MR 1862802, DOI 10.1090/S0894-0347-01-00374-5
- Maxim Kontsevich, Deformation quantization of Poisson manifolds, Lett. Math. Phys. 66 (2003), no. 3, 157–216. MR 2062626, DOI 10.1023/B:MATH.0000027508.00421.bf
- Maxim Kontsevich, Homological algebra of mirror symmetry, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 120–139. MR 1403918
- M. Kontsevich and Y. Soibelman. Wall-crossing structures in Donaldson-Thomas invariants and mirror symmetry. Preprint, available at arXiv:1303.3253.
- Thomas Kragh, Parametrized ring-spectra and the nearby Lagrangian conjecture, Geom. Topol. 17 (2013), no. 2, 639–731. With an appendix by Mohammed Abouzaid. MR 3070514, DOI 10.2140/gt.2013.17.639
- François Lalonde and Jean-Claude Sikorav, Sous-variétés lagrangiennes et lagrangiennes exactes des fibrés cotangents, Comment. Math. Helv. 66 (1991), no. 1, 18–33 (French). MR 1090163, DOI 10.1007/BF02566634
- YankıLekili and Timothy Perutz, Fukaya categories of the torus and Dehn surgery, Proc. Natl. Acad. Sci. USA 108 (2011), no. 20, 8106–8113. MR 2806646, DOI 10.1073/pnas.1018918108
- Y. Lekili and T. Perutz. Arithmetic mirror symmetry for the 2-torus. Preprint, available at arXiv:1211.4632.
- Gang Liu and Gang Tian, Floer homology and Arnold conjecture, J. Differential Geom. 49 (1998), no. 1, 1–74. MR 1642105
- Dusa McDuff and Dietmar Salamon, Introduction to symplectic topology, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998. MR 1698616
- Dusa McDuff and Dietmar Salamon, $J$-holomorphic curves and symplectic topology, 2nd ed., American Mathematical Society Colloquium Publications, vol. 52, American Mathematical Society, Providence, RI, 2012. MR 2954391
- M. McLean. Computability and the growth rate of symplectic homology. Preprint, available at arXiv:1109.4466.
- David Nadler, Microlocal branes are constructible sheaves, Selecta Math. (N.S.) 15 (2009), no. 4, 563–619. MR 2565051, DOI 10.1007/s00029-009-0008-0
- P. E. Newstead, Stable bundles of rank $2$ and odd degree over a curve of genus $2$, Topology 7 (1968), 205–215. MR 237500, DOI 10.1016/0040-9383(68)90001-3
- Yong-Geun Oh, Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks. I, Comm. Pure Appl. Math. 46 (1993), no. 7, 949–993. MR 1223659, DOI 10.1002/cpa.3160460702
- Yong-Geun Oh, Floer cohomology, spectral sequences, and the Maslov class of Lagrangian embeddings, Internat. Math. Res. Notices 7 (1996), 305–346. MR 1389956, DOI 10.1155/S1073792896000219
- Yong-Geun Oh, Seidel’s long exact sequence on Calabi-Yau manifolds, Kyoto J. Math. 51 (2011), no. 3, 687–765. MR 2824005, DOI 10.1215/21562261-1299936
- K. Ono, Floer-Novikov cohomology and the flux conjecture, Geom. Funct. Anal. 16 (2006), no. 5, 981–1020. MR 2276532, DOI 10.1007/s00039-006-0575-6
- D. O. Orlov, Derived categories of coherent sheaves on abelian varieties and equivalences between them, Izv. Ross. Akad. Nauk Ser. Mat. 66 (2002), no. 3, 131–158 (Russian, with Russian summary); English transl., Izv. Math. 66 (2002), no. 3, 569–594. MR 1921811, DOI 10.1070/IM2002v066n03ABEH000389
- D. O. Orlov, Triangulated categories of singularities and D-branes in Landau-Ginzburg models, Tr. Mat. Inst. Steklova 246 (2004), no. Algebr. Geom. Metody, Svyazi i Prilozh., 240–262 (Russian, with Russian summary); English transl., Proc. Steklov Inst. Math. 3(246) (2004), 227–248. MR 2101296
- Alexander Polishchuk and Eric Zaslow, Categorical mirror symmetry: the elliptic curve, Adv. Theor. Math. Phys. 2 (1998), no. 2, 443–470. MR 1633036, DOI 10.4310/ATMP.1998.v2.n2.a9
- A. Polishchuk, Massey and Fukaya products on elliptic curves, Adv. Theor. Math. Phys. 4 (2000), no. 6, 1187–1207. MR 1894854, DOI 10.4310/ATMP.2000.v4.n6.a1
- A. Polishchuk, Analogue of Weil representation for abelian schemes, J. Reine Angew. Math. 543 (2002), 1–37. MR 1887877, DOI 10.1515/crll.2002.016
- L. Polterovich, The surgery of Lagrange submanifolds, Geom. Funct. Anal. 1 (1991), no. 2, 198–210. MR 1097259, DOI 10.1007/BF01896378
- A. Ritter and I. Smith. The open-closed string map revisited. Preprint, available at arXiv:1201.5880.
- Igor Rivin, Walks on groups, counting reducible matrices, polynomials, and surface and free group automorphisms, Duke Math. J. 142 (2008), no. 2, 353–379. MR 2401624, DOI 10.1215/00127094-2008-009
- Joel Robbin and Dietmar Salamon, The Maslov index for paths, Topology 32 (1993), no. 4, 827–844. MR 1241874, DOI 10.1016/0040-9383(93)90052-W
- Paul Seidel, Graded Lagrangian submanifolds, Bull. Soc. Math. France 128 (2000), no. 1, 103–149 (English, with English and French summaries). MR 1765826
- Paul Seidel, Symplectic Floer homology and the mapping class group, Pacific J. Math. 206 (2002), no. 1, 219–229. MR 1924827, DOI 10.2140/pjm.2002.206.219
- Paul Seidel, A long exact sequence for symplectic Floer cohomology, Topology 42 (2003), no. 5, 1003–1063. MR 1978046, DOI 10.1016/S0040-9383(02)00028-9
- Paul Seidel, Lectures on four-dimensional Dehn twists, Symplectic 4-manifolds and algebraic surfaces, Lecture Notes in Math., vol. 1938, Springer, Berlin, 2008, pp. 231–267. MR 2441414, DOI 10.1007/978-3-540-78279-7_{4}
- Paul Seidel, Fukaya categories and Picard-Lefschetz theory, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2008. MR 2441780, DOI 10.4171/063
- Paul Seidel, A biased view of symplectic cohomology, Current developments in mathematics, 2006, Int. Press, Somerville, MA, 2008, pp. 211–253. MR 2459307
- P. Seidel. Homological mirror symmetry for the quartic surface. Mem. Amer. Math. Soc. (to appear)
- P. Seidel. Homological mirror symmetry for the genus 2 curve. Preprint, arXiv:0812.0871.
- P. Seidel. Abstract analogues of flux as symplectic invariants. Mém. Soc. Math. France (to appear).
- Paul Seidel and Jake P. Solomon, Symplectic cohomology and $q$-intersection numbers, Geom. Funct. Anal. 22 (2012), no. 2, 443–477. MR 2929070, DOI 10.1007/s00039-012-0159-6
- Nick Sheridan, On the homological mirror symmetry conjecture for pairs of pants, J. Differential Geom. 89 (2011), no. 2, 271–367. MR 2863919
- Nicholas Sheridan, Homological mirror symmetry for a Calabi-Yau hypersurface in projective space, ProQuest LLC, Ann Arbor, MI, 2012. Thesis (Ph.D.)–Massachusetts Institute of Technology. MR 3121868
- N. Sheridan. On the Fukaya category of a Fano hypersurface in projective space. Preprint, available at arXiv:1306.4143.
- I. M. Singer and Shlomo Sternberg, The infinite groups of Lie and Cartan. I. The transitive groups, J. Analyse Math. 15 (1965), 1–114. MR 217822, DOI 10.1007/BF02787690
- I. Smith, R. P. Thomas, and S.-T. Yau, Symplectic conifold transitions, J. Differential Geom. 62 (2002), no. 2, 209–242. MR 1988503
- Ivan Smith, Floer cohomology and pencils of quadrics, Invent. Math. 189 (2012), no. 1, 149–250. MR 2929086, DOI 10.1007/s00222-011-0364-1
- I. Smith. Quiver algebras as Fukaya categories. Preprint, available at arXiv:1309.0452.
- Andrew Strominger, Shing-Tung Yau, and Eric Zaslow, Mirror symmetry is $T$-duality, Nuclear Phys. B 479 (1996), no. 1-2, 243–259. MR 1429831, DOI 10.1016/0550-3213(96)00434-8
- R. P. Thomas, Stability conditions and the braid group, Comm. Anal. Geom. 14 (2006), no. 1, 135–161. MR 2230573
- Katrin Wehrheim and Chris T. Woodward, Functoriality for Lagrangian correspondences in Floer theory, Quantum Topol. 1 (2010), no. 2, 129–170. MR 2657646, DOI 10.4171/QT/4
- Katrin Wehrheim and Chris T. Woodward, Quilted Floer cohomology, Geom. Topol. 14 (2010), no. 2, 833–902. MR 2602853, DOI 10.2140/gt.2010.14.833
- Christopher T. Woodward, Gauged Floer theory of toric moment fibers, Geom. Funct. Anal. 21 (2011), no. 3, 680–749. MR 2810861, DOI 10.1007/s00039-011-0119-6
- J. Woolf. Algebraic stability conditions and contractible stability spaces. Preprint, available at arXiv:1407.5986.
Additional Information
- Ivan Smith
- Affiliation: Centre for Mathematical Sciences, University of Cambridge, CB3 0WB, England.
- MR Author ID: 650668
- Email: [email protected]
- Received by editor(s): January 2, 2014
- Published electronically: January 30, 2015
- © Copyright 2015 American Mathematical Society
- Journal: Bull. Amer. Math. Soc. 52 (2015), 415-464
- MSC (2010): Primary 53D35, 53D40, 53D37
- DOI: https://doi.org/10.1090/S0273-0979-2015-01477-1
- MathSciNet review: 3348443