Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Adjuvant IL-7 antagonizes multiple cellular and molecular inhibitory networks to enhance immunotherapies

A Corrigendum to this article was published on 01 July 2009

This article has been updated

Abstract

Identifying key factors that enhance immune responses is crucial for manipulating immunity to tumors. We show that after a vaccine-induced immune response, adjuvant interleukin-7 (IL-7) improves antitumor responses and survival in an animal model. The improved immune response is associated with increased IL-6 production and augmented T helper type 17 cell differentiation. Furthermore, IL-7 modulates the expression of two ubiquitin ligases: Casitas B-lineage lymphoma b (Cbl-b), a negative regulator of T cell activation, is repressed, and SMAD-specific E3 ubiquitin protein ligase-2 (Smurf2) is enhanced, which antagonizes transforming growth factor-β signaling. Notably, we show that although short term IL-7 therapy potently enhances vaccine-mediated immunity, in the absence of vaccination it is inefficient in promoting antitumor immune responses, despite inducing homeostatic proliferation of T cells. The ability of adjuvant IL-7 to antagonize inhibitory networks at the cellular and molecular level has major implications for immunotherapy in the treatment of tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: IL-7 prolongs survival, decreases tumor burden and enhances tumor T cell infiltration in vaccinated mice.
Figure 2: IL-7 enhances T cell effector function and NK cell numbers.
Figure 3: Serum cytokine levels in naive and LCMV-infected mice treated with PBS or IL-7.
Figure 4: IL-7 antagonizes inhibitory pathways and modulates Smurf2, Nedd4 and Cbl-b.
Figure 5: The presence of TH17 cells, the depletion of Treg cells or the absence of Cbl-b in T cells promotes an antitumor immune response.
Figure 6: IL-7 therapy enhances antitumor immune responses in DC and vaccinia vaccination models.

Similar content being viewed by others

Change history

  • 07 July 2009

    In the version of this article initially published, the two right histological sections in Figure 5a were duplicated in Figure 5b. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Prendergast, G.C. & Jaffee, E.M. Cancer immunologists and cancer biologists: why we didn't talk then but need to now. Cancer Res. 67, 3500–3504 (2007).

    Article  CAS  Google Scholar 

  2. Hanahan, D. Heritable formation of pancreatic beta-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature 315, 115–122 (1985).

    Article  CAS  Google Scholar 

  3. Ohashi, P.S. et al. Ablation of 'tolerance' and induction of diabetes by virus infection in viral antigen transgenic mice. Cell 65, 305–317 (1991).

    Article  CAS  Google Scholar 

  4. Speiser, D.E. et al. Self antigens expressed by solid tumors do not efficiently stimulate naive or activated T cells: implications for immunotherapy. J. Exp. Med. 186, 645–653 (1997).

    Article  CAS  Google Scholar 

  5. Pellegrini, M., Belz, G., Bouillet, P. & Strasser, A. Shutdown of an acute T cell immune response to viral infection is mediated by the proapoptotic Bcl-2 homology 3-only protein Bim. Proc. Natl. Acad. Sci. USA 100, 14175–14180 (2003).

    Article  CAS  Google Scholar 

  6. Strasser, A. & Pellegrini, M. T-lymphocyte death during shutdown of an immune response. Trends Immunol. 25, 610–615 (2004).

    Article  CAS  Google Scholar 

  7. Melchionda, F. et al. Adjuvant IL-7 or IL-15 overcomes immunodominance and improves survival of the CD8+ memory cell pool. J. Clin. Invest. 115, 1177–1187 (2005).

    Article  CAS  Google Scholar 

  8. Tripathi, P., Mitchell, T.C., Finkelman, F. & Hildeman, D.A. Cutting edge: limiting amounts of IL-7 do not control contraction of CD4+ T cell responses. J. Immunol. 178, 4027–4031 (2007).

    Article  CAS  Google Scholar 

  9. Fry, T.J. & Mackall, C.L. Interleukin-7: from bench to clinic. Blood 99, 3892–3904 (2002).

    Article  CAS  Google Scholar 

  10. Rosenberg, S.A. et al. IL-7 administration to humans leads to expansion of CD8+ and CD4+ cells but a relative decrease of CD4+ T-regulatory cells. J. Immunother. 29, 313–319 (2006).

    Article  CAS  Google Scholar 

  11. Aoki, T. et al. Expression of murine interleukin 7 in a murine glioma cell line results in reduced tumorigenicity in vivo. Proc. Natl. Acad. Sci. USA 89, 3850–3854 (1992).

    Article  CAS  Google Scholar 

  12. Cayeux, S., Beck, C., Aicher, A., Dorken, B. & Blankenstein, T. Tumor cells cotransfected with interleukin-7 and B7.1 genes induce CD25 and CD28 on tumor-infiltrating T lymphocytes and are strong vaccines. Eur. J. Immunol. 25, 2325–2331 (1995).

    Article  CAS  Google Scholar 

  13. Gattinoni, L. et al. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J. Exp. Med. 202, 907–912 (2005).

    Article  CAS  Google Scholar 

  14. Miller, P.W. et al. Intratumoral administration of adenoviral interleukin 7 gene-modified dendritic cells augments specific antitumor immunity and achieves tumor eradication. Hum. Gene Ther. 11, 53–65 (2000).

    Article  CAS  Google Scholar 

  15. Fry, T.J., Christensen, B.L., Komschlies, K.L., Gress, R.E. & Mackall, C.L. Interleukin-7 restores immunity in athymic T-cell–depleted hosts. Blood 97, 1525–1533 (2001).

    Article  CAS  Google Scholar 

  16. Oxenius, A., Bachmann, M.F., Zinkernagel, R.M. & Hengartner, H. Virus-specific MHC-class II–restricted TCR-transgenic mice: effects on humoral and cellular immune responses after viral infection. Eur. J. Immunol. 28, 390–400 (1998).

    Article  CAS  Google Scholar 

  17. Pircher, H., Burki, K., Lang, R., Hengartner, H. & Zinkernagel, R.M. Tolerance induction in double specific T-cell receptor transgenic mice varies with antigen. Nature 342, 559–561 (1989).

    Article  CAS  Google Scholar 

  18. Lynch, D.H. & Miller, R.E. Interleukin 7 promotes long-term in vitro growth of antitumor cytotoxic T lymphocytes with immunotherapeutic efficacy in vivo. J. Exp. Med. 179, 31–42 (1994).

    Article  CAS  Google Scholar 

  19. Nanjappa, S.G., Walent, J.H., Morre, M. & Suresh, M. Effects of IL-7 on memory CD8 T cell homeostasis are influenced by the timing of therapy in mice. J. Clin. Invest. 118, 1027–1039 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Harrington, L.E. et al. Interleukin 17–producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 6, 1123–1132 (2005).

    Article  CAS  Google Scholar 

  21. Langrish, C.L. et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 201, 233–240 (2005).

    Article  CAS  Google Scholar 

  22. Park, H. et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 6, 1133–1141 (2005).

    Article  CAS  Google Scholar 

  23. Ruprecht, C.R. et al. Coexpression of CD25 and CD27 identifies FoxP3+ regulatory T cells in inflamed synovia. J. Exp. Med. 201, 1793–1803 (2005).

    Article  CAS  Google Scholar 

  24. Gajewski, T.F. et al. Immune resistance orchestrated by the tumor microenvironment. Immunol. Rev. 213, 131–145 (2006).

    Article  CAS  Google Scholar 

  25. Kryczek, I. et al. B7–H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. J. Exp. Med. 203, 871–881 (2006).

    Article  CAS  Google Scholar 

  26. Martin-Orozco, N. & Dong, C. New battlefields for costimulation. J. Exp. Med. 203, 817–820 (2006).

    Article  CAS  Google Scholar 

  27. Muller, A.J. & Scherle, P.A. Targeting the mechanisms of tumoral immune tolerance with small-molecule inhibitors. Nat. Rev. Cancer 6, 613–625 (2006).

    Article  CAS  Google Scholar 

  28. Zou, W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat. Rev. Cancer 5, 263–274 (2005).

    Article  CAS  Google Scholar 

  29. Huang, M. et al. IL-7 inhibits fibroblast TGF-β production and signaling in pulmonary fibrosis. J. Clin. Invest. 109, 931–937 (2002).

    Article  CAS  Google Scholar 

  30. Mempel, T.R. et al. Regulatory T cells reversibly suppress cytotoxic T cell function independent of effector differentiation. Immunity 25, 129–141 (2006).

    Article  CAS  Google Scholar 

  31. Li, L., Iwamoto, Y., Berezovskaya, A. & Boussiotis, V.A. A pathway regulated by cell cycle inhibitor p27Kip1 and checkpoint inhibitor Smad3 is involved in the induction of T cell tolerance. Nat. Immunol. 7, 1157–1165 (2006).

    Article  CAS  Google Scholar 

  32. Kavsak, P. et al. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF β receptor for degradation. Mol. Cell 6, 1365–1375 (2000).

    Article  CAS  Google Scholar 

  33. Zhang, Y., Chang, C., Gehling, D.J., Hemmati-Brivanlou, A. & Derynck, R. Regulation of Smad degradation and activity by Smurf2, an E3 ubiquitin ligase. Proc. Natl. Acad. Sci. USA 98, 974–979 (2001).

    Article  CAS  Google Scholar 

  34. Wohlfert, E.A., Gorelik, L., Mittler, R., Flavell, R.A. & Clark, R.B. Cutting edge: deficiency in the E3 ubiquitin ligase Cbl-b results in a multifunctional defect in T cell TGF-β sensitivity in vitro and in vivo. J. Immunol. 176, 1316–1320 (2006).

    Article  CAS  Google Scholar 

  35. Wohlfert, E.A., Callahan, M.K. & Clark, R.B. Resistance to CD4+CD25+ regulatory T cells and TGF-β in Cbl-b−/− mice. J. Immunol. 173, 1059–1065 (2004).

    Article  CAS  Google Scholar 

  36. Yang, B. et al. Nedd4 augments the adaptive immune response by promoting ubiquitin-mediated degradation of Cbl-b in activated T cells. Nat. Immunol. 9, 1356–1363 (2008).

    Article  CAS  Google Scholar 

  37. Muranski, P. et al. Tumor-specific TH17-polarized cells eradicate large established melanoma. Blood 112, 362–373 (2008).

    Article  CAS  Google Scholar 

  38. Lahl, K. et al. Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease. J. Exp. Med. 204, 57–63 (2007).

    Article  CAS  Google Scholar 

  39. Loeser, S. et al. Spontaneous tumor rejection by cbl-b–deficient CD8+ T cells. J. Exp. Med. 204, 879–891 (2007).

    Article  CAS  Google Scholar 

  40. Chiang, J.Y., Jang, I.K., Hodes, R. & Gu, H. Ablation of Cbl-b provides protection against transplanted and spontaneous tumors. J. Clin. Invest. 117, 1029–1036 (2007).

    Article  CAS  Google Scholar 

  41. Liu, S. et al. IL-21 synergizes with IL-7 to augment expansion and anti-tumor function of cytotoxic T cells. Int. Immunol. 19, 1213–1221 (2007).

    Article  CAS  Google Scholar 

  42. Zhou, L. et al. TGF-β–induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORgammat function. Nature 453, 236–240 (2008).

    Article  CAS  Google Scholar 

  43. Ogura, H. et al. Interleukin-17 promotes autoimmunity by triggering a positive-feedback loop via interleukin-6 induction. Immunity 29, 628–636 (2008).

    Article  CAS  Google Scholar 

  44. King, C.G. et al. TRAF6 is a T cell–intrinsic negative regulator required for the maintenance of immune homeostasis. Nat. Med. 12, 1088–1092 (2006).

    Article  CAS  Google Scholar 

  45. Mueller, D.L. E3 ubiquitin ligases as T cell anergy factors. Nat. Immunol. 5, 883–890 (2004).

    Article  CAS  Google Scholar 

  46. Fang, D. et al. Dysregulation of T lymphocyte function in itchy mice: a role for Itch in TH2 differentiation. Nat. Immunol. 3, 281–287 (2002).

    Article  CAS  Google Scholar 

  47. Lin, A.E. & Mak, T.W. The role of E3 ligases in autoimmunity and the regulation of autoreactive T cells. Curr. Opin. Immunol. 19, 665–673 (2007).

    Article  Google Scholar 

  48. Bai, Y., Yang, C., Hu, K., Elly, C. & Liu, Y.C. Itch E3 ligase-mediated regulation of TGF-β signaling by modulating smad2 phosphorylation. Mol. Cell 15, 825–831 (2004).

    Article  CAS  Google Scholar 

  49. Bachmaier, K. et al. Negative regulation of lymphocyte activation and autoimmunity by the molecular adaptor Cbl-b. Nature 403, 211–216 (2000).

    Article  CAS  Google Scholar 

  50. Chiang, Y.J. et al. Cbl-b regulates the CD28 dependence of T-cell activation. Nature 403, 216–220 (2000).

    Article  CAS  Google Scholar 

  51. Gronski, M.A. et al. TCR affinity and negative regulation limit autoimmunity. Nat. Med. 10, 1234–1239 (2004).

    Article  CAS  Google Scholar 

  52. Dudley, M.E. et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298, 850–854 (2002).

    Article  CAS  Google Scholar 

  53. Dudley, M.E. et al. Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J. Clin. Oncol. 26, 5233–5239 (2008).

    Article  CAS  Google Scholar 

  54. Bellone, M., Mondino, A. & Corti, A. Vascular targeting, chemotherapy and active immunotherapy: teaming up to attack cancer. Trends Immunol. 29, 235–241 (2008).

    Article  CAS  Google Scholar 

  55. Calzascia, T. et al. TNF-α is critical for antitumor but not antiviral T cell immunity in mice. J. Clin. Invest. 117, 3833–3845 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

E. Deenick and R. Kalaf assisted with the injection of mice. M. Nikpour assisted with statistical analyses. This work was supported by a Canadian Institute for Health Research grant and funding from the Ontario Institute for Cancer Research to P.S.O. and a Terry Fox Cancer Foundation National Cancer Institute of Canada grant to T.W.M. T.C. was supported by the Boninchi Foundation (Geneva, Switzerland) and is a Research Fellow of The Terry Fox Foundation through an award from the National Cancer Institute of Canada. M.P. holds an Irvington Institute Fellowship with the Cancer Research Institute (New York). P.S.O. holds a Canada Research Chair in autoimmunity and tumor immunity.

Author information

Authors and Affiliations

Authors

Contributions

M.P. and T.C. directed the project, designed and performed experiments, interpreted data and wrote the manuscript. P.S.O. and T.W.M. directed the project, assisted with experimental design, interpreted data and contributed to the preparation of the manuscript. A.R.E., A.S., A.E.L., D.D., S.D., L.T.N. and M.A.G. assisted with experiments. M.M., B.A., K.L. and T.S. provided reagents and contributed conceptually to the project.

Corresponding author

Correspondence to Pamela S Ohashi.

Ethics declarations

Competing interests

M.M. is the founder and chief executive officer and B.A. is an employee of Cytheris; both M.M. and B.A. have financial interest in its capital.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–8 and Supplementary Methods (PDF 4131 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pellegrini, M., Calzascia, T., Elford, A. et al. Adjuvant IL-7 antagonizes multiple cellular and molecular inhibitory networks to enhance immunotherapies. Nat Med 15, 528–536 (2009). https://doi.org/10.1038/nm.1953

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nm.1953

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing