Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bacterial adhesion strategies and countermeasures in urinary tract infection

Abstract

Urinary tract infections (UTIs) are compounded by antimicrobial resistance, which increases the risk of UTI recurrence and antibiotic treatment failure. This also intensifies the burden of disease upon healthcare systems worldwide, and of morbidity and mortality. Uropathogen adhesion is a critical step in the pathogenic process, as has been mainly shown for Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Streptococcus agalactiae, Proteus, Enterococcus and Staphylococcus species. Although many bacterial adhesion molecules from these uropathogens have been described, our understanding of their contributions to UTIs is limited. Here we explore knowledge gaps in the UTI field, as we discuss the broader repertoire of uropathogen adhesins, including their role beyond initial attachment and the counter-responses of the host immune system. Finally, we describe the development of therapeutic approaches that target uropathogenic adhesion strategies and provide potential alternatives to antibiotics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Uropathogen adhesion during UTI progression.
Fig. 2: Gram-negative and Gram-positive uropathogen adhesion factors and cognate targets in the urinary tract.
Fig. 3: Uropathogen adhesin functions beyond attachment during UTI.
Fig. 4: Host cell responses to counter uropathogen adhesion.
Fig. 5: Therapeutic strategies targeting uropathogen adhesion.

Similar content being viewed by others

References

  1. Yang, X. et al. Disease burden and long-term trends of urinary tract infections: a worldwide report. Front. Public Health 10, 888205 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Foxman, B. Urinary tract infection syndromes. Occurrence, recurrence, bacteriology, risk factors and disease burden. Infect. Dis. Clin. North Am. 28, 1–13 (2014).

    Article  PubMed  Google Scholar 

  3. Murray, C. J. et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022).

    Article  CAS  Google Scholar 

  4. Burns, B. L. & Rhoads, D. D. Meningococcal urethritis: old and new. J. Clin. Microbiol. 60, e0057522 (2022).

    Article  PubMed  Google Scholar 

  5. Flores-Mireles, A. L., Walker, J. N., Caparon, M. & Hultgren, S. J. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 13, 269–284 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mydock-Mcgrane, L. K., Hannan, T. J. & Janetka, J. W. Rational design strategies for FimH antagonists: new drugs on the horizon for urinary tract infection and Crohn’s disease. Expert Opin. Drug Discov. 12, 711–731 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Starks, C. M. et al. Optimization and qualification of an assay that demonstrates that a FimH vaccine induces functional antibody responses in women with histories of urinary tract infections. Hum. Vaccin. Immunother. 17, 283–292 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Hospenthal, M. K., Costa, T. R. D. & Waksman, G. A comprehensive guide to pilus biogenesis in Gram-negative bacteria. Nat. Rev. Microbiol. 15, 365–379 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Spaulding, C. N. et al. Functional role of the type 1 pilus rod structure in mediating host–pathogen interactions. eLife 7, e31662 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mortezaei, N. et al. Structure and function of enterotoxigenic Escherichia coli fimbriae from differing assembly pathways. Mol. Microbiol. 95, 116–126 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Jain, N. & Chapman, M. R. Bacterial functional amyloids: order from disorder. Biochim. Biophys. Acta Proteins Proteom. 1867, 954–960 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Herbst, F. A. et al. Major proteomic changes associated with amyloid-induced biofilm formation in Pseudomonas aeruginosa PAO1. J. Proteome Res. 14, 72–81 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Taglialegna, A. et al. The biofilm-associated surface protein Esp of Enterococcus faecalis forms amyloid-like fibers. npj Biofilms Microbiomes 6, 15 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Singh, K. V., Nallapareddy, S. R. & Murray, B. E. Importance of the ebp (endocarditisand biofilm-associated pilus) locus in the pathogenesis of Enterococcus faecalis ascending urinary tract infection. J. Infect. Dis. 195, 1671–1677 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Craig, L., Forest, K. T. & Maier, B. Type IV pili: dynamics, biophysics and functional consequences. Nat. Rev. Microbiol. 17, 429–440 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Servin, A. L. Pathogenesis of human diffusely adhering Escherichia coli expressing Afa/Dr adhesins (Afa/Dr DAEC): current insights and future challenges. Clin. Microbiol. Rev. 27, 823–869 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Alamuri, P. et al. Adhesion, invasion and agglutination mediated by two trimeric autotransporters in the human uropathogen Proteus mirabilis. Infect. Immun. 78, 4882–4894 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shea, A. E., Stocki, J. A., Himpsl, S. D., Smith, S. N. & Mobley, H. L. T. Loss of an intimin-like protein encoded on a uropathogenic E. coli pathogenicity island reduces inflammation and affects interactions with the urothelium. Infect. Immun. https://doi.org/10.1128/IAI.00275-21 (2021).

    Article  PubMed  Google Scholar 

  19. Foster, T. J. The MSCRAMM family of cell-wall-anchored surface proteins of Gram positive cocci. Trends Microbiol. 27, 927–941 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. King, N. P. et al. UafB is a serine-rich repeat adhesin of Staphylococcus saprophyticus that mediates binding to fibronectin, fibrinogen and human uroepithelial cells. Microbiology 157, 1161–1175 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Hell, W., Meyer, H. G. W. & Gatermann, S. G. Cloning of aas, a gene encoding a Staphylococcus saprophyticus surface protein with adhesive and autolytic properties. Mol. Microbiol. 29, 871–881 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Nesta, B. et al. FdeC, a novel broadly conserved Escherichia coli adhesin eliciting protection against urinary tract infections. mBio 3, e00010–e00012 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Marrs, C. F. et al. Variations in 10 putative uropathogen virulence genes among urinary, faecal and peri-urethral Escherichia coli. J. Med. Microbiol. 51, 138–142 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Wu, X. R., Sun, T. T. & Medina, J. J. In vitro binding of type 1-fimbriated Escherichia coli to uroplakins Ia and Ib: relation to urinary tract infections. Proc. Natl Acad. Sci. USA 93, 9630–9635 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Eto, D. S., Jones, T. A., Sundsbak, J. L. & Mulvey, M. A. Integrin-mediated host cell invasion by type 1-piliated uropathogenic Escherichia coli. PLoS Pathog. 3, e100 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sauer, M. M. et al. Catch-bond mechanism of the bacterial adhesin FimH. Nat. Commun. 7, 10738 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bäckhed, F. et al. Identification of target tissue glycosphingolipid receptors for uropathogenic, F1C-fimbriated Escherichia coli and its role in mucosal inflammation. J. Biol. Chem. 277, 18198–18205 (2002).

    Article  PubMed  Google Scholar 

  28. Legros, N. et al. PapG subtype-specific binding characteristics of Escherichia coli towards globo-series glycosphingolipids of human kidney and bladder uroepithelial cells. Glycobiology 29, 789–802 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Spurbeck, R. R. et al. Fimbrial profiles predict virulence of uropathogenic Escherichia coli strains: contribution of Ygi and Yad fimbriae. Infect. Immun. 79, 4753–4763 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li, X. et al. Compounds targeting YadC of uropathogenic Escherichia coli and its host receptor annexin A2 decrease bacterial colonization in bladder. eBioMedicine 50, 23–33 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Luna-Pineda, V. M. et al. Curli of uropathogenic Escherichia coli enhance urinary tract colonization as a fitness factor. Front. Microbiol. 10, 2063 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Valle, J. et al. UpaG, a new member of the trimeric autotransporter family of adhesins in uropathogenic Escherichia coli. J. Bacteriol. 190, 4147–4161 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jansen, A. M., Lockatell, V., Johnson, D. E. & Mobley, H. L. T. Mannose-resistant Proteus-like fimbriae are produced by most Proteus mirabilis strains infecting the urinary tract, dictate the in vivo localization of bacteria, and contribute to biofilm formation. Infect. Immun. 72, 7294–7305 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kuroda, M. et al. Whole genome sequence of Staphylococcus saprophyticus reveals the pathogenesis of uncomplicated urinary tract infection. Proc. Natl Acad. Sci. USA 102, 13272–13277 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nielsen, H. V. et al. The metal ion-dependent adhesion site motif of the Enterococcus faecalis EbpA pilin mediates pilus function in catheter-associated urinary tract infection. mBio 3, e00177-12 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Shankar, N. et al. Role of Enterococcus faecalis surface protein Esp in the pathogenesis of ascending urinary tract infection. Infect. Immun. 69, 4366–4372 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Meyer, H. W., Wengler-Becker, U. & Gatermann, S. G. The hemagglutinin of Staphylococcus saprophyticus is a major adhesin for uroepithelial cells. Infect. Immun. 64, 3893–3896 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kreft, B. et al. S fimbriae of uropathogenic Escherichia coli bind to primary human renal proximal tubular epithelial cells but do not induce expression of intercellular adhesion molecule 1. Infect. Immun. 63, 3235–3238 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Battaglioli, E. J. et al. Identification and characterization of a phase-variable element that regulates the autotransporter upae in uropathogenic Escherichia coli. mBio 9, e01360-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Selvarangan, R. et al. Interaction of Dr adhesin with collagen type IV is a critical step in Escherichia coli renal persistence. Infect. Immun. 72, 4827–4835 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Goluszko, P. et al. Dr operon-associated invasiveness of Escherichia coli from pregnant patients with pyelonephritis. Infect. Immun. 69, 4678–4680 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vigil, P. D. et al. The repeat-in-toxin family member TosA mediates adherence of uropathogenic Escherichia coli and survival during bacteremia. Infect. Immun. 80, 493–505 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Snyder, J. A. et al. Transcriptome of uropathogenic Escherichia coli during urinary tract infection. Infect. Immun. 72, 6373–6381 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Melican, K. et al. Uropathogenic Escherichia coli P and type 1 fimbriae act in synergy in a living host to facilitate renal colonization leading to nephron obstruction. PLoS Pathog. 7, e1001298 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. McLellan, L. K. et al. A host receptor enables type 1 pilus-mediated pathogenesis of Escherichia coli pyelonephritis. PLoS Pathog. 17, e1009314 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Struve, C., Bojer, M. & Krogfelt, K. A. Identification of a conserved chromosomal region encoding Klebsiella pneumoniae type 1 and type 3 fimbriae and assessment of the role of fimbriae in pathogenicity. Infect. Immun. 77, 5016–5024 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rosen, D. A. et al. Molecular variations in Klebsiella pneumoniae and Escherichia coli FimH affect function and pathogenesis in the urinary tract. Infect. Immun. 76, 3346–3356 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pellegrino, R., Scavone, P., Umpiérrez, A., Maskell, D. J. & Zunino, P. Proteus mirabilis uroepithelial cell adhesin (UCA) fimbria plays a role in the colonization of the urinary tract. Pathog. Dis. 67, 104–107 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Askarian, F. et al. Serineaspartate repeat protein D increases Staphylococcus aureus virulence and survival in blood. Infect. Immun. 85, e00559-16 (2017).

    Article  PubMed  Google Scholar 

  50. Cheng, A. G. et al. Genetic requirements for Staphylococcus aureus abscess formation and persistence in host tissues. FASEB J. 23, 3393–3404 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sava, I. G. et al. Enterococcal surface protein contributes to persistence in the host but is not a target of opsonic and protective antibodies in Enterococcus faecium infection. J. Med. Microbiol. 59, 1001–1004 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Lebreton, F. et al. ace, which encodes an adhesin in Enterococcus faecalis, is regulated by Ers and is involved in virulence. Infect. Immun. 77, 2832–2839 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Torelli, R. et al. The PavA-like fibronectin-binding protein of Enterococcus faecalis, EfbA, is important for virulence in a mouse model of ascending urinary tract infection. J. Infect. Dis. 206, 952–960 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Sillanpää, J. et al. Contribution of individual Ebp pilus subunits of Enterococcus faecalis OG1RF to pilus biogenesis, biofilm formation and urinary tract infection. PLoS ONE 8, e68813 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sokurenko, E. V., Courtney, H. S., Abraham, S. N., Klemm, P. & Hasty, D. L. Functional heterogeneity of type 1 fimbriae of Escherichia coli. Infect. Immun. 60, 4709–4719 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Burnham, M. J., Byun, C.-A. S. & Henderson, A. S. The bacterial amyloid curli is associated with urinary source bloodstream infection. PLoS ONE 9, 86009 (2014).

    Article  Google Scholar 

  57. Allsopp, L. P. et al. Molecular characterization of UpaB and UpaC, two new autotransporter proteins of uropathogenic Escherichia coli CFT073. Infect. Immun. 80, 321–332 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Allsopp, L. P. et al. Functional heterogeneity of the UpaH autotransporter protein from uropathogenic Escherichia coli. J. Bacteriol. 194, 5769–5782 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Korhonen, T. K. et al. Escherichia coli fimbriae recognizing sialyl galactosides. J. Bacteriol. 159, 762–766 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hendrickx, A. P. A. et al. SgrA, a nidogen-binding LPXTG surface adhesin implicated in biofilm formation, and EcbA, a collagen binding MSCRAMM, are two novel adhesins of hospital-acquired Enterococcus faecium. Infect. Immun. 77, 5097–5106 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Walker, J. N. et al. Catheterization alters bladder ecology to potentiate Staphylococcus aureus infection of the urinary tract. Proc. Natl Acad. Sci. USA 114, E8721–E8730 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kline, K. A. et al. Characterization of a novel murine model of Staphylococcus saprophyticus urinary tract infection reveals roles for Ssp and SdrI in virulence. Infect. Immun. 78, 1943–1951 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Russell, S. K. et al. Uropathogenic Escherichia coli infection induced epithelial trained immunity impacts urinary tract disease outcome. Nat. Microbiol. 8, 875–888 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Conover, M. S. et al. Inflammation-induced adhesin-receptor interaction provides a fitness advantage to uropathogenic E. coli during chronic infection accession numbers 5LNG 5LNE. Cell Host Microbe 20, 482–492 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kalas, V. et al. Structure-based discovery of glycomimetic FmlH ligands as inhibitors of bacterial adhesion during urinary tract infection. Proc. Natl Acad. Sci. USA 115, E2819–E2828 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jiang, W., Ubhayasekera, W., Pearson, M. M. & Knight, S. D. Structures of two fimbrial adhesins, AtfE and UcaD, from the uropathogen Proteus mirabilis. Acta Crystallogr. D 74, 1053–1062 (2018).

    Article  CAS  Google Scholar 

  67. Scavone, P. et al. Fimbriae have distinguishable roles in Proteus mirabilis biofilm formation. Pathog. Dis. 74, ftw033 (2016).

    Article  PubMed  Google Scholar 

  68. Sokolowska-Köhler, W. et al. Occurrence of S and F1C/S-related fimbrial determinants and their expression in Escherichia coli strains isolated from extraintestinal infections. FEMS Immunol. Med. Microbiol. 18, 1–6 (1997).

    PubMed  Google Scholar 

  69. Nallapareddy, S. R. et al. Conservation of Ebp-type pilus genes among enterococci and demonstration of their role in adherence of Enterococcus faecalis to human platelets. Infect. Immun. 79, 2911–2920 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Heikens, E. et al. Contribution of the enterococcal surface protein Esp to pathogenesis of Enterococcus faecium endocarditis. Microbes Infect. 13, 1185–1190 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Singh, K. V., La Rosa, S. L., Somarajan, S. R., Roh, J. H. & Murray, B. E. The fibronectinbinding protein EfbA contributes to pathogenesis and protects against infective endocarditis caused by Enterococcus faecalis. Infect. Immun. 83, 4487–4494 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wurpel, D. J., Beatson, S. A., Totsika, M., Petty, N. K. & Schembri, M. A. Chaperone-usher fimbriae of Escherichia coli. PLoS ONE 8, e52835 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Morita, Y. et al. A high-resolution typing assay for uropathogenic Escherichia coli based on fimbrial diversity. Front. Microbiol. 7, 623 (2016).

    Google Scholar 

  74. Alcántar-Curiel, M. D. et al. Multi-functional analysis of Klebsiella pneumoniae fimbrial types in adherence and biofilm formation. Virulence 4, 129–138 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Gomes, A. É. I. et al. Functional insights from KpfR, a new transcriptional regulator of fimbrial expression that is crucial for Klebsiella pneumoniae pathogenicity. Front. Microbiol. 11, 3347 (2021).

    Article  Google Scholar 

  76. Wu, C. C., Huang, Y. J., Fung, C. P. & Peng, H. L. Regulation of the Klebsiella pneumoniae Kpc fimbriae by the site-specific recombinase KpcI. Microbiology 156, 1983–1992 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Vargas, J. M. et al. Virulence factors and clinical patterns of multiple-clone hypermucoviscous KPC-2 producing K. pneumoniae. Heliyon 5, e01829 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Debnath, I. et al. MrpJ directly regulates Proteus mirabilis virulence factors, including fimbriae and type VI secretion, during urinary tract infection. Infect. Immun. 86, e00388-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Kreft, B., Marre, R., Schramm, U. & Wirth, R. Aggregation substance of Enterococcus faecalis mediates adhesion to cultured renal tubular cells. Infect. Immun. 60, 25–30 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sillanpää, J. et al. Identification and phenotypic characterization of a second collagen adhesin, Scm, and genome-based identification and analysis of 13 other predicted MSCRAMMs, including four distinct pilus loci, in Enterococcus faecium. Microbiology 154, 3199–3211 (2008).

    Article  PubMed  Google Scholar 

  81. Geraci, J. et al. The Staphylococcus aureus extracellular matrix protein (Emp) has a fibrous structure and binds to different extracellular matrices. Sci. Rep. 7, 13665 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Geisbrecht, B. V., Hamaoka, B. Y., Perman, B., Zemla, A. & Leahy, D. J. The crystal structures of EAP domains from Staphylococcus aureus reveal an unexpected homology to bacterial superantigens. J. Biol. Chem. 280, 17243–17250 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Harraghy, N. et al. The adhesive and immunodulating properties of the multifunctional Staphylococcus aureus protein Eap. Microbiology 149, 2701–2707 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Ulett, G. C. et al. Group B Streptococcus (GBS) urinary tract infection involves binding of GBS to bladder uroepithelium and potent but GBS-specific induction of interleukin 1a. J. Infect. Dis. 201, 866–870 (2010).

    Article  PubMed  Google Scholar 

  85. Springman, A. C. et al. Pilus distribution among lineages of Group B Streptococcus: an evolutionary and clinical perspective. BMC Microbiol. 14, 159 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Reichhardt, C. et al. The versatile Pseudomonas aeruginosa biofilm matrix protein CdrA promotes aggregation through different extracellular exopolysaccharide interactions. J. Bacteriol. 202, e00216-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Cole, S. J. & Lee, V. T. Cyclic di-GMP signaling contributes to Pseudomonas aeruginosa-mediated catheter-associated urinary tract infection. J. Bacteriol. 198, 91–97 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Tielen, P. et al. Genotypic and phenotypic characterization of Pseudomonas aeruginosa isolates from urinary tract infections. Int. J. Med. Microbiol. 301, 282–292 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Emam, A. et al. Laboratory and clinical Pseudomonas aeruginosa strains do not bind glycosphingolipids in vitro or during type IV pili-mediated initial host cell attachment. Microbiology 152, 2789–2799 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Pearson, M. M. et al. Complete genome sequence of uropathogenic Proteus mirabilis, a master of both adherence and motility. J. Bacteriol. 190, 4027–4037 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kulkarni, R. et al. Roles of putative type II secretion and type IV pilus systems in the virulence of uropathogenic Escherichia coli. PLoS ONE 4, e4752 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Subashchandrabose, S., Smith, S. N., Spurbeck, R. R., Kole, M. M. & Mobley, H. L. T. Genome-wide detection of fitness genes in uropathogenic Escherichia coli during systemic infection. PLoS Pathog. 9, e1003788 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Luterbach, C. L., Forsyth, V. S., Engstrom, M. D. & Mobley, H. L. T. TosR-mediated regulation of adhesins and biofilm formation in uropathogenic Escherichia coli. mSphere 3, e00222-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Hadjifrangiskou, M. et al. Transposon mutagenesis identifies uropathogenic Escherichia coli biofilm factors. J. Bacteriol. 194, 6195–6205 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ong, C. L. Y. et al. Identification of type 3 fimbriae in uropathogenic Escherichia coli reveals a role in biofilm formation. J. Bacteriol. 190, 1054–1063 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Zalewska-Piatek, B., Wilkanowicz, S., Bruździak, P., Piatek, R. & Kur, J. Biochemical characteristic of biofilm of uropathogenic Escherichia coli Dr+ strains. Microbiol. Res. 168, 367–378 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Kjñrgaard, K., Schembri, M. A., Ramos, C., Molin, S. & Klemm, P. Antigen 43 facilitates formation of multispecies biofilms. Environ. Microbiol. 2, 695–702 (2000).

    Article  Google Scholar 

  98. Schroll, C., Barken, K. B., Krogfelt, K. A. & Struve, C. Role of type 1 and type 3 fimbriae in Klebsiella pneumoniae biofilm formation. BMC Microbiol. 10, 179 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Armbruster, C. E. et al. Genome-wide transposon mutagenesis of Proteus mirabilis: essential genes, fitness factors for catheter-associated urinary tract infection, and the impact of polymicrobial infection on fitness requirements. PLoS Pathog. 13, e1006434 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Tendolkar, P. M., Baghdayan, A. S., Gilmore, M. S. & Shankar, N. Enterococcal surface protein, Esp, enhances biofilm formation by Enterococcus faecalis. Infect. Immun. 72, 6032–6039 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Montealegre, M. C. et al. Role of the Emp pilus subunits of Enterococcus faecium in biofilm formation, adherence to host extracellular matrix components, and experimental infection. Infect. Immun. 84, 1491–1500 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Kai-Larsen, Y. et al. Uropathogenic Escherichia coli modulates immune responses and its curli fimbriae interact with the antimicrobial peptide LL-37. PLoS Pathog. 6, e1001010 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Zeng, G. et al. Functional bacterial amyloid increases Pseudomonas biofilm hydrophobicity and stiffness. Front. Microbiol. 6, 1099 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Cucarella, C. et al. Expression of the biofilm-associated protein interferes with host protein receptors of Staphylococcus aureus and alters the infective process. Infect. Immun. 70, 3180–3186 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Schembri, M. A. & Klemm, P. Biofilm formation in a hydrodynamic environment by novel FimH variants and ramifications for virulence. Infect. Immun. 69, 1322–1328 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Flores-Mireles, A. L., Pinkner, J. S., Caparon, M. G. & Hultgren, S. J. EbpA vaccine antibodies block binding of Enterococcus faecalis to fibrinogen to prevent catheter associated bladder infection in mice. Sci. Transl. Med. 6, 254ra127 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Flores-Mireles, A. L. et al. Antibody-based therapy for enterococcal catheter associated urinary tract infections. mBio 7, e01653-16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Merino, N. et al. Protein A-mediated multicellular behavior in Staphylococcus aureus. J. Bacteriol. 191, 832–843 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Wang, H., Min, G., Glockshuber, R., Sun, T. T. & Kong, X. P. Uropathogenic E. coli adhesin-induced host cell receptor conformational changes: implications in transmembrane signaling transduction. J. Mol. Biol. 392, 352–361 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Martinez, J. J., Mulvey, M. A., Schilling, J. D., Pinkner, J. S. & Hultgren, S. J. Type 1 pilus-mediated bacterial invasion of bladder epithelial cells. EMBO J. 19, 2803–2812 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Chen, S. L. et al. Positive selection identifies an in vivo role for FimH during urinary tract infection in addition to mannose binding. Proc. Natl Acad. Sci. USA 106, 22439–22444 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wright, K. J., Seed, P. C. & Hultgren, S. J. Development of intracellular bacterial communities of uropathogenic Escherichia coli depends on type 1 pili. Cell. Microbiol. 9, 2230–2241 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Flores, C. et al. A human urothelial microtissue model reveals shared colonization and survival strategies between uropathogens and commensals. Sci. Adv. 9, eadi9834 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Anderson, G. G. et al. Intracellular bacterial biofilm-like pods in urinary tract infections. Science 301, 105–107 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Jouve, M. et al. Adhesion to and invasion of HeLa cells by pathogenic Escherichia coli carrying the afa-3 gene cluster are mediated by the AfaE and AfaD proteins, respectively. Infect. Immun. 65, 4082–4089 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Plançon, L. et al. Recognition of the cellular β1-chain integrin by the bacterial AfaD invasin is implicated in the internalization of afa-expressing pathogenic Escherichia coli strains. Cell. Microbiol. 5, 681–693 (2003).

    Article  PubMed  Google Scholar 

  117. Garcia, M. I., Gounon, P., Courcoux, P., Labigne, A. & Le Bouguénec, C. The afimbrial adhesive sheath encoded by the afa-3 gene cluster of pathogenic Escherichia coli is composed of two adhesins. Mol. Microbiol. 19, 683–693 (1996).

    Article  CAS  PubMed  Google Scholar 

  118. Das, M. et al. Hydrophilic domain II of Escherichia coli Dr fimbriae facilitates cell invasion. Infect. Immun. 73, 6119–6126 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Rosen, D. A. et al. Utilization of an intracellular bacterial community pathway in Klebsiella pneumoniae urinary tract infection and the effects of FimK on type 1 pilus expression. Infect. Immun. 76, 3337–3345 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Thumbikat, P. et al. Bacteria-induced uroplakin signaling mediates bladder response to infection. PLoS Pathog. 5, e1000415 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Scavone, P., Villar, S., Umpiérrez, A. & Zunino, P. Role of Proteus mirabilis MR/P fimbriae and flagella in adhesion, cytotoxicity and genotoxicity induction in T24 and Vero cells. Pathog. Dis. 73, ftv017 (2015).

    Article  PubMed  Google Scholar 

  122. Zalewska-PiÄ…tek, B. et al. A shear stress micromodel of urinary tract infection by the Escherichia coli producing Dr adhesin. PLoS Pathog. 16, e1008247 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Fexby, S. et al. Biological Trojan horse: antigen 43 provides specific bacterial uptake and survival in human neutrophils. Infect. Immun. 75, 30–34 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Nallapareddy, S. R., Singh, K. V., Sillanpää, J., Zhao, M. & Murray, B. E. Relative contributions of Ebp pili and the collagen adhesin ace to host extracellular matrix protein adherence and experimental urinary tract infection by Enterococcus faecalis OG1RF. Infect. Immun. 79, 2901–2910 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Eisenbeis, J. et al. The Staphylococcus aureus extracellular adherence protein Eap is a DNA binding protein capable of blocking neutrophil extracellular trap formation. Front. Cell. Infect. Microbiol. 8, 235 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Russell, C. W. et al. Context-dependent requirements for FimH and other canonical virulence factors in gut colonization by extraintestinal pathogenic Escherichia coli. Infect. Immun. 86, e00746-17 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Spaulding, C. N. et al. Selective depletion of uropathogenic E. coli from the gut by a FimH antagonist. Nature 546, 528–532 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hancock, S. J. et al. Ucl fimbriae regulation and glycan receptor specificity contribute to gut colonisation by extra-intestinal pathogenic Escherichia coli. PLoS Pathog. 18, e1010582 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Waters, C. M. et al. An amino-terminal domain of Enterococcus faecalis aggregation substance is required for aggregation, bacterial internalization by epithelial cells and binding to lipoteichoic acid. Mol. Microbiol. 52, 1159–1171 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Johnson, J. R., Clabots, C., Hirt, H., Waters, C. & Dunny, G. Enterococcal aggregation substance and binding substance are not major contributors to urinary tract colonization by Enterococcus faecalis in a mouse model of ascending unobstructed urinary tract infection. Infect. Immun. 72, 2445–2448 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Song, J., Bishop, B. L., Li, G., Duncan, M. J. & Abraham, S. N. TLR4-initiated and cAMP mediated abrogation of bacterial invasion of the bladder. Cell Host Microbe 1, 287–298 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Song, J. et al. TLR4-mediated expulsion of bacteria from infected bladder epithelial cells. Proc. Natl Acad. Sci. USA 106, 14966–14971 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Habibi, M., Reza, M., Karam, A. & Bouzari, S. In silico study of toll-like receptor 4 binding site of FimH from uropathogenic Escherichia coli. J. Med. Microbiol. Infect. Dis. 2, 35–39 (2014).

    Google Scholar 

  134. Hedlund, M., Svensson, M., Nilsson, Å., Duan, R. D. & Svanborg, C. Role of the ceramide-signaling pathway in cytokine responses to P-fimbriated Escherichia coli. J. Exp. Med. 183, 1037–1044 (1996).

    Article  CAS  PubMed  Google Scholar 

  135. Hedlund, M. et al. Type 1 fimbriae deliver an LPS- and TLR4-dependent activation signal to CD14-negative cells. Mol. Microbiol. 39, 542–552 (2001).

    Article  CAS  PubMed  Google Scholar 

  136. Weiss, G. L. et al. Architecture and function of human uromodulin filaments in urinary tract infections. Science 369, 1005–1010 (2020).

    Article  CAS  PubMed  Google Scholar 

  137. Mo, L. et al. Ablation of the Tamm-Horsfall protein gene increases susceptibility of mice to bladder colonization by type 1-fimbriated Escherichia coli. Am. J. Physiol. Ren. Physiol. 286, F795–F802 (2004).

    Article  CAS  Google Scholar 

  138. Harjai, K., Mittal, R., Chhibber, S. & Sharma, S. Contribution of Tamm-Horsfall protein to virulence of Pseudomonas aeruginosa in urinary tract infection. Microbes Infect. 7, 132–137 (2004).

    Article  PubMed  Google Scholar 

  139. Wold, A. E. et al. Secretory immunoglobulin A carries oligosaccharide receptors for Escherichia coli type 1 fimbrial lectin. Infect. Immun. 58, 3073–3077 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Trinchieri, A. et al. Secretory immunoglobulin A and inhibitory activity of bacterial adherence to epithelial cells in urine from patients with urinary tract infections. Urol. Res. 18, 305–308 (1990).

    Article  CAS  PubMed  Google Scholar 

  141. Svensson, L., Poljakovic, M., Demirel, I., Sahlberg, C. & Persson, K. Host-derived nitric oxide and its antibacterial effects in the urinary tract. Adv. Microb. Physiol. 73, 1–62 (2018).

    Article  CAS  PubMed  Google Scholar 

  142. Fang, L. et al. Epithelial invasion by Escherichia coli bearing Dr fimbriae is controlled by nitric oxide-regulated expression of CD55. Infect. Immun. 72, 2907–2914 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Poljakovic, M. & Persson, K. Urinary tract infection in iNOS-deficient mice with focus on bacterial sensitivity to nitric oxide. Am. J. Physiol. Ren. Physiol. 284, F22–F31 (2003).

    Article  CAS  Google Scholar 

  144. Salminen, A. et al. Inhibition of P-fimbriated Escherichia coli adhesion by multivalent galabiose derivatives studied by a live-bacteria application of surface plasmon resonance. J. Antimicrob. Chemother. 60, 495–501 (2007).

    Article  CAS  PubMed  Google Scholar 

  145. Samanta, P. & Doerksen, R. J. Identifying FmlH lectin-binding small molecules for the prevention of Escherichia coli-induced urinary tract infections using hybrid fragment based design and molecular docking. Comput. Biol. Med. 163, 107072 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Greene, S. E. et al. Pilicide ec240 disrupts virulence circuits in uropathogenic Escherichia coli. mBio 5, F22–F31 (2014).

    Article  Google Scholar 

  147. Piatek, R. et al. Pilicides inhibit the FGL chaperone/usher assisted biogenesis of the Dr fimbrial polyadhesin from uropathogenic Escherichia coli. BMC Microbiol. 13, 131 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Bleem, A. et al. Designed α-sheet peptides disrupt uropathogenic E. coli biofilms rendering bacteria susceptible to antibiotics and immune cells. Sci. Rep. 13, 9272 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Cegelski, L. et al. Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation. Nat. Chem. Biol. 5, 913–919 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Mortezaei, N., Singh, B., Bullitt, E., Uhlin, B. E. & Andersson, M. P-fimbriae in the presence of anti-PapA antibodies: new insight of antibodies action against pathogens. Sci. Rep. 3, 3393 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Thankavel, K. et al. Localization of a domain in the FimH adhesin of Escherichia coli type 1 fimbriae capable of receptor recognition and use of a domain-specific antibody to confer protection against experimental urinary tract infection. J. Clin. Invest. 100, 1123–1136 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Bahrani, F. K., Johnson, D. E., Robbins, D. & Mobley, H. L. T. Proteus mirabilis flagella and MR/P fimbriae: isolation, purification, N-terminal analysis, and serum antibody response following experimental urinary tract infection. Infect. Immun. 59, 3574–3580 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. O’Brien, V. P., Hannan, T. J., Nielsen, H. V. & Hultgren, S. J. Drug and vaccine development for the treatment and prevention of urinary tract infections. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.UTI-0013-2012 (2016).

  154. Langermann, S. et al. Prevention of mucosal Escherichia coli infection by FimH adhesin-based systemic vaccination. Science 276, 607–611 (1997).

    Article  CAS  PubMed  Google Scholar 

  155. Roberts, J. A. et al. Antibody responses and protection from pyelonephritis following vaccination with purified Escherichia coli PapDG protein. J. Urol. 171, 1682–1685 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Schmidt, G., Hacker, J., Wood, G. & Marre, R. Oral vaccination of rats with live avirulent Salmonella derivatives expressing adhesive fimbrial antigens of uropathogenic Escherichia coli. FEMS Microbiol. Lett. 47, 229–236 (1989).

    Article  Google Scholar 

  157. Goluszko, P. et al. Vaccination with purified Dr fimbriae reduces mortality associated with chronic urinary tract infection due to Escherichia coli bearing Dr adhesin. Infect. Immun. 73, 627–631 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Xing, Y. et al. Broad protective vaccination against systemic Escherichia coli with autotransporter antigens. PLoS Pathog. 19, e1011082 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Choubini, E. et al. A novel multi-peptide subunit vaccine admixed with AddaVax adjuvant produces significant immunogenicity and protection against Proteus mirabilis urinary tract infection in mice model. Mol. Immunol. 96, 88–97 (2018).

    Article  CAS  PubMed  Google Scholar 

  160. Habibi, M. et al. Intranasal immunization with fusion protein MrpH·FimH and MPL adjuvant confers protection against urinary tract infections caused by uropathogenic Escherichia coli and Proteus mirabilis. Mol. Immunol. 64, 285–294 (2015).

    Article  CAS  PubMed  Google Scholar 

  161. Scavone, P., Sosa, V., Pellegrino, R., Galvalisi, U. & Zunino, P. Mucosal vaccination of mice with recombinant Proteus mirabilis structural fimbrial proteins. Microbes Infect. 6, 853–860 (2004).

    Article  CAS  PubMed  Google Scholar 

  162. Ramírez Sevilla, C., Gómez Lanza, E., Manzanera, J. L., Martín, J. A. R. & Sanz, M. Á. B. Active immunoprophyilaxis with Uromune® decreases the recurrence of urinary tract infections at three and six months after treatment without relevant secondary effects. BMC Infect. Dis. 19, 901 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Kochiashvili, D., Khuskivadze, A., Kochiashvili, G., Koberidze, G. & Kvakhajelidze, V. Role of the bacterial vaccine Solco-Urovac® in treatment and prevention of recurrent urinary tract infections of bacterial origin. Georgian Med. News 11, 16 (2014).

    Google Scholar 

  164. Nestler, S. et al. Prospective multicentre randomized double-blind placebo-controlled parallel group study on the efficacy and tolerability of StroVac® in patients with recurrent symptomatic uncomplicated bacterial urinary tract infections. Int. Urol. Nephrol. 55, 9–16 (2023).

    Article  CAS  PubMed  Google Scholar 

  165. Brodie, A., El-Taji, O., Jour, I., Foley, C. & Hanbury, D. A retrospective study of immunotherapy treatment with uro-vaxom (OM-89r) for prophylaxis of recurrent urinary tract infections. Curr. Urol 14, 130–134 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Kelly, S. H. et al. A sublingual nanofiber vaccine to prevent urinary tract infections. Sci. Adv. 8, eabq4120 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Kawalec, A. & Zwolinska, D. Emerging role of microbiome in the prevention of urinary tract infections in children. Int. J. Mol. Sci. 23, 870 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Xia, J. Y. et al. Consumption of cranberry as adjuvant therapy for urinary tract infections in susceptible populations: a systematic review and meta-analysis with trial sequential analysis. PLoS ONE 16, e0256992 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Cohen, C. R. et al. Randomized trial of Lactin-V to prevent recurrence of bacterial vaginosis. N. Engl. J. Med. 382, 1906–1915 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Stapleton, A. E. et al. Randomized, placebo-controlled phase 2 trial of a Lactobacillus crispatus probiotic given intravaginally for prevention of recurrent urinary tract infection. Clin. Infect. Dis. 52, 1212–1217 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Klemm, P., Hancock, V. & Schembri, M. A. Mellowing out: adaptation to commensalism by Escherichia coli asymptomatic bacteriuria strain 83972. Infect. Immun. 75, 3688–3695 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Rudick, C. N., Taylor, A. K., Yaggie, R. E., Schaeffer, A. J. & Klumpp, D. J. Asymptomatic bacteriuria Escherichia coli are live biotherapeutics for UTI. PLoS One 9, e109321 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Neugent, M. L. et al. Recurrent urinary tract infection and estrogen shape the taxonomic ecology and function of the postmenopausal urogenital microbiome. Cell Rep. Med. 3, 100753 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Chegini, Z. et al. Bacteriophage therapy for inhibition of multi drug‐resistant uropathogenic bacteria: a narrative review. Ann. Clin. Microbiol. Antimicrob. 20, 30 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Liao, K. S., Lehman, S. M., Tweardy, D. J., Donlan, R. M. & Trautner, B. W. Bacteriophages are synergistic with bacterial interference for the prevention of Pseudomonas aeruginosa biofilm formation on urinary catheters. J. Appl. Microbiol. 113, 1530–1539 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Gupta, S. et al. Targeting of uropathogenic Escherichia coli papG gene using CRISPR-dot nanocomplex reduced virulence of UPEC. Sci. Rep. 11, 17801 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. La Bella, A. A. et al. The catheterized bladder environment promotes Efg1- and Als1-dependent Candida albicans infection. Sci. Adv. 9, eade7689 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Snyder, J. A. et al. Coordinate expression of fimbriae in uropathogenic Escherichia coli. Infect. Immun. 73, 7588–7596 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Murray, B. O. et al. Recurrent urinary tract infection: a mystery in search of better model systems. Front. Cell. Infect. Microbiol. 11, 691210 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Struve, C., Bojer, M. & Krogfelt, K. A. Characterization of Klebsiella pneumoniae type 1 fimbriae by detection of phase variation during colonization and infection and impact on virulence. Infect. Immun. 76, 4055–4065 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Bijlsma, I. G. W., Van Dijk, L., Kusters, J. G. & Gaastra, W. Nucleotide sequences of two fimbrial major subunit genes, pmpA and ucaA, from canine-uropat hogenic Proteus mirabilis strains. Microbiology 141, 1349–1357 (1995).

    Article  CAS  PubMed  Google Scholar 

  182. Hancock, V. & Klemm, P. Global gene expression profiling of asymptomatic bacteriuria Escherichia coli during biofilm growth in human urine. Infect. Immun. 75, 966–976 (2007).

    Article  CAS  PubMed  Google Scholar 

  183. Klemm, P., Christiansen, G., Kreft, B., Marre, R. & Bergman, H. Reciprocal exchange of minor components of type 1 and F1C fimbriae results in hybrid organelles with changed receptor specificities. J. Bacteriol. 176, 2227–2234 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Khan, A. S. et al. Functional analysis of the minor subunits of S fimbrial adhesin (SfaI) in pathogenic Escherichia coli. Mol. Gen. Genet. 263, 96–105 (2000).

    Article  CAS  PubMed  Google Scholar 

  185. Rêgo, A. T. et al. Crystal structure of the MrkD1P receptor binding domain of Klebsiella pneumoniae and identification of the human collagen V binding interface. Mol. Microbiol. 86, 882–893 (2012).

    Article  PubMed  Google Scholar 

  186. Jiang, W. et al. MrpH, a new class of metal-binding adhesin, requires zinc to mediate biofilm formation. PLoS Pathog. 16, e1008707 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Irvin, R. T. et al. Characterization of the Pseudomonas aeruginosa pilus adhesin: confirmation that the pilin structural protein subunit contains a human epithelial cellbinding domain. Infect. Immun. 57, 3720–3726 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Johnson, M. D. L. et al. Pseudomonas aeruginosa PilY1 binds integrin in an RGD- and calcium-dependent manner. PLoS ONE 6, e29629 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. La Rosa, S. L., Montealegre, M. C., Singh, K. V. & Murray, B. E. Enterococcus faecalis Ebp pili are important for cell-cell aggregation and intraspecies gene transfer. Microbiology 162, 798–802 (2016).

    PubMed  Google Scholar 

  190. Paxman, J. J. et al. Unique structural features of a bacterial autotransporter adhesin suggest mechanisms for interaction with host macromolecules. Nat. Commun. 10, 1967 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Ulett, G. C. et al. Functional analysis of antigen 43 in uropathogenic Escherichia coli reveals a role in long-term persistence in the urinary tract. Infect. Immun. 75, 3233–3244 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Heras, B. et al. The antigen 43 structure reveals a molecular Velcro-like mechanism of autotransporter-mediated bacterial clumping. Proc. Natl Acad. Sci. USA 111, 457–462 (2014).

    Article  CAS  PubMed  Google Scholar 

  193. Xicohtencatl-Cortes, J. et al. Uropathogenic Escherichia coli strains harboring tosA gene were associated to high virulence genes and a multidrug-resistant profile. Microb. Pathog. 134, 103593 (2019).

    Article  CAS  PubMed  Google Scholar 

  194. Hashem, Y. A., Abdelrahman, K. A. & Aziz, R. K. Phenotype-genotype correlations and distribution of key virulence factors in Enterococcus faecalis isolated from patients with urinary tract infections. Infect. Drug Resist. 14, 1713–1723 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Sakinç, T., Kleine, B., Michalski, N., Kaase, M. & Gatermann, S. G. SdrI of Staphylococcus saprophyticus is a multifunctional protein: localization of the fibronectin-binding site. FEMS Microbiol. Lett. 301, 28–34 (2009).

    Article  PubMed  Google Scholar 

  196. Asadi, A., Razavi, S., Talebi, M. & Gholami, M. A review on anti-adhesion therapies of bacterial diseases. Infection 47, 13–23 (2019).

    Article  PubMed  Google Scholar 

  197. Allen, R. C., Popat, R., Diggle, S. P. & Brown, S. P. Targeting virulence: can we make evolution-proof drugs? Nat. Rev. Microbiol. 12, 300–308 (2014).

    Article  CAS  PubMed  Google Scholar 

  198. Abraham, J. M., Freitag, C. S., Clements, J. R. & Eisenstein, B. I. An invertible element of DNA controls phase variation of type 1 fimbriae of Escherichia coli. Proc. Natl Acad. Sci. USA 82, 5724–5727 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Roche, A. J., McFadden, J. P. & Owen, P. Antigen 43, the major phase-variable protein of the Escherichia coli outer membrane, can exist as a family of proteins encoded by multiple alleles. Microbiology 147, 161–169 (2001).

    Article  CAS  PubMed  Google Scholar 

  200. Khandige, S., Kronborg, T., Uhlin, B. E. & Møller-Jensen, J. sRNA-mediated regulation of P-fimbriae phase variation in uropathogenic Escherichia coli. PLoS Pathog. 11, e1005109 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Zhao, H., Li, X., Johnson, D. E., Blomfield, I. & Mobley, H. L. T. In vivo phase variation of MR/P fimbrial gene expression in Proteus mirabilis infecting the urinary tract. Mol. Microbiol. 23, 1009–1019 (1997).

    Article  CAS  PubMed  Google Scholar 

  202. Sokurenko, E. V. et al. Pathogenic adaptation of Escherichia coli by natural variation of the FimH adhesin. Proc. Natl Acad. Sci. USA 95, 8922–8926 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Schwartz, D. J. et al. Positively selected FimH residues enhance virulence during urinary tract infection by altering FimH conformation. Proc. Natl Acad. Sci. USA 110, 15530–15537 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Ageorges, V. et al. Differential homotypic and heterotypic interactions of antigen 43 (Ag43) variants in autotransporter-mediated bacterial autoaggregation. Sci. Rep. 9, 11100 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Klemm, P., Hjerrild, L., Gjermansen, M. & Schembri, M. A. Structure-function analysis of the self-recognizing Antigen 43 autotransporter protein from Escherichia coli. Mol. Microbiol. 51, 283–296 (2004).

    Article  CAS  PubMed  Google Scholar 

  206. Stephenson, S. A. M. & Brown, P. D. Epigenetic influence of dam methylation on gene expression and attachment in uropathogenic Escherichia coli. Front. Public Health 4, 131 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Rosen, D. A. et al. Klebsiella pneumoniae FimK promotes virulence in murine pneumonia. J. Infect. Dis. 213, 649–658 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

C.F. is funded by the International Human Frontier Science Program Organization (HFSPO, ref. LT0017/2023-L).

Author information

Authors and Affiliations

Authors

Contributions

C.F. and J.L.R. conceptualized and wrote this Review. C.F. prepared the figures and tables.

Corresponding authors

Correspondence to Carlos Flores or Jennifer L. Rohn.

Ethics declarations

Competing interests

C.F. declares no competing interests. J.R. is affiliated with AtoCap Ltd, a University College London spin-out company seeking novel cures for UTI.

Peer review

Peer review information

Nature Microbiology thanks Ana Flores-Mireles and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flores, C., Rohn, J.L. Bacterial adhesion strategies and countermeasures in urinary tract infection. Nat Microbiol 10, 627–645 (2025). https://doi.org/10.1038/s41564-025-01926-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41564-025-01926-8

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology