Abstract
Urinary tract infections (UTIs) are compounded by antimicrobial resistance, which increases the risk of UTI recurrence and antibiotic treatment failure. This also intensifies the burden of disease upon healthcare systems worldwide, and of morbidity and mortality. Uropathogen adhesion is a critical step in the pathogenic process, as has been mainly shown for Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Streptococcus agalactiae, Proteus, Enterococcus and Staphylococcus species. Although many bacterial adhesion molecules from these uropathogens have been described, our understanding of their contributions to UTIs is limited. Here we explore knowledge gaps in the UTI field, as we discuss the broader repertoire of uropathogen adhesins, including their role beyond initial attachment and the counter-responses of the host immune system. Finally, we describe the development of therapeutic approaches that target uropathogenic adhesion strategies and provide potential alternatives to antibiotics.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 /Â 30Â days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
Yang, X. et al. Disease burden and long-term trends of urinary tract infections: a worldwide report. Front. Public Health 10, 888205 (2022).
Foxman, B. Urinary tract infection syndromes. Occurrence, recurrence, bacteriology, risk factors and disease burden. Infect. Dis. Clin. North Am. 28, 1â13 (2014).
Murray, C. J. et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629â655 (2022).
Burns, B. L. & Rhoads, D. D. Meningococcal urethritis: old and new. J. Clin. Microbiol. 60, e0057522 (2022).
Flores-Mireles, A. L., Walker, J. N., Caparon, M. & Hultgren, S. J. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 13, 269â284 (2015).
Mydock-Mcgrane, L. K., Hannan, T. J. & Janetka, J. W. Rational design strategies for FimH antagonists: new drugs on the horizon for urinary tract infection and Crohnâs disease. Expert Opin. Drug Discov. 12, 711â731 (2017).
Starks, C. M. et al. Optimization and qualification of an assay that demonstrates that a FimH vaccine induces functional antibody responses in women with histories of urinary tract infections. Hum. Vaccin. Immunother. 17, 283â292 (2021).
Hospenthal, M. K., Costa, T. R. D. & Waksman, G. A comprehensive guide to pilus biogenesis in Gram-negative bacteria. Nat. Rev. Microbiol. 15, 365â379 (2017).
Spaulding, C. N. et al. Functional role of the type 1 pilus rod structure in mediating hostâpathogen interactions. eLife 7, e31662 (2018).
Mortezaei, N. et al. Structure and function of enterotoxigenic Escherichia coli fimbriae from differing assembly pathways. Mol. Microbiol. 95, 116â126 (2015).
Jain, N. & Chapman, M. R. Bacterial functional amyloids: order from disorder. Biochim. Biophys. Acta Proteins Proteom. 1867, 954â960 (2019).
Herbst, F. A. et al. Major proteomic changes associated with amyloid-induced biofilm formation in Pseudomonas aeruginosa PAO1. J. Proteome Res. 14, 72â81 (2015).
Taglialegna, A. et al. The biofilm-associated surface protein Esp of Enterococcus faecalis forms amyloid-like fibers. npj Biofilms Microbiomes 6, 15 (2020).
Singh, K. V., Nallapareddy, S. R. & Murray, B. E. Importance of the ebp (endocarditisand biofilm-associated pilus) locus in the pathogenesis of Enterococcus faecalis ascending urinary tract infection. J. Infect. Dis. 195, 1671â1677 (2007).
Craig, L., Forest, K. T. & Maier, B. Type IV pili: dynamics, biophysics and functional consequences. Nat. Rev. Microbiol. 17, 429â440 (2019).
Servin, A. L. Pathogenesis of human diffusely adhering Escherichia coli expressing Afa/Dr adhesins (Afa/Dr DAEC): current insights and future challenges. Clin. Microbiol. Rev. 27, 823â869 (2014).
Alamuri, P. et al. Adhesion, invasion and agglutination mediated by two trimeric autotransporters in the human uropathogen Proteus mirabilis. Infect. Immun. 78, 4882â4894 (2010).
Shea, A. E., Stocki, J. A., Himpsl, S. D., Smith, S. N. & Mobley, H. L. T. Loss of an intimin-like protein encoded on a uropathogenic E. coli pathogenicity island reduces inflammation and affects interactions with the urothelium. Infect. Immun. https://doi.org/10.1128/IAI.00275-21 (2021).
Foster, T. J. The MSCRAMM family of cell-wall-anchored surface proteins of Gram positive cocci. Trends Microbiol. 27, 927â941 (2019).
King, N. P. et al. UafB is a serine-rich repeat adhesin of Staphylococcus saprophyticus that mediates binding to fibronectin, fibrinogen and human uroepithelial cells. Microbiology 157, 1161â1175 (2011).
Hell, W., Meyer, H. G. W. & Gatermann, S. G. Cloning of aas, a gene encoding a Staphylococcus saprophyticus surface protein with adhesive and autolytic properties. Mol. Microbiol. 29, 871â881 (1998).
Nesta, B. et al. FdeC, a novel broadly conserved Escherichia coli adhesin eliciting protection against urinary tract infections. mBio 3, e00010âe00012 (2012).
Marrs, C. F. et al. Variations in 10 putative uropathogen virulence genes among urinary, faecal and peri-urethral Escherichia coli. J. Med. Microbiol. 51, 138â142 (2002).
Wu, X. R., Sun, T. T. & Medina, J. J. In vitro binding of type 1-fimbriated Escherichia coli to uroplakins Ia and Ib: relation to urinary tract infections. Proc. Natl Acad. Sci. USA 93, 9630â9635 (1996).
Eto, D. S., Jones, T. A., Sundsbak, J. L. & Mulvey, M. A. Integrin-mediated host cell invasion by type 1-piliated uropathogenic Escherichia coli. PLoS Pathog. 3, e100 (2007).
Sauer, M. M. et al. Catch-bond mechanism of the bacterial adhesin FimH. Nat. Commun. 7, 10738 (2016).
Bäckhed, F. et al. Identification of target tissue glycosphingolipid receptors for uropathogenic, F1C-fimbriated Escherichia coli and its role in mucosal inflammation. J. Biol. Chem. 277, 18198â18205 (2002).
Legros, N. et al. PapG subtype-specific binding characteristics of Escherichia coli towards globo-series glycosphingolipids of human kidney and bladder uroepithelial cells. Glycobiology 29, 789â802 (2019).
Spurbeck, R. R. et al. Fimbrial profiles predict virulence of uropathogenic Escherichia coli strains: contribution of Ygi and Yad fimbriae. Infect. Immun. 79, 4753â4763 (2011).
Li, X. et al. Compounds targeting YadC of uropathogenic Escherichia coli and its host receptor annexin A2 decrease bacterial colonization in bladder. eBioMedicine 50, 23â33 (2019).
Luna-Pineda, V. M. et al. Curli of uropathogenic Escherichia coli enhance urinary tract colonization as a fitness factor. Front. Microbiol. 10, 2063 (2019).
Valle, J. et al. UpaG, a new member of the trimeric autotransporter family of adhesins in uropathogenic Escherichia coli. J. Bacteriol. 190, 4147â4161 (2008).
Jansen, A. M., Lockatell, V., Johnson, D. E. & Mobley, H. L. T. Mannose-resistant Proteus-like fimbriae are produced by most Proteus mirabilis strains infecting the urinary tract, dictate the in vivo localization of bacteria, and contribute to biofilm formation. Infect. Immun. 72, 7294â7305 (2004).
Kuroda, M. et al. Whole genome sequence of Staphylococcus saprophyticus reveals the pathogenesis of uncomplicated urinary tract infection. Proc. Natl Acad. Sci. USA 102, 13272â13277 (2005).
Nielsen, H. V. et al. The metal ion-dependent adhesion site motif of the Enterococcus faecalis EbpA pilin mediates pilus function in catheter-associated urinary tract infection. mBio 3, e00177-12 (2012).
Shankar, N. et al. Role of Enterococcus faecalis surface protein Esp in the pathogenesis of ascending urinary tract infection. Infect. Immun. 69, 4366â4372 (2001).
Meyer, H. W., Wengler-Becker, U. & Gatermann, S. G. The hemagglutinin of Staphylococcus saprophyticus is a major adhesin for uroepithelial cells. Infect. Immun. 64, 3893â3896 (1996).
Kreft, B. et al. S fimbriae of uropathogenic Escherichia coli bind to primary human renal proximal tubular epithelial cells but do not induce expression of intercellular adhesion molecule 1. Infect. Immun. 63, 3235â3238 (1995).
Battaglioli, E. J. et al. Identification and characterization of a phase-variable element that regulates the autotransporter upae in uropathogenic Escherichia coli. mBio 9, e01360-18 (2018).
Selvarangan, R. et al. Interaction of Dr adhesin with collagen type IV is a critical step in Escherichia coli renal persistence. Infect. Immun. 72, 4827â4835 (2004).
Goluszko, P. et al. Dr operon-associated invasiveness of Escherichia coli from pregnant patients with pyelonephritis. Infect. Immun. 69, 4678â4680 (2001).
Vigil, P. D. et al. The repeat-in-toxin family member TosA mediates adherence of uropathogenic Escherichia coli and survival during bacteremia. Infect. Immun. 80, 493â505 (2012).
Snyder, J. A. et al. Transcriptome of uropathogenic Escherichia coli during urinary tract infection. Infect. Immun. 72, 6373â6381 (2004).
Melican, K. et al. Uropathogenic Escherichia coli P and type 1 fimbriae act in synergy in a living host to facilitate renal colonization leading to nephron obstruction. PLoS Pathog. 7, e1001298 (2011).
McLellan, L. K. et al. A host receptor enables type 1 pilus-mediated pathogenesis of Escherichia coli pyelonephritis. PLoS Pathog. 17, e1009314 (2021).
Struve, C., Bojer, M. & Krogfelt, K. A. Identification of a conserved chromosomal region encoding Klebsiella pneumoniae type 1 and type 3 fimbriae and assessment of the role of fimbriae in pathogenicity. Infect. Immun. 77, 5016â5024 (2009).
Rosen, D. A. et al. Molecular variations in Klebsiella pneumoniae and Escherichia coli FimH affect function and pathogenesis in the urinary tract. Infect. Immun. 76, 3346â3356 (2008).
Pellegrino, R., Scavone, P., Umpiérrez, A., Maskell, D. J. & Zunino, P. Proteus mirabilis uroepithelial cell adhesin (UCA) fimbria plays a role in the colonization of the urinary tract. Pathog. Dis. 67, 104â107 (2013).
Askarian, F. et al. Serineaspartate repeat protein D increases Staphylococcus aureus virulence and survival in blood. Infect. Immun. 85, e00559-16 (2017).
Cheng, A. G. et al. Genetic requirements for Staphylococcus aureus abscess formation and persistence in host tissues. FASEB J. 23, 3393â3404 (2009).
Sava, I. G. et al. Enterococcal surface protein contributes to persistence in the host but is not a target of opsonic and protective antibodies in Enterococcus faecium infection. J. Med. Microbiol. 59, 1001â1004 (2010).
Lebreton, F. et al. ace, which encodes an adhesin in Enterococcus faecalis, is regulated by Ers and is involved in virulence. Infect. Immun. 77, 2832â2839 (2009).
Torelli, R. et al. The PavA-like fibronectin-binding protein of Enterococcus faecalis, EfbA, is important for virulence in a mouse model of ascending urinary tract infection. J. Infect. Dis. 206, 952â960 (2012).
Sillanpää, J. et al. Contribution of individual Ebp pilus subunits of Enterococcus faecalis OG1RF to pilus biogenesis, biofilm formation and urinary tract infection. PLoS ONE 8, e68813 (2013).
Sokurenko, E. V., Courtney, H. S., Abraham, S. N., Klemm, P. & Hasty, D. L. Functional heterogeneity of type 1 fimbriae of Escherichia coli. Infect. Immun. 60, 4709â4719 (1992).
Burnham, M. J., Byun, C.-A. S. & Henderson, A. S. The bacterial amyloid curli is associated with urinary source bloodstream infection. PLoS ONE 9, 86009 (2014).
Allsopp, L. P. et al. Molecular characterization of UpaB and UpaC, two new autotransporter proteins of uropathogenic Escherichia coli CFT073. Infect. Immun. 80, 321â332 (2012).
Allsopp, L. P. et al. Functional heterogeneity of the UpaH autotransporter protein from uropathogenic Escherichia coli. J. Bacteriol. 194, 5769â5782 (2012).
Korhonen, T. K. et al. Escherichia coli fimbriae recognizing sialyl galactosides. J. Bacteriol. 159, 762â766 (1984).
Hendrickx, A. P. A. et al. SgrA, a nidogen-binding LPXTG surface adhesin implicated in biofilm formation, and EcbA, a collagen binding MSCRAMM, are two novel adhesins of hospital-acquired Enterococcus faecium. Infect. Immun. 77, 5097â5106 (2009).
Walker, J. N. et al. Catheterization alters bladder ecology to potentiate Staphylococcus aureus infection of the urinary tract. Proc. Natl Acad. Sci. USA 114, E8721âE8730 (2017).
Kline, K. A. et al. Characterization of a novel murine model of Staphylococcus saprophyticus urinary tract infection reveals roles for Ssp and SdrI in virulence. Infect. Immun. 78, 1943â1951 (2010).
Russell, S. K. et al. Uropathogenic Escherichia coli infection induced epithelial trained immunity impacts urinary tract disease outcome. Nat. Microbiol. 8, 875â888 (2023).
Conover, M. S. et al. Inflammation-induced adhesin-receptor interaction provides a fitness advantage to uropathogenic E. coli during chronic infection accession numbers 5LNG 5LNE. Cell Host Microbe 20, 482â492 (2016).
Kalas, V. et al. Structure-based discovery of glycomimetic FmlH ligands as inhibitors of bacterial adhesion during urinary tract infection. Proc. Natl Acad. Sci. USA 115, E2819âE2828 (2018).
Jiang, W., Ubhayasekera, W., Pearson, M. M. & Knight, S. D. Structures of two fimbrial adhesins, AtfE and UcaD, from the uropathogen Proteus mirabilis. Acta Crystallogr. D 74, 1053â1062 (2018).
Scavone, P. et al. Fimbriae have distinguishable roles in Proteus mirabilis biofilm formation. Pathog. Dis. 74, ftw033 (2016).
Sokolowska-Köhler, W. et al. Occurrence of S and F1C/S-related fimbrial determinants and their expression in Escherichia coli strains isolated from extraintestinal infections. FEMS Immunol. Med. Microbiol. 18, 1â6 (1997).
Nallapareddy, S. R. et al. Conservation of Ebp-type pilus genes among enterococci and demonstration of their role in adherence of Enterococcus faecalis to human platelets. Infect. Immun. 79, 2911â2920 (2011).
Heikens, E. et al. Contribution of the enterococcal surface protein Esp to pathogenesis of Enterococcus faecium endocarditis. Microbes Infect. 13, 1185â1190 (2011).
Singh, K. V., La Rosa, S. L., Somarajan, S. R., Roh, J. H. & Murray, B. E. The fibronectinbinding protein EfbA contributes to pathogenesis and protects against infective endocarditis caused by Enterococcus faecalis. Infect. Immun. 83, 4487â4494 (2015).
Wurpel, D. J., Beatson, S. A., Totsika, M., Petty, N. K. & Schembri, M. A. Chaperone-usher fimbriae of Escherichia coli. PLoS ONE 8, e52835 (2013).
Morita, Y. et al. A high-resolution typing assay for uropathogenic Escherichia coli based on fimbrial diversity. Front. Microbiol. 7, 623 (2016).
Alcántar-Curiel, M. D. et al. Multi-functional analysis of Klebsiella pneumoniae fimbrial types in adherence and biofilm formation. Virulence 4, 129â138 (2013).
Gomes, A. Ã. I. et al. Functional insights from KpfR, a new transcriptional regulator of fimbrial expression that is crucial for Klebsiella pneumoniae pathogenicity. Front. Microbiol. 11, 3347 (2021).
Wu, C. C., Huang, Y. J., Fung, C. P. & Peng, H. L. Regulation of the Klebsiella pneumoniae Kpc fimbriae by the site-specific recombinase KpcI. Microbiology 156, 1983â1992 (2010).
Vargas, J. M. et al. Virulence factors and clinical patterns of multiple-clone hypermucoviscous KPC-2 producing K. pneumoniae. Heliyon 5, e01829 (2019).
Debnath, I. et al. MrpJ directly regulates Proteus mirabilis virulence factors, including fimbriae and type VI secretion, during urinary tract infection. Infect. Immun. 86, e00388-18 (2018).
Kreft, B., Marre, R., Schramm, U. & Wirth, R. Aggregation substance of Enterococcus faecalis mediates adhesion to cultured renal tubular cells. Infect. Immun. 60, 25â30 (1992).
Sillanpää, J. et al. Identification and phenotypic characterization of a second collagen adhesin, Scm, and genome-based identification and analysis of 13 other predicted MSCRAMMs, including four distinct pilus loci, in Enterococcus faecium. Microbiology 154, 3199â3211 (2008).
Geraci, J. et al. The Staphylococcus aureus extracellular matrix protein (Emp) has a fibrous structure and binds to different extracellular matrices. Sci. Rep. 7, 13665 (2017).
Geisbrecht, B. V., Hamaoka, B. Y., Perman, B., Zemla, A. & Leahy, D. J. The crystal structures of EAP domains from Staphylococcus aureus reveal an unexpected homology to bacterial superantigens. J. Biol. Chem. 280, 17243â17250 (2005).
Harraghy, N. et al. The adhesive and immunodulating properties of the multifunctional Staphylococcus aureus protein Eap. Microbiology 149, 2701â2707 (2003).
Ulett, G. C. et al. Group B Streptococcus (GBS) urinary tract infection involves binding of GBS to bladder uroepithelium and potent but GBS-specific induction of interleukin 1a. J. Infect. Dis. 201, 866â870 (2010).
Springman, A. C. et al. Pilus distribution among lineages of Group B Streptococcus: an evolutionary and clinical perspective. BMC Microbiol. 14, 159 (2014).
Reichhardt, C. et al. The versatile Pseudomonas aeruginosa biofilm matrix protein CdrA promotes aggregation through different extracellular exopolysaccharide interactions. J. Bacteriol. 202, e00216-20 (2020).
Cole, S. J. & Lee, V. T. Cyclic di-GMP signaling contributes to Pseudomonas aeruginosa-mediated catheter-associated urinary tract infection. J. Bacteriol. 198, 91â97 (2016).
Tielen, P. et al. Genotypic and phenotypic characterization of Pseudomonas aeruginosa isolates from urinary tract infections. Int. J. Med. Microbiol. 301, 282â292 (2011).
Emam, A. et al. Laboratory and clinical Pseudomonas aeruginosa strains do not bind glycosphingolipids in vitro or during type IV pili-mediated initial host cell attachment. Microbiology 152, 2789â2799 (2006).
Pearson, M. M. et al. Complete genome sequence of uropathogenic Proteus mirabilis, a master of both adherence and motility. J. Bacteriol. 190, 4027â4037 (2008).
Kulkarni, R. et al. Roles of putative type II secretion and type IV pilus systems in the virulence of uropathogenic Escherichia coli. PLoS ONE 4, e4752 (2009).
Subashchandrabose, S., Smith, S. N., Spurbeck, R. R., Kole, M. M. & Mobley, H. L. T. Genome-wide detection of fitness genes in uropathogenic Escherichia coli during systemic infection. PLoS Pathog. 9, e1003788 (2013).
Luterbach, C. L., Forsyth, V. S., Engstrom, M. D. & Mobley, H. L. T. TosR-mediated regulation of adhesins and biofilm formation in uropathogenic Escherichia coli. mSphere 3, e00222-18 (2018).
Hadjifrangiskou, M. et al. Transposon mutagenesis identifies uropathogenic Escherichia coli biofilm factors. J. Bacteriol. 194, 6195â6205 (2012).
Ong, C. L. Y. et al. Identification of type 3 fimbriae in uropathogenic Escherichia coli reveals a role in biofilm formation. J. Bacteriol. 190, 1054â1063 (2008).
Zalewska-Piatek, B., Wilkanowicz, S., Bruździak, P., Piatek, R. & Kur, J. Biochemical characteristic of biofilm of uropathogenic Escherichia coli Dr+ strains. Microbiol. Res. 168, 367â378 (2013).
Kjñrgaard, K., Schembri, M. A., Ramos, C., Molin, S. & Klemm, P. Antigen 43 facilitates formation of multispecies biofilms. Environ. Microbiol. 2, 695â702 (2000).
Schroll, C., Barken, K. B., Krogfelt, K. A. & Struve, C. Role of type 1 and type 3 fimbriae in Klebsiella pneumoniae biofilm formation. BMC Microbiol. 10, 179 (2010).
Armbruster, C. E. et al. Genome-wide transposon mutagenesis of Proteus mirabilis: essential genes, fitness factors for catheter-associated urinary tract infection, and the impact of polymicrobial infection on fitness requirements. PLoS Pathog. 13, e1006434 (2017).
Tendolkar, P. M., Baghdayan, A. S., Gilmore, M. S. & Shankar, N. Enterococcal surface protein, Esp, enhances biofilm formation by Enterococcus faecalis. Infect. Immun. 72, 6032â6039 (2004).
Montealegre, M. C. et al. Role of the Emp pilus subunits of Enterococcus faecium in biofilm formation, adherence to host extracellular matrix components, and experimental infection. Infect. Immun. 84, 1491â1500 (2016).
Kai-Larsen, Y. et al. Uropathogenic Escherichia coli modulates immune responses and its curli fimbriae interact with the antimicrobial peptide LL-37. PLoS Pathog. 6, e1001010 (2010).
Zeng, G. et al. Functional bacterial amyloid increases Pseudomonas biofilm hydrophobicity and stiffness. Front. Microbiol. 6, 1099 (2015).
Cucarella, C. et al. Expression of the biofilm-associated protein interferes with host protein receptors of Staphylococcus aureus and alters the infective process. Infect. Immun. 70, 3180â3186 (2002).
Schembri, M. A. & Klemm, P. Biofilm formation in a hydrodynamic environment by novel FimH variants and ramifications for virulence. Infect. Immun. 69, 1322â1328 (2001).
Flores-Mireles, A. L., Pinkner, J. S., Caparon, M. G. & Hultgren, S. J. EbpA vaccine antibodies block binding of Enterococcus faecalis to fibrinogen to prevent catheter associated bladder infection in mice. Sci. Transl. Med. 6, 254ra127 (2014).
Flores-Mireles, A. L. et al. Antibody-based therapy for enterococcal catheter associated urinary tract infections. mBio 7, e01653-16 (2016).
Merino, N. et al. Protein A-mediated multicellular behavior in Staphylococcus aureus. J. Bacteriol. 191, 832â843 (2009).
Wang, H., Min, G., Glockshuber, R., Sun, T. T. & Kong, X. P. Uropathogenic E. coli adhesin-induced host cell receptor conformational changes: implications in transmembrane signaling transduction. J. Mol. Biol. 392, 352â361 (2009).
Martinez, J. J., Mulvey, M. A., Schilling, J. D., Pinkner, J. S. & Hultgren, S. J. Type 1 pilus-mediated bacterial invasion of bladder epithelial cells. EMBO J. 19, 2803â2812 (2000).
Chen, S. L. et al. Positive selection identifies an in vivo role for FimH during urinary tract infection in addition to mannose binding. Proc. Natl Acad. Sci. USA 106, 22439â22444 (2009).
Wright, K. J., Seed, P. C. & Hultgren, S. J. Development of intracellular bacterial communities of uropathogenic Escherichia coli depends on type 1 pili. Cell. Microbiol. 9, 2230â2241 (2007).
Flores, C. et al. A human urothelial microtissue model reveals shared colonization and survival strategies between uropathogens and commensals. Sci. Adv. 9, eadi9834 (2023).
Anderson, G. G. et al. Intracellular bacterial biofilm-like pods in urinary tract infections. Science 301, 105â107 (2003).
Jouve, M. et al. Adhesion to and invasion of HeLa cells by pathogenic Escherichia coli carrying the afa-3 gene cluster are mediated by the AfaE and AfaD proteins, respectively. Infect. Immun. 65, 4082â4089 (1997).
Plançon, L. et al. Recognition of the cellular β1-chain integrin by the bacterial AfaD invasin is implicated in the internalization of afa-expressing pathogenic Escherichia coli strains. Cell. Microbiol. 5, 681â693 (2003).
Garcia, M. I., Gounon, P., Courcoux, P., Labigne, A. & Le Bouguénec, C. The afimbrial adhesive sheath encoded by the afa-3 gene cluster of pathogenic Escherichia coli is composed of two adhesins. Mol. Microbiol. 19, 683â693 (1996).
Das, M. et al. Hydrophilic domain II of Escherichia coli Dr fimbriae facilitates cell invasion. Infect. Immun. 73, 6119â6126 (2005).
Rosen, D. A. et al. Utilization of an intracellular bacterial community pathway in Klebsiella pneumoniae urinary tract infection and the effects of FimK on type 1 pilus expression. Infect. Immun. 76, 3337â3345 (2008).
Thumbikat, P. et al. Bacteria-induced uroplakin signaling mediates bladder response to infection. PLoS Pathog. 5, e1000415 (2009).
Scavone, P., Villar, S., Umpiérrez, A. & Zunino, P. Role of Proteus mirabilis MR/P fimbriae and flagella in adhesion, cytotoxicity and genotoxicity induction in T24 and Vero cells. Pathog. Dis. 73, ftv017 (2015).
Zalewska-PiÄ tek, B. et al. A shear stress micromodel of urinary tract infection by the Escherichia coli producing Dr adhesin. PLoS Pathog. 16, e1008247 (2020).
Fexby, S. et al. Biological Trojan horse: antigen 43 provides specific bacterial uptake and survival in human neutrophils. Infect. Immun. 75, 30â34 (2007).
Nallapareddy, S. R., Singh, K. V., Sillanpää, J., Zhao, M. & Murray, B. E. Relative contributions of Ebp pili and the collagen adhesin ace to host extracellular matrix protein adherence and experimental urinary tract infection by Enterococcus faecalis OG1RF. Infect. Immun. 79, 2901â2910 (2011).
Eisenbeis, J. et al. The Staphylococcus aureus extracellular adherence protein Eap is a DNA binding protein capable of blocking neutrophil extracellular trap formation. Front. Cell. Infect. Microbiol. 8, 235 (2018).
Russell, C. W. et al. Context-dependent requirements for FimH and other canonical virulence factors in gut colonization by extraintestinal pathogenic Escherichia coli. Infect. Immun. 86, e00746-17 (2018).
Spaulding, C. N. et al. Selective depletion of uropathogenic E. coli from the gut by a FimH antagonist. Nature 546, 528â532 (2017).
Hancock, S. J. et al. Ucl fimbriae regulation and glycan receptor specificity contribute to gut colonisation by extra-intestinal pathogenic Escherichia coli. PLoS Pathog. 18, e1010582 (2022).
Waters, C. M. et al. An amino-terminal domain of Enterococcus faecalis aggregation substance is required for aggregation, bacterial internalization by epithelial cells and binding to lipoteichoic acid. Mol. Microbiol. 52, 1159â1171 (2004).
Johnson, J. R., Clabots, C., Hirt, H., Waters, C. & Dunny, G. Enterococcal aggregation substance and binding substance are not major contributors to urinary tract colonization by Enterococcus faecalis in a mouse model of ascending unobstructed urinary tract infection. Infect. Immun. 72, 2445â2448 (2004).
Song, J., Bishop, B. L., Li, G., Duncan, M. J. & Abraham, S. N. TLR4-initiated and cAMP mediated abrogation of bacterial invasion of the bladder. Cell Host Microbe 1, 287â298 (2007).
Song, J. et al. TLR4-mediated expulsion of bacteria from infected bladder epithelial cells. Proc. Natl Acad. Sci. USA 106, 14966â14971 (2009).
Habibi, M., Reza, M., Karam, A. & Bouzari, S. In silico study of toll-like receptor 4 binding site of FimH from uropathogenic Escherichia coli. J. Med. Microbiol. Infect. Dis. 2, 35â39 (2014).
Hedlund, M., Svensson, M., Nilsson, Ã ., Duan, R. D. & Svanborg, C. Role of the ceramide-signaling pathway in cytokine responses to P-fimbriated Escherichia coli. J. Exp. Med. 183, 1037â1044 (1996).
Hedlund, M. et al. Type 1 fimbriae deliver an LPS- and TLR4-dependent activation signal to CD14-negative cells. Mol. Microbiol. 39, 542â552 (2001).
Weiss, G. L. et al. Architecture and function of human uromodulin filaments in urinary tract infections. Science 369, 1005â1010 (2020).
Mo, L. et al. Ablation of the Tamm-Horsfall protein gene increases susceptibility of mice to bladder colonization by type 1-fimbriated Escherichia coli. Am. J. Physiol. Ren. Physiol. 286, F795âF802 (2004).
Harjai, K., Mittal, R., Chhibber, S. & Sharma, S. Contribution of Tamm-Horsfall protein to virulence of Pseudomonas aeruginosa in urinary tract infection. Microbes Infect. 7, 132â137 (2004).
Wold, A. E. et al. Secretory immunoglobulin A carries oligosaccharide receptors for Escherichia coli type 1 fimbrial lectin. Infect. Immun. 58, 3073â3077 (1990).
Trinchieri, A. et al. Secretory immunoglobulin A and inhibitory activity of bacterial adherence to epithelial cells in urine from patients with urinary tract infections. Urol. Res. 18, 305â308 (1990).
Svensson, L., Poljakovic, M., Demirel, I., Sahlberg, C. & Persson, K. Host-derived nitric oxide and its antibacterial effects in the urinary tract. Adv. Microb. Physiol. 73, 1â62 (2018).
Fang, L. et al. Epithelial invasion by Escherichia coli bearing Dr fimbriae is controlled by nitric oxide-regulated expression of CD55. Infect. Immun. 72, 2907â2914 (2004).
Poljakovic, M. & Persson, K. Urinary tract infection in iNOS-deficient mice with focus on bacterial sensitivity to nitric oxide. Am. J. Physiol. Ren. Physiol. 284, F22âF31 (2003).
Salminen, A. et al. Inhibition of P-fimbriated Escherichia coli adhesion by multivalent galabiose derivatives studied by a live-bacteria application of surface plasmon resonance. J. Antimicrob. Chemother. 60, 495â501 (2007).
Samanta, P. & Doerksen, R. J. Identifying FmlH lectin-binding small molecules for the prevention of Escherichia coli-induced urinary tract infections using hybrid fragment based design and molecular docking. Comput. Biol. Med. 163, 107072 (2023).
Greene, S. E. et al. Pilicide ec240 disrupts virulence circuits in uropathogenic Escherichia coli. mBio 5, F22âF31 (2014).
Piatek, R. et al. Pilicides inhibit the FGL chaperone/usher assisted biogenesis of the Dr fimbrial polyadhesin from uropathogenic Escherichia coli. BMC Microbiol. 13, 131 (2013).
Bleem, A. et al. Designed α-sheet peptides disrupt uropathogenic E. coli biofilms rendering bacteria susceptible to antibiotics and immune cells. Sci. Rep. 13, 9272 (2023).
Cegelski, L. et al. Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation. Nat. Chem. Biol. 5, 913â919 (2009).
Mortezaei, N., Singh, B., Bullitt, E., Uhlin, B. E. & Andersson, M. P-fimbriae in the presence of anti-PapA antibodies: new insight of antibodies action against pathogens. Sci. Rep. 3, 3393 (2013).
Thankavel, K. et al. Localization of a domain in the FimH adhesin of Escherichia coli type 1 fimbriae capable of receptor recognition and use of a domain-specific antibody to confer protection against experimental urinary tract infection. J. Clin. Invest. 100, 1123â1136 (1997).
Bahrani, F. K., Johnson, D. E., Robbins, D. & Mobley, H. L. T. Proteus mirabilis flagella and MR/P fimbriae: isolation, purification, N-terminal analysis, and serum antibody response following experimental urinary tract infection. Infect. Immun. 59, 3574â3580 (1991).
OâBrien, V. P., Hannan, T. J., Nielsen, H. V. & Hultgren, S. J. Drug and vaccine development for the treatment and prevention of urinary tract infections. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.UTI-0013-2012 (2016).
Langermann, S. et al. Prevention of mucosal Escherichia coli infection by FimH adhesin-based systemic vaccination. Science 276, 607â611 (1997).
Roberts, J. A. et al. Antibody responses and protection from pyelonephritis following vaccination with purified Escherichia coli PapDG protein. J. Urol. 171, 1682â1685 (2004).
Schmidt, G., Hacker, J., Wood, G. & Marre, R. Oral vaccination of rats with live avirulent Salmonella derivatives expressing adhesive fimbrial antigens of uropathogenic Escherichia coli. FEMS Microbiol. Lett. 47, 229â236 (1989).
Goluszko, P. et al. Vaccination with purified Dr fimbriae reduces mortality associated with chronic urinary tract infection due to Escherichia coli bearing Dr adhesin. Infect. Immun. 73, 627â631 (2005).
Xing, Y. et al. Broad protective vaccination against systemic Escherichia coli with autotransporter antigens. PLoS Pathog. 19, e1011082 (2023).
Choubini, E. et al. A novel multi-peptide subunit vaccine admixed with AddaVax adjuvant produces significant immunogenicity and protection against Proteus mirabilis urinary tract infection in mice model. Mol. Immunol. 96, 88â97 (2018).
Habibi, M. et al. Intranasal immunization with fusion protein MrpH·FimH and MPL adjuvant confers protection against urinary tract infections caused by uropathogenic Escherichia coli and Proteus mirabilis. Mol. Immunol. 64, 285â294 (2015).
Scavone, P., Sosa, V., Pellegrino, R., Galvalisi, U. & Zunino, P. Mucosal vaccination of mice with recombinant Proteus mirabilis structural fimbrial proteins. Microbes Infect. 6, 853â860 (2004).
RamÃrez Sevilla, C., Gómez Lanza, E., Manzanera, J. L., MartÃn, J. A. R. & Sanz, M. Ã. B. Active immunoprophyilaxis with Uromune® decreases the recurrence of urinary tract infections at three and six months after treatment without relevant secondary effects. BMC Infect. Dis. 19, 901 (2019).
Kochiashvili, D., Khuskivadze, A., Kochiashvili, G., Koberidze, G. & Kvakhajelidze, V. Role of the bacterial vaccine Solco-Urovac® in treatment and prevention of recurrent urinary tract infections of bacterial origin. Georgian Med. News 11, 16 (2014).
Nestler, S. et al. Prospective multicentre randomized double-blind placebo-controlled parallel group study on the efficacy and tolerability of StroVac® in patients with recurrent symptomatic uncomplicated bacterial urinary tract infections. Int. Urol. Nephrol. 55, 9â16 (2023).
Brodie, A., El-Taji, O., Jour, I., Foley, C. & Hanbury, D. A retrospective study of immunotherapy treatment with uro-vaxom (OM-89r) for prophylaxis of recurrent urinary tract infections. Curr. Urol 14, 130â134 (2020).
Kelly, S. H. et al. A sublingual nanofiber vaccine to prevent urinary tract infections. Sci. Adv. 8, eabq4120 (2022).
Kawalec, A. & Zwolinska, D. Emerging role of microbiome in the prevention of urinary tract infections in children. Int. J. Mol. Sci. 23, 870 (2022).
Xia, J. Y. et al. Consumption of cranberry as adjuvant therapy for urinary tract infections in susceptible populations: a systematic review and meta-analysis with trial sequential analysis. PLoS ONE 16, e0256992 (2021).
Cohen, C. R. et al. Randomized trial of Lactin-V to prevent recurrence of bacterial vaginosis. N. Engl. J. Med. 382, 1906â1915 (2020).
Stapleton, A. E. et al. Randomized, placebo-controlled phase 2 trial of a Lactobacillus crispatus probiotic given intravaginally for prevention of recurrent urinary tract infection. Clin. Infect. Dis. 52, 1212â1217 (2011).
Klemm, P., Hancock, V. & Schembri, M. A. Mellowing out: adaptation to commensalism by Escherichia coli asymptomatic bacteriuria strain 83972. Infect. Immun. 75, 3688â3695 (2007).
Rudick, C. N., Taylor, A. K., Yaggie, R. E., Schaeffer, A. J. & Klumpp, D. J. Asymptomatic bacteriuria Escherichia coli are live biotherapeutics for UTI. PLoS One 9, e109321 (2014).
Neugent, M. L. et al. Recurrent urinary tract infection and estrogen shape the taxonomic ecology and function of the postmenopausal urogenital microbiome. Cell Rep. Med. 3, 100753 (2022).
Chegini, Z. et al. Bacteriophage therapy for inhibition of multi drugâresistant uropathogenic bacteria: a narrative review. Ann. Clin. Microbiol. Antimicrob. 20, 30 (2021).
Liao, K. S., Lehman, S. M., Tweardy, D. J., Donlan, R. M. & Trautner, B. W. Bacteriophages are synergistic with bacterial interference for the prevention of Pseudomonas aeruginosa biofilm formation on urinary catheters. J. Appl. Microbiol. 113, 1530â1539 (2012).
Gupta, S. et al. Targeting of uropathogenic Escherichia coli papG gene using CRISPR-dot nanocomplex reduced virulence of UPEC. Sci. Rep. 11, 17801 (2021).
La Bella, A. A. et al. The catheterized bladder environment promotes Efg1- and Als1-dependent Candida albicans infection. Sci. Adv. 9, eade7689 (2023).
Snyder, J. A. et al. Coordinate expression of fimbriae in uropathogenic Escherichia coli. Infect. Immun. 73, 7588â7596 (2005).
Murray, B. O. et al. Recurrent urinary tract infection: a mystery in search of better model systems. Front. Cell. Infect. Microbiol. 11, 691210 (2021).
Struve, C., Bojer, M. & Krogfelt, K. A. Characterization of Klebsiella pneumoniae type 1 fimbriae by detection of phase variation during colonization and infection and impact on virulence. Infect. Immun. 76, 4055â4065 (2008).
Bijlsma, I. G. W., Van Dijk, L., Kusters, J. G. & Gaastra, W. Nucleotide sequences of two fimbrial major subunit genes, pmpA and ucaA, from canine-uropat hogenic Proteus mirabilis strains. Microbiology 141, 1349â1357 (1995).
Hancock, V. & Klemm, P. Global gene expression profiling of asymptomatic bacteriuria Escherichia coli during biofilm growth in human urine. Infect. Immun. 75, 966â976 (2007).
Klemm, P., Christiansen, G., Kreft, B., Marre, R. & Bergman, H. Reciprocal exchange of minor components of type 1 and F1C fimbriae results in hybrid organelles with changed receptor specificities. J. Bacteriol. 176, 2227â2234 (1994).
Khan, A. S. et al. Functional analysis of the minor subunits of S fimbrial adhesin (SfaI) in pathogenic Escherichia coli. Mol. Gen. Genet. 263, 96â105 (2000).
Rêgo, A. T. et al. Crystal structure of the MrkD1P receptor binding domain of Klebsiella pneumoniae and identification of the human collagen V binding interface. Mol. Microbiol. 86, 882â893 (2012).
Jiang, W. et al. MrpH, a new class of metal-binding adhesin, requires zinc to mediate biofilm formation. PLoS Pathog. 16, e1008707 (2020).
Irvin, R. T. et al. Characterization of the Pseudomonas aeruginosa pilus adhesin: confirmation that the pilin structural protein subunit contains a human epithelial cellbinding domain. Infect. Immun. 57, 3720â3726 (1989).
Johnson, M. D. L. et al. Pseudomonas aeruginosa PilY1 binds integrin in an RGD- and calcium-dependent manner. PLoS ONE 6, e29629 (2011).
La Rosa, S. L., Montealegre, M. C., Singh, K. V. & Murray, B. E. Enterococcus faecalis Ebp pili are important for cell-cell aggregation and intraspecies gene transfer. Microbiology 162, 798â802 (2016).
Paxman, J. J. et al. Unique structural features of a bacterial autotransporter adhesin suggest mechanisms for interaction with host macromolecules. Nat. Commun. 10, 1967 (2019).
Ulett, G. C. et al. Functional analysis of antigen 43 in uropathogenic Escherichia coli reveals a role in long-term persistence in the urinary tract. Infect. Immun. 75, 3233â3244 (2007).
Heras, B. et al. The antigen 43 structure reveals a molecular Velcro-like mechanism of autotransporter-mediated bacterial clumping. Proc. Natl Acad. Sci. USA 111, 457â462 (2014).
Xicohtencatl-Cortes, J. et al. Uropathogenic Escherichia coli strains harboring tosA gene were associated to high virulence genes and a multidrug-resistant profile. Microb. Pathog. 134, 103593 (2019).
Hashem, Y. A., Abdelrahman, K. A. & Aziz, R. K. Phenotype-genotype correlations and distribution of key virulence factors in Enterococcus faecalis isolated from patients with urinary tract infections. Infect. Drug Resist. 14, 1713â1723 (2021).
Sakinç, T., Kleine, B., Michalski, N., Kaase, M. & Gatermann, S. G. SdrI of Staphylococcus saprophyticus is a multifunctional protein: localization of the fibronectin-binding site. FEMS Microbiol. Lett. 301, 28â34 (2009).
Asadi, A., Razavi, S., Talebi, M. & Gholami, M. A review on anti-adhesion therapies of bacterial diseases. Infection 47, 13â23 (2019).
Allen, R. C., Popat, R., Diggle, S. P. & Brown, S. P. Targeting virulence: can we make evolution-proof drugs? Nat. Rev. Microbiol. 12, 300â308 (2014).
Abraham, J. M., Freitag, C. S., Clements, J. R. & Eisenstein, B. I. An invertible element of DNA controls phase variation of type 1 fimbriae of Escherichia coli. Proc. Natl Acad. Sci. USA 82, 5724â5727 (1985).
Roche, A. J., McFadden, J. P. & Owen, P. Antigen 43, the major phase-variable protein of the Escherichia coli outer membrane, can exist as a family of proteins encoded by multiple alleles. Microbiology 147, 161â169 (2001).
Khandige, S., Kronborg, T., Uhlin, B. E. & Møller-Jensen, J. sRNA-mediated regulation of P-fimbriae phase variation in uropathogenic Escherichia coli. PLoS Pathog. 11, e1005109 (2015).
Zhao, H., Li, X., Johnson, D. E., Blomfield, I. & Mobley, H. L. T. In vivo phase variation of MR/P fimbrial gene expression in Proteus mirabilis infecting the urinary tract. Mol. Microbiol. 23, 1009â1019 (1997).
Sokurenko, E. V. et al. Pathogenic adaptation of Escherichia coli by natural variation of the FimH adhesin. Proc. Natl Acad. Sci. USA 95, 8922â8926 (1998).
Schwartz, D. J. et al. Positively selected FimH residues enhance virulence during urinary tract infection by altering FimH conformation. Proc. Natl Acad. Sci. USA 110, 15530â15537 (2013).
Ageorges, V. et al. Differential homotypic and heterotypic interactions of antigen 43 (Ag43) variants in autotransporter-mediated bacterial autoaggregation. Sci. Rep. 9, 11100 (2019).
Klemm, P., Hjerrild, L., Gjermansen, M. & Schembri, M. A. Structure-function analysis of the self-recognizing Antigen 43 autotransporter protein from Escherichia coli. Mol. Microbiol. 51, 283â296 (2004).
Stephenson, S. A. M. & Brown, P. D. Epigenetic influence of dam methylation on gene expression and attachment in uropathogenic Escherichia coli. Front. Public Health 4, 131 (2016).
Rosen, D. A. et al. Klebsiella pneumoniae FimK promotes virulence in murine pneumonia. J. Infect. Dis. 213, 649â658 (2016).
Acknowledgements
C.F. is funded by the International Human Frontier Science Program Organization (HFSPO, ref. LT0017/2023-L).
Author information
Authors and Affiliations
Contributions
C.F. and J.L.R. conceptualized and wrote this Review. C.F. prepared the figures and tables.
Corresponding authors
Ethics declarations
Competing interests
C.F. declares no competing interests. J.R. is affiliated with AtoCap Ltd, a University College London spin-out company seeking novel cures for UTI.
Peer review
Peer review information
Nature Microbiology thanks Ana Flores-Mireles and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisherâs note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Flores, C., Rohn, J.L. Bacterial adhesion strategies and countermeasures in urinary tract infection. Nat Microbiol 10, 627â645 (2025). https://doi.org/10.1038/s41564-025-01926-8
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41564-025-01926-8


