Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Probing the physical hallmarks of cancer

Abstract

The physical microenvironment plays a crucial role in tumor development, progression, metastasis and treatment. Recently, we proposed four physical hallmarks of cancer, with distinct origins and consequences, to characterize abnormalities in the physical tumor microenvironment: (1) elevated compressive–tensile solid stresses, (2) elevated interstitial fluid pressure and the resulting interstitial fluid flow, (3) altered material properties (for example, increased tissue stiffness) and (4) altered physical micro-architecture. As this emerging field of physical oncology is being advanced by tumor biologists, cell and developmental biologists, engineers, physicists and oncologists, there is a critical need for model systems and measurement tools to mechanistically probe these physical hallmarks. Here, after briefly defining these physical hallmarks, we discuss the tools and model systems available for probing each hallmark in vitro, ex vivo, in vivo and in clinical settings. We finally review the unmet needs for mechanistic probing of the physical hallmarks of tumors and discuss the challenges and unanswered questions associated with each hallmark.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Solid stress, range of values, measurement tools and experimental model systems.
Fig. 2: IFP and interstitial fluid flow, range of values, measurement tools and experimental model systems.
Fig. 3: Stiffness (rigidity), range of values, measurement tools and experimental model systems.
Fig. 4: Architecture and geometry: representative observations and experimental model systems.

Similar content being viewed by others

References

  1. Nia, H. T., Munn, L. L. & Jain, R. K. Physical traits of cancer. Science 370, eaaz0868 (2020). This paper provided a conceptual framework to study the tumor microenvironment by identifying four physical hallmarks of cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Linke, J., Munn, L. L. & Jain, R. Compressive stresses in cancer: characterization and implications for tumor progression and treatment. Nat. Rev. Cancer 24, 768–791 (2024).

  3. Nia, H. T. et al. Solid stress and elastic energy as measures of tumour mechanopathology. Nat. Biomed. Eng. 1, 0004 (2017). This paper provided multiple quantitative methods to measure solid stresses in tumors both ex vivo and in situ.

    Article  CAS  Google Scholar 

  4. Chauhan, V. P. et al. Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels. Nat. Commun. 4, 2516 (2013). This paper demonstrated that a blood pressure-lowering drug that targets angiotensin receptor could lower the solid stress in a solid tumor and improve the outcome of anti-cancer therapy in preclinical models of breast and pancreatic cancer.

    Article  PubMed  Google Scholar 

  5. Stylianopoulos, T. et al. Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors. Proc. Natl Acad. Sci. USA 109, 15101–15108 (2012). This paper provided the first experimental evidence of the existence of solid stress in mouse and human tumors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Seano, G. et al. Solid stress in brain tumours causes neuronal loss and neurological dysfunction and can be reversed by lithium. Nat. Biomed. Eng. 3, 230–245 (2019). This paper demonstrated that brain tumors with nodular versus infiltrative growth patterns exert different levels of solid stress on the surrounding host tissue and that the high solid stress can kill peritumor neurons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang, S. et al. Intravital measurements of solid stresses in tumours reveal length-scale and microenvironmentally dependent force transmission. Nat. Biomed. Eng. 7, 1473–1492 (2023). This paper provided the first in vivo measurement of solid stress in mice and showed that solid stress transmission is scale dependent.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Follain, G. et al. Fluids and their mechanics in tumour transit: shaping metastasis. Nat. Rev. Cancer 20, 107–124 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Wirtz, D., Konstantopoulos, K. & Searson, P. C. The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat. Rev. Cancer 11, 512–522 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chaudhuri, O., Cooper-White, J., Janmey, P. A., Mooney, D. J. & Shenoy, V. B. Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature 584, 535–546 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Helmlinger, G., Netti, P. A., Lichtenbeld, H. C., Melder, R. J. & Jain, R. K. Solid stress inhibits the growth of multicellular tumor spheroids. Nat. Biotechnol. 15, 778–783 (1997). This paper showed for the first time how compressive solid stresses are linked to cancer cell proliferation, resulting in coining the term ‘solid stress’ to distinguish mechanical stresses generated by solid constituents of the tumor from the pressure from fluid in a tumor.

    Article  CAS  PubMed  Google Scholar 

  12. Padera, T. P. et al. Pathology: cancer cells compress intratumour vessels. Nature 427, 695 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Munn, L. L. & Jain, R. K. Vascular regulation of antitumor immunity. Science 365, 544–545 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tse, J. M. et al. Mechanical compression drives cancer cells toward invasive phenotype. Proc. Natl Acad. Sci. USA 109, 911–916 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Jones, D. et al. Solid stress impairs lymphocyte infiltration into lymph-node metastases. Nat. Biomed. Eng. 5, 1426–1436 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fernández-Sánchez, M. E. et al. Mechanical induction of the tumorigenic β-catenin pathway by tumour growth pressure. Nature 523, 92–95 (2015).

    Article  PubMed  Google Scholar 

  17. Murphy, J. E. et al. Total neoadjuvant therapy with FOLFIRINOX in combination with losartan followed by chemoradiotherapy for locally advanced pancreatic cancer: a phase 2 clinical trial. JAMA Oncol. 5, 1020–1027 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Datta, M. et al. Losartan controls immune checkpoint blocker-induced edema and improves survival in glioblastoma mouse models. Proc. Natl Acad. Sci. USA 120, e2219199120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhao, Y. et al. Losartan treatment enhances chemotherapy efficacy and reduces ascites in ovarian cancer models by normalizing the tumor stroma. Proc. Natl Acad. Sci. USA 116, 2210–2219 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu, L. et al. Losartan prevents tumor-induced hearing loss and augments radiation efficacy in NF2 schwannoma rodent models. Sci. Transl. Med. 13, eabd4816 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sherman, M. H. et al. Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell 159, 80–93 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Provenzano, P. P. et al. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 21, 418–429 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rahbari, N. N. et al. Anti-VEGF therapy induces ECM remodeling and mechanical barriers to therapy in colorectal cancer liver metastases. Sci. Transl. Med. 8, 360ra135 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ramanathan, R. K. et al. Phase IB/II randomized study of FOLFIRINOX plus pegylated recombinant human hyaluronidase versus FOLFIRINOX alone in patients with metastatic pancreatic adenocarcinoma: SWOG S1313. J. Clin. Oncol. 37, 1062–1069 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Olive, K. P. et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324, 1457–1461 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Aykut, B. et al. Targeting Piezo1 unleashes innate immunity against cancer and infectious disease. Sci. Immunol. 5, eabb5168 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Jairaman, A. et al. Piezo1 channels restrain regulatory T cells but are dispensable for effector CD4+ T cell responses. Sci. Adv. 7, eabg5859 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Du, H. et al. Tuning immunity through tissue mechanotransduction. Nat. Rev. Immunol. 23, 174–188 (2023).

    Article  CAS  PubMed  Google Scholar 

  29. Zhang, S. et al. The peritumor microenvironment: physics and immunity. Trends Cancer 9, 609–623 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mittelheisser, V. et al. Evidence and therapeutic implications of biomechanically regulated immunosurveillance in cancer and other diseases. Nat. Nanotechnol. 19, 281–297 (2024).

    Article  CAS  PubMed  Google Scholar 

  31. Chuong, C.-J. & Fung, Y.-C. In Frontiers in Biomechanics 117–129 (Springer, 1986).

  32. Nia, H. T. et al. Quantifying solid stress and elastic energy from excised or in situ tumors. Nat. Protoc. 13, 1091–1105 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dolega, M. E. et al. Cell-like pressure sensors reveal increase of mechanical stress towards the core of multicellular spheroids under compression. Nat. Commun. 8, 14056 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee, W. et al. Dispersible hydrogel force sensors reveal patterns of solid mechanical stress in multicellular spheroid cultures. Nat. Commun. 10, 144 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mohagheghian, E. et al. Quantifying compressive forces between living cell layers and within tissues using elastic round microgels. Nat. Commun. 9, 1878 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cheng, G., Tse, J., Jain, R. K. & Munn, L. L. Micro-environmental mechanical stress controls tumor spheroid size and morphology by suppressing proliferation and inducing apoptosis in cancer cells. PLoS ONE 4, e4632 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Nam, S. & Chaudhuri, O. Mitotic cells generate protrusive extracellular forces to divide in three-dimensional microenvironments. Nat. Phys. 14, 621–628 (2018).

    Article  CAS  Google Scholar 

  38. Polacheck, W. J. & Chen, C. S. Measuring cell-generated forces: a guide to the available tools. Nat. Methods 13, 415–423 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Delarue, M. et al. Compressive stress inhibits proliferation in tumor spheroids through a volume limitation. Biophys. J. 107, 1821–1828 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wagstaff, L. et al. Mechanical cell competition kills cells via induction of lethal p53 levels. Nat. Commun. 7, 11373 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Banerji, R. et al. Crystal ribcage: a platform for probing real-time lung function at cellular resolution in health and disease. Nat. Methods 20, 1790–1801 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Jain, R. K. & Baxter, L. T. Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: significance of elevated interstitial pressure. Cancer Res. 48, 7022–7032 (1988).

    CAS  PubMed  Google Scholar 

  43. Boucher, Y., Baxter, L. T. & Jain, R. K. Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy. Cancer Res. 50, 4478–4484 (1990). The first experimental evidence that IFP is uniformly elevated throughout a tumor and drops precipitously in the margin with adjacent normal tissue.

    CAS  PubMed  Google Scholar 

  44. Fyles, A. et al. Long-term performance of interstial fluid pressure and hypoxia as prognostic factors in cervix cancer. Radiother. Oncol. 80, 132–137 (2006).

    Article  PubMed  Google Scholar 

  45. Willett, C. G. et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat. Med. 10, 145–147 (2004). This paper provided direct evidence that an anti-VEGF antibody can reduce IFP and vascular leakiness in human tumors.

    PubMed  PubMed Central  Google Scholar 

  46. Tolaney, S. M. et al. Role of vascular density and normalization in response to neoadjuvant bevacizumab and chemotherapy in breast cancer patients. Proc. Natl Acad. Sci. USA 112, 14325–14330 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Swartz, M. A. & Fleury, M. E. Interstitial flow and its effects in soft tissues. Annu. Rev. Biomed. Eng. 9, 229–256 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Ng, C. P., Hinz, B. & Swartz, M. A. Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro. J. Cell Sci. 118, 4731–4739 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Song, J. W. & Munn, L. L. Fluid forces control endothelial sprouting. Proc. Natl Acad. Sci. USA 108, 15342–15347 (2011). This paper provides the mechanism underlying angiogenesis controlled by fluid flow shear stresses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Munson, J. M., Bellamkonda, R. V. & Swartz, M. A. Interstitial flow in a 3D microenvironment increases glioma invasion by a CXCR4-dependent mechanism. Cancer Res. 73, 1536–1546 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Polacheck, W. J., Charest, J. L. & Kamm, R. D. Interstitial flow influences direction of tumor cell migration through competing mechanisms. Proc. Natl Acad. Sci. USA 108, 11115–11120 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Swartz, M. A. & Lund, A. W. Lymphatic and interstitial flow in the tumour microenvironment: linking mechanobiology with immunity. Nat. Rev. Cancer 12, 210–219 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Avvisato, C. L. et al. Mechanical force modulates global gene expression and β-catenin signaling in colon cancer cells. J. Cell Sci. 120, 2672–2682 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Jain, R. K. Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. J. Clin. Oncol. 31, 2205–2218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Boucher, Y., Leunig, M. & Jain, R. K. Tumor angiogenesis and interstitial hypertension. Cancer Res. 56, 4264–4266 (1996).

    CAS  PubMed  Google Scholar 

  56. Bera, K. et al. Extracellular fluid viscosity enhances cell migration and cancer dissemination. Nature 611, 365–373 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Netti, P. A., Berk, D. A., Swartz, M. A., Grodzinsky, A. J. & Jain, R. K. Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res. 60, 2497–2503 (2000).

    CAS  PubMed  Google Scholar 

  58. Gullino, P. M. The internal milieu of tumors. Prog. Exp. Tumor Res. 8, 1–25 (1966).

    Article  CAS  PubMed  Google Scholar 

  59. Chary, S. R. & Jain, R. K. Direct measurement of interstitial convection and diffusion of albumin in normal and neoplastic tissues by fluorescence photobleaching. Proc. Natl Acad. Sci. USA 86, 5385–5389 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hassid, Y., Furman-Haran, E., Margalit, R., Eilam, R. & Degani, H. Noninvasive magnetic resonance imaging of transport and interstitial fluid pressure in ectopic human lung tumors. Cancer Res. 66, 4159–4166 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Bruns, O. T. et al. Next-generation in vivo optical imaging with short-wave infrared quantum dots. Nat. Biomed. Eng. 1, 0056 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hadzipasic, M. et al. Emergence of nanoscale viscoelasticity from single cancer cells to established tumors. Biomaterials 305, 122431 (2024).

    Article  CAS  PubMed  Google Scholar 

  63. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006). This paper provided the first evidence on how substrate stiffness directs the lineage of stem cells.

    Article  CAS  PubMed  Google Scholar 

  64. Paszek, M. J. et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 8, 241–254 (2005). This paper linked matrix stiffness to cytoskeletal tension through integrins and demonstrated how it regulates the malignant phenotype.

    Article  CAS  PubMed  Google Scholar 

  65. Tung, J. C. et al. Tumor mechanics and metabolic dysfunction. Free Radic. Biol. Med. 79, 269–280 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Bordeleau, F. et al. Matrix stiffening promotes a tumor vasculature phenotype. Proc. Natl Acad. Sci. USA 114, 492–497 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Levental, K. R. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891–906 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pathak, A. & Kumar, S. Independent regulation of tumor cell migration by matrix stiffness and confinement. Proc. Natl Acad. Sci. USA 109, 10334–10339 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Alvarez, R. et al. Stromal disrupting effects of nab-paclitaxel in pancreatic cancer. Br. J. Cancer 109, 926–933 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Miroshnikova, Y. A. et al. Tissue mechanics promote IDH1-dependent HIF1α–tenascin C feedback to regulate glioblastoma aggression. Nat. Cell Biol. 18, 1336–1345 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Acerbi, I. et al. Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration. Integr. Biol. 7, 1120–1134 (2015).

    Article  CAS  Google Scholar 

  72. Leight, J. L., Wozniak, M. A., Chen, S., Lynch, M. L. & Chen, C. S. Matrix rigidity regulates a switch between TGF-β1-induced apoptosis and epithelial–mesenchymal transition. Mol. Biol. Cell 23, 781–791 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang, W. et al. Diabetic hyperglycemia promotes primary tumor progression through glycation-induced tumor extracellular matrix stiffening. Sci. Adv. 8, eabo1673 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Boyd, N. F. et al. Evidence that breast tissue stiffness is associated with risk of breast cancer. PLoS ONE 9, e100937 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Maskarinec, G. et al. Mammographic density as a predictor of breast cancer survival: the multiethnic cohort. Breast Cancer Res. 15, R7 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Choi, S. et al. Bone-matrix mineralization dampens integrin-mediated mechanosignalling and metastatic progression in breast cancer. Nat. Biomed. Eng. 7, 1455–1472 (2023).

    Article  CAS  PubMed  Google Scholar 

  77. Chaudhuri, O. et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater. 15, 326–334 (2016).

    Article  CAS  PubMed  Google Scholar 

  78. Han, Y. L. et al. Cell contraction induces long-ranged stress stiffening in the extracellular matrix. Proc. Natl Acad. Sci. USA 115, 4075–4080 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. LeBourdais, R. et al. Mapping the strain-stiffening behavior of the lung and lung cancer at microscale resolution using the crystal ribcage. Front. Netw. Physiol. 4, 1396593 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Shao, X. et al. MatrisomeDB 2.0: 2023 updates to the ECM–protein knowledge database. Nucleic Acids Res. 51, D1519–D1530 (2023).

    Article  PubMed  Google Scholar 

  81. Hajjarian, Z. et al. Laser speckle rheology for evaluating the viscoelastic properties of hydrogel scaffolds. Sci. Rep. 6, 37949 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Scarcelli, G. et al. Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy. Nat. Methods 12, 1132–1134 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Regan, K. et al. Multiscale elasticity mapping of biological samples in 3D at optical resolution. Acta Biomater. 176, 250–266 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Masuzaki, R. et al. Assessing liver tumor stiffness by transient elastography. Hepatol. Int. 1, 394–397 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Venkatesh, S. K. et al. MR elastography of liver tumors: preliminary results. AJR Am. J. Roentgenol. 190, 1534–1540 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Weigelt, B., Ghajar, C. M. & Bissell, M. J. The need for complex 3D culture models to unravel novel pathways and identify accurate biomarkers in breast cancer. Adv. Drug Deliv. Rev. 69–70, 42–51 (2014).

    Article  PubMed  Google Scholar 

  87. Petersen, O. W., Ronnov-Jessen, L., Howlett, A. R. & Bissell, M. J. Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc. Natl Acad. Sci. USA 89, 9064–9068 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Peyton, S. R., Raub, C. B., Keschrumrus, V. P. & Putnam, A. J. The use of poly(ethylene glycol) hydrogels to investigate the impact of ECM chemistry and mechanics on smooth muscle cells. Biomaterials 27, 4881–4893 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Huebsch, N. et al. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat. Mater. 9, 518–526 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Khetan, S. et al. Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nat. Mater. 12, 458–465 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ulrich, T. A., Jain, A., Tanner, K., MacKay, J. L. & Kumar, S. Probing cellular mechanobiology in three-dimensional culture with collagen–agarose matrices. Biomaterials 31, 1875–1884 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Provenzano, P. P., Inman, D. R., Eliceiri, K. W. & Keely, P. J. Matrix density-induced mechanoregulation of breast cell phenotype, signaling and gene expression through a FAK–ERK linkage. Oncogene 28, 4326–4343 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Engler, A. et al. Substrate compliance versus ligand density in cell on gel responses. Biophys. J. 86, 617–628 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tibbitt, M. W. & Anseth, K. S. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol. Bioeng. 103, 655–663 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lee, G. Y., Kenny, P. A., Lee, E. H. & Bissell, M. J. Three-dimensional culture models of normal and malignant breast epithelial cells. Nat. Methods 4, 359–365 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. DeForest, C. A. & Anseth, K. S. Cytocompatible click-based hydrogels with dynamically tunable properties through orthogonal photoconjugation and photocleavage reactions. Nat. Chem. 3, 925–931 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nelson, C. M. & Bissell, M. J. Modeling dynamic reciprocity: engineering three-dimensional culture models of breast architecture, function, and neoplastic transformation. Semin. Cancer Biol. 15, 342–352 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Sahai, E. & Marshall, C. J. Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat. Cell Biol. 5, 711–719 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Conklin, M. W. et al. Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am. J. Pathol. 178, 1221–1232 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Provenzano, P. P. et al. Collagen reorganization at the tumor–stromal interface facilitates local invasion. BMC Med. 4, 38 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Provenzano, P. P., Inman, D. R., Eliceiri, K. W., Trier, S. M. & Keely, P. J. Contact guidance mediated three-dimensional cell migration is regulated by Rho/ROCK-dependent matrix reorganization. Biophys. J. 95, 5374–5384 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Fraley, S. I. et al. Three-dimensional matrix fiber alignment modulates cell migration and MT1-MMP utility by spatially and temporally directing protrusions. Sci. Rep. 5, 14580 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Velez, D. O. et al. 3D collagen architecture induces a conserved migratory and transcriptional response linked to vasculogenic mimicry. Nat. Commun. 8, 1651 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Folkman, J. & Moscona, A. Role of cell shape in growth control. Nature 273, 345–349 (1978).

    Article  CAS  PubMed  Google Scholar 

  105. Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M. & Ingber, D. E. Geometric control of cell life and death. Science 276, 1425–1428 (1997). This paper provided the first evidence of how geometry, distinct from stiffness, can regulate cell life and death.

    Article  CAS  PubMed  Google Scholar 

  106. Tan, J. L. et al. Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc. Natl Acad. Sci. USA 100, 1484–1489 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Denais, C. M. et al. Nuclear envelope rupture and repair during cancer cell migration. Science 352, 353–358 (2016). This paper was among the first to show how passage of cells through constricted geometries can cause nucleus deformation and DNA damage.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Cho, S., Irianto, J. & Discher, D. E. Mechanosensing by the nucleus: from pathways to scaling relationships. J. Cell Biol. 216, 305–315 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ramdas, N. M. & Shivashankar, G. V. Cytoskeletal control of nuclear morphology and chromatin organization. J. Mol. Biol. 427, 695–706 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Irianto, J. et al. DNA damage follows repair factor depletion and portends genome variation in cancer cells after pore migration. Curr. Biol. 27, 210–223 (2017).

    Article  CAS  PubMed  Google Scholar 

  111. Raab, M. et al. ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science 352, 359–362 (2016).

    Article  CAS  PubMed  Google Scholar 

  112. Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Brusatin, G., Panciera, T., Gandin, A., Citron, A. & Piccolo, S. Biomaterials and engineered microenvironments to control YAP/TAZ-dependent cell behaviour. Nat. Mater. 17, 1063–1075 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Park, J. et al. Directed migration of cancer cells guided by the graded texture of the underlying matrix. Nat. Mater. 15, 792–801 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Chaudhuri, P. K., Pan, C. Q., Low, B. C. & Lim, C. T. Topography induces differential sensitivity on cancer cell proliferation via Rho–ROCK–myosin contractility. Sci. Rep. 6, 19672 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Brown, E. et al. Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation. Nat. Med. 9, 796–800 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Perentes, J. Y. et al. In vivo imaging of extracellular matrix remodeling by tumor-associated fibroblasts. Nat. Methods 6, 143–145 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kiemen, A. L. et al. CODA: quantitative 3D reconstruction of large tissues at cellular resolution. Nat. Methods 19, 1490–1499 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Maiuri, P. et al. Actin flows mediate a universal coupling between cell speed and cell persistence. Cell 161, 374–386 (2015).

    Article  CAS  PubMed  Google Scholar 

  120. Wong, S., Guo, W. H. & Wang, Y. L. Fibroblasts probe substrate rigidity with filopodia extensions before occupying an area. Proc. Natl Acad. Sci. USA 111, 17176–17181 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kim, D.-H., Provenzano, P. P., Smith, C. L. & Levchenko, A. Matrix nanotopography as a regulator of cell function. J. Cell Biol. 197, 351–360 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wisniewski, E. O. et al. Dorsoventral polarity directs cell responses to migration track geometries. Sci. Adv. 6, eaba6505 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wolf, K. et al. Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J. Cell Biol. 201, 1069–1084 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ranamukhaarachchi, S. K. et al. Macromolecular crowding tunes 3D collagen architecture and cell morphogenesis. Biomater. Sci. 7, 618–633 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Stroka, K. M. et al. Water permeation drives tumor cell migration in confined microenvironments. Cell 157, 611–623 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Drost, J. & Clevers, H. Organoids in cancer research. Nat. Rev. Cancer 18, 407–418 (2018).

    Article  CAS  PubMed  Google Scholar 

  127. Baysoy, A., Bai, Z., Satija, R. & Fan, R. The technological landscape and applications of single-cell multi-omics. Nat. Rev. Mol. Cell Biol. 24, 695–713 (2023).

    Article  CAS  PubMed  Google Scholar 

  128. Campas, O. et al. Quantifying cell-generated mechanical forces within living embryonic tissues. Nat. Methods 11, 183–189 (2014).

    Article  CAS  PubMed  Google Scholar 

  129. Zheng, S. et al. Alteration of mechanical stresses in the murine brain by age and hemorrhagic stroke. PNAS Nexus 3, 141 (2024).

    Article  Google Scholar 

  130. Benham-Pyle, B. W., Pruitt, B. L. & Nelson, W. J. Mechanical strain induces E-cadherin-dependent Yap1 and β-catenin activation to drive cell cycle entry. Science 348, 1024–1027 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Serwane, F. et al. In vivo quantification of spatially varying mechanical properties in developing tissues. Nat. Methods 14, 181–186 (2017).

    Article  CAS  PubMed  Google Scholar 

  132. Ricca, B. L. et al. Transient external force induces phenotypic reversion of malignant epithelial structures via nitric oxide signaling. eLife 7, e26161 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Barr, R. G., Memo, R. & Schaub, C. R. Shear wave ultrasound elastography of the prostate: initial results. Ultrasound Q. 28, 13–20 (2012).

    Article  PubMed  Google Scholar 

  134. Xu, L. et al. Magnetic resonance elastography of brain tumors: preliminary results. Acta Radiol. 48, 327–330 (2007).

    Article  CAS  PubMed  Google Scholar 

  135. Chauvet, D. et al. In vivo measurement of brain tumor elasticity using intraoperative shear wave elastography. Ultraschall Med. 37, 584–590 (2016).

    CAS  PubMed  Google Scholar 

  136. Streitberger, K. J. et al. High-resolution mechanical imaging of glioblastoma by multifrequency magnetic resonance elastography. PLoS ONE 9, e110588 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Plodinec, M. et al. The nanomechanical signature of breast cancer. Nat. Nanotechnol. 7, 757–765 (2012).

    Article  CAS  PubMed  Google Scholar 

  138. Théry, M. et al. The extracellular matrix guides the orientation of the cell division axis. Nat. Cell Biol. 7, 947–953 (2005).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Cancer Institute (R01-CA259253, R01-CA208205, R01-NS118929, U01-CA261842, U01-CA 224348), an Outstanding Investigator Award (R35-CA197743 to R.K.J.), R01-CA204949 and R01-HL128168 to L.L.M. and R21EB031332, DP2HL168562, a Beckman Young Investigator Award, an NSF CAREER Award, a Kilachand Fund Award, a Sloan Research Fellowship and DoD HT9425241053 to H.T.N. R.K.J.’s research is also supported by grants from the National Foundation for Cancer Research, the Nile Albright Research Foundation, the Harvard Ludwig Center, Jane’s Trust Foundation and the Bill and Melinda Gates Foundation and Boehringer Ingelheim and Sanofi.

Author information

Authors and Affiliations

Authors

Contributions

H.T.N., L.L.M. and R.K.J. conceived and jointly wrote the Review.

Corresponding authors

Correspondence to Hadi T. Nia, Lance L. Munn or Rakesh K. Jain.

Ethics declarations

Competing interests

R.K.J. received consultant and/or SAB fees from Cur, DynamiCure, Elpis, Merck and SynDevRx; owns equity in Accurius, Enlight and SynDevRx; and served on the boards of trustees of Tekla Healthcare Investors, Tekla Life Sciences Investors, Tekla Healthcare Opportunities Fund and Tekla World Healthcare Fund. The Massachusetts General Hospital has applied for patents related to concepts discussed in this Review. L.L.M. receives equity from Bayer and is a consultant for SimBioSys. The remaining author declares no competing interests.

Peer review

Peer review information

Nature Methods thanks Konstantinos Konstantopoulos and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Madhura Mukhopadhyay, in collaboration with the Nature Methods team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nia, H.T., Munn, L.L. & Jain, R.K. Probing the physical hallmarks of cancer. Nat Methods 22, 1800–1818 (2025). https://doi.org/10.1038/s41592-024-02564-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41592-024-02564-4

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer