Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeted modulation of immune cells and tissues using engineered biomaterials

Abstract

Therapies modulating the immune system offer the prospect of treating a wide range of conditions including infectious diseases, cancer and autoimmunity. Biomaterials can promote specific targeting of immune cell subsets in peripheral or lymphoid tissues and modulate the dosage, timing and location of stimulation, thereby improving the safety and efficacy of vaccines and immunotherapies. Here, we review recent advances in biomaterials-based strategies, focusing on targeting of lymphoid tissues, circulating leukocytes, tissue-resident immune cells and immune cells at disease sites. These approaches can improve the potency and efficacy of immunotherapies by promoting immunity or tolerance against different diseases.

Key points

  • In immunotherapy, choosing the right target cell, tissue and treatment duration is essential to ensure effective immunomodulation while avoiding toxicity.

  • Biomaterial-mediated targeting of immune cells in lymph nodes improves the potency and efficacy of vaccines by promoting immunity or tolerance.

  • Circulating migratory immune cells can be targeted to perform as living chaperones to carry therapeutics into tissues.

  • Systemic administration or intratumoral injection of nanomaterials and therapeutic depots can selectively accumulate and target immune cells in tumours.

  • Reducing biomaterial complexity is essential to facilitate clinical translation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Primary and secondary lymphoid organs.
Fig. 2: Targeting therapeutics to tissue-draining lymph nodes.
Fig. 3: Targeting lymph node-resident cells and lymph node subregions.
Fig. 4: Targeting systemic lymphoid organs.
Fig. 5: Targeting circulating immune cells.
Fig. 6: Targeting tissue-resident immune cells.

Similar content being viewed by others

References

  1. Urquhart, L. Top companies and drugs by sales in 2021. Nat. Rev. Drug Discov. 21, 251 (2022).

    Article  Google Scholar 

  2. Dougan, M., Luoma, A. M., Dougan, S. K. & Wucherpfennig, K. W. Understanding and treating the inflammatory adverse events of cancer immunotherapy. Cell 184, 1575–1588 (2021).

    Article  Google Scholar 

  3. Seung, E. et al. A trispecific antibody targeting HER2 and T cells inhibits breast cancer growth via CD4 cells. Nature 603, 328–334 (2022).

    Article  Google Scholar 

  4. Muik, A. et al. Preclinical characterization and phase I trial results of a bispecific antibody targeting PD-L1 and 4-1BB (GEN1046) in patients with advanced refractory solid tumors. Cancer Discov. 12, 1248–1265 (2022).

    Article  Google Scholar 

  5. Neri, D. Antibody–cytokine fusions: versatile products for the modulation of anticancer immunity. Cancer Immunol. Res. 7, 348–354 (2019).

    Article  Google Scholar 

  6. Jones, D. S. II et al. Cell surface-tethered IL-12 repolarizes the tumor immune microenvironment to enhance the efficacy of adoptive T cell therapy. Sci. Adv. 8, eabi8075 (2022).

  7. Ren, Z. et al. Selective delivery of low-affinity IL-2 to PD-1+ T cells rejuvenates antitumor immunity with reduced toxicity. J. Clin. Invest. 132, e153604 (2022).

    Article  Google Scholar 

  8. Tzeng, A., Kwan, B. H., Opel, C. F., Navaratna, T. & Wittrup, K. D. Antigen specificity can be irrelevant to immunocytokine efficacy and biodistribution. Proc. Natl Acad. Sci. USA 112, 3320–3325 (2015).

    Article  Google Scholar 

  9. Reddy, S. T. et al. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat. Biotechnol. 25, 1159–1164 (2007).

    Article  Google Scholar 

  10. McLennan, D. N., Porter, C. J. H. & Charman, S. A. Subcutaneous drug delivery and the role of the lymphatics. Drug. Discov. Today Technol. 2, 89–96 (2005).

    Article  Google Scholar 

  11. Schudel, A., Francis, D. M. & Thomas, S. N. Material design for lymph node drug delivery. Nat. Rev. Mater. 4, 415–428 (2019).

    Article  Google Scholar 

  12. Mehta, N. K. et al. Pharmacokinetic tuning of protein–antigen fusions enhances the immunogenicity of T-cell vaccines. Nat. Biomed. Eng. 4, 636–648 (2020).

    Article  Google Scholar 

  13. Kourtis, I. C. et al. Peripherally administered nanoparticles target monocytic myeloid cells, secondary lymphoid organs and tumors in mice. PLoS ONE 8, e61646 (2013).

    Article  Google Scholar 

  14. Silva, M. et al. A particulate saponin/TLR agonist vaccine adjuvant alters lymph flow and modulates adaptive immunity. Sci. Immunol. 6, eabf1152 (2021).

    Article  Google Scholar 

  15. Moon, J. J. et al. Enhancing humoral responses to a malaria antigen with nanoparticle vaccines that expand Tfh cells and promote germinal center induction. Proc. Natl Acad. Sci. USA 109, 1080–1085 (2012).

    Article  Google Scholar 

  16. Boyoglu-Barnum, S. et al. Quadrivalent influenza nanoparticle vaccines induce broad protection. Nature 592, 623–628 (2021).

    Article  Google Scholar 

  17. Jardine, J. G. et al. HIV-1 broadly neutralizing antibody precursor B cells revealed by germline-targeting immunogen. Science 351, 1458–1463 (2016).

    Article  Google Scholar 

  18. Walls, A. C. et al. Elicitation of potent neutralizing antibody responses by designed protein nanoparticle vaccines for SARS-CoV-2. Cell 183, 1367–1382 (2020).

    Article  Google Scholar 

  19. Marcandalli, J. et al. Induction of potent neutralizing antibody responses by a designed protein nanoparticle vaccine for respiratory syncytial virus. Cell 176, 1420–1431 (2019).

    Article  Google Scholar 

  20. Walls, A. C. et al. Elicitation of broadly protective sarbecovirus immunity by receptor-binding domain nanoparticle vaccines. Cell 184, 5432–5447.e16 (2021).

    Article  Google Scholar 

  21. Houser, K. V. et al. Safety and immunogenicity of a ferritin nanoparticle H2 influenza vaccine in healthy adults: a phase 1 trial. Nat. Med. 28, 383–391 (2022).

    Article  Google Scholar 

  22. Song, J. Y. et al. Safety and immunogenicity of a SARS-CoV-2 recombinant protein nanoparticle vaccine (GBP510) adjuvanted with AS03: a randomized, placebo-controlled, observer-blinded phase 1/2 trial. EClinicalMedicine 51, 101569 (2022).

    Article  Google Scholar 

  23. Kuai, R., Ochyl, L. J., Bahjat, K. S., Schwendeman, A. & Moon, J. J. Designer vaccine nanodiscs for personalized cancer immunotherapy. Nat. Mater. 16, 489–496 (2016).

    Article  Google Scholar 

  24. Karabin, N. B. et al. Sustained micellar delivery via inducible transitions in nanostructure morphology. Nat. Commun. 9, 624 (2018).

    Article  Google Scholar 

  25. Heath, P. T. et al. Safety and efficacy of NVX-CoV2373 Covid-19 vaccine. N. Engl. J. Med. 385, 1172–1183 (2021).

    Article  Google Scholar 

  26. Liu, H. et al. Structure-based programming of lymph-node targeting in molecular vaccines. Nature 507, 519–522 (2014).

    Article  Google Scholar 

  27. Moynihan, K. D. et al. Enhancement of peptide vaccine immunogenicity by increasing lymphatic drainage and boosting serum stability. Cancer Immunol. Res. 6, 1025–1038 (2018).

    Article  Google Scholar 

  28. Rakhra, K. et al. Exploiting albumin as a mucosal vaccine chaperone for robust generation of lung-resident memory T cells. Sci. Immunol. 6, eabd8003 (2021).

    Article  Google Scholar 

  29. Vrieze, J. D. et al. Potent lymphatic translocation and spatial control over innate immune activation by polymer-lipid amphiphile conjugates of small-molecule TLR7/8 agonists. Angew. Chem. Int. Edn 58, 15390–15395 (2019).

    Article  Google Scholar 

  30. Pant, S. et al. First-in-human phase 1 trial of ELI-002 immunotherapy as treatment for subjects with Kirsten rat sarcoma (KRAS)-mutated pancreatic ductal adenocarcinoma and other solid tumors. J. Clin. Oncol. 40, TPS2701–TPS2701 (2022).

    Article  Google Scholar 

  31. Cao, S. et al. Hybrid nanocarriers incorporating mechanistically distinct drugs for lymphatic CD4+ T cell activation and HIV-1 latency reversal. Sci. Adv. 5, eaav6322 (2019).

    Article  Google Scholar 

  32. Capini, C. et al. Antigen-specific suppression of inflammatory arthritis using liposomes. J. Immunol. 182, 3556–3565 (2009).

    Article  Google Scholar 

  33. Zhou, K. et al. Targeting peripheral immune organs with self‐assembling prodrug nanoparticles ameliorates allogeneic heart transplant rejection. Am. J. Transpl. 21, 3871–3882 (2021).

    Article  Google Scholar 

  34. Kishimoto, T. K. & Maldonado, R. A. Nanoparticles for the induction of antigen-specific immunological tolerance. Front. Immunol. 9, 230 (2018).

    Article  Google Scholar 

  35. Maldonado, R. A. et al. Polymeric synthetic nanoparticles for the induction of antigen-specific immunological tolerance. Proc. Natl Acad. Sci. USA 112, E156–E165 (2015).

    Article  Google Scholar 

  36. Ali, O. A., Huebsch, N., Cao, L., Dranoff, G. & Mooney, D. J. Infection-mimicking materials to program dendritic cells in situ. Nat. Mater. 8, 151–158 (2009).

    Article  Google Scholar 

  37. Ali, O. A., Emerich, D., Dranoff, G. & Mooney, D. J. In situ regulation of DC subsets and T cells mediates tumor regression in mice. Sci. Transl Med. 1, 8ra19 (2009).

    Article  Google Scholar 

  38. Shah, N. J. et al. A biomaterial-based vaccine eliciting durable tumour-specific responses against acute myeloid leukaemia. Nat. Biomed. Eng. 4, 40–51 (2020).

    Article  Google Scholar 

  39. Kim, J. et al. Injectable, spontaneously assembling inorganic scaffolds modulate immune cells in vivo and increase vaccine efficacy. Nat. Biotechnol. 33, 64–72 (2014).

    Article  Google Scholar 

  40. Super, M. et al. Biomaterial vaccines capturing pathogen-associated molecular patterns protect against bacterial infections and septic shock. Nat. Biomed. Eng. 6, 8–18 (2022).

    Article  Google Scholar 

  41. Lee, J. A. et al. Recruitment of dendritic cells using ‘find-me’ signaling microparticles for personalized cancer immunotherapy. Biomaterials 282, 121412 (2022).

    Article  Google Scholar 

  42. Lewis, J. S. et al. A combination dual-sized microparticle system modulates dendritic cells and prevents type 1 diabetes in prediabetic NOD mice. Clin. Immunol. 160, 90–102 (2015).

    Article  Google Scholar 

  43. Allen, R., Chizari, S., Ma, J. A., Raychaudhuri, S. & Lewis, J. S. Combinatorial, microparticle-based delivery of immune modulators reprograms the dendritic cell phenotype and promotes remission of collagen-induced arthritis in mice. ACS Appl. Bio Mater. 2, 2388–2404 (2019).

    Article  Google Scholar 

  44. Cho, J. J. et al. An antigen-specific semi-therapeutic treatment with local delivery of tolerogenic factors through a dual-sized microparticle system blocks experimental autoimmune encephalomyelitis. Biomaterials 143, 79–92 (2017).

    Article  Google Scholar 

  45. Gerner, M. Y., Casey, K. A., Kastenmuller, W. & Germain, R. N. Dendritic cell and antigen dispersal landscapes regulate T cell immunity. J. Exp. Med. 214, 3105–3122 (2017).

    Article  Google Scholar 

  46. Eickhoff, S. et al. Robust anti-viral immunity requires multiple distinct T cell-dendritic cell interactions. Cell 162, 1322–1337 (2015).

    Article  Google Scholar 

  47. Junt, T. et al. Subcapsular sinus macrophages in lymph nodes clear lymph-borne viruses and present them to antiviral B cells. Nature 450, 110–114 (2007).

    Article  Google Scholar 

  48. Gretz, J. E., Norbury, C. C., Anderson, A. O., Proudfoot, A. E. I. & Shaw, S. Lymph-borne chemokines and other low molecular weight molecules reach high endothelial venules via specialized conduits while a functional barrier limits access to the lymphocyte microenvironments in lymph node cortex. J. Exp. Med. 192, 1425–1440 (2000).

    Article  Google Scholar 

  49. Sixt, M. et al. The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity 22, 19–29 (2005).

    Article  Google Scholar 

  50. Roozendaal, R. et al. Conduits mediate transport of low-molecular-weight antigen to lymph node follicles. Immunity 30, 264–276 (2009).

    Article  Google Scholar 

  51. Reynoso, G. V. et al. Lymph node conduits transport virions for rapid T cell activation. Nat. Immunol. 20, 602–612 (2019).

    Article  Google Scholar 

  52. Kim, E. H. et al. Squalene emulsion-based vaccine adjuvants stimulate CD8 T cell, but not antibody responses, through a RIPK3-dependent pathway. eLife 9, e52687 (2020).

    Article  Google Scholar 

  53. Detienne, S. et al. Central role of CD169+ lymph node resident macrophages in the adjuvanticity of the QS-21 component of AS01. Sci. Rep. 6, 39475 (2016).

    Article  Google Scholar 

  54. Zhang, Y.-N., Poon, W., Sefton, E. & Chan, W. C. W. Suppressing subcapsular sinus macrophages enhances transport of nanovaccines to lymph node follicles for robust humoral immunity. ACS Nano 14, 9478–9490 (2020).

    Article  Google Scholar 

  55. Schudel, A. et al. Programmable multistage drug delivery to lymph nodes. Nat. Nanotechnol. 15, 491–499 (2020).

    Article  Google Scholar 

  56. Hafiz, M. M. et al. Immunosuppression and procedure-related complications in 26 patients with type 1 diabetes mellitus receiving allogeneic islet cell transplantation. Transplantation 80, 1718–1728 (2005).

    Article  Google Scholar 

  57. Burke, J. A. et al. Subcutaneous nanotherapy repurposes the immunosuppressive mechanism of rapamycin to enhance allogeneic islet graft viability. Nat. Nanotechnol. 17, 319–330 (2022).

    Article  Google Scholar 

  58. Kenison, J. E. et al. Tolerogenic nanoparticles suppress central nervous system inflammation. Proc. Natl Acad. Sci. USA 117, 32017–32028 (2020).

    Article  Google Scholar 

  59. Lynn, G. M. et al. Peptide–TLR-7/8a conjugate vaccines chemically programmed for nanoparticle self-assembly enhance CD8 T-cell immunity to tumor antigens. Nat. Biotechnol. 38, 320–332 (2020).

    Article  Google Scholar 

  60. Wilson, D. S. et al. Antigens reversibly conjugated to a polymeric glyco-adjuvant induce protective humoral and cellular immunity. Nat. Mater. 18, 175–185 (2019).

    Article  Google Scholar 

  61. Shae, D. et al. Co-delivery of peptide neoantigens and stimulator of interferon genes (STING) agonists enhances response to cancer vaccines. ACS Nano 14, 9904–9916 (2020).

    Article  Google Scholar 

  62. Wang, S. et al. Rational vaccinology with spherical nucleic acids. Proc. Natl Acad. Sci. USA. 116, 10473–10481 (2019).

    Article  Google Scholar 

  63. Callmann, C. E. et al. Tumor cell lysate-loaded immunostimulatory spherical nucleic acids as therapeutics for triple-negative breast cancer. Proc. Natl Acad. Sci. USA 117, 17543–17550 (2020).

    Article  Google Scholar 

  64. Froimchuk, E., Oakes, R. S., Kapnick, S. M., Yanes, A. A. & Jewell, C. M. Biophysical properties of self-assembled immune signals impact signal processing and the nature of regulatory immune function. Nano Lett. 21, 3762–3771 (2021).

    Article  Google Scholar 

  65. Hess, K. L. et al. Engineering immunological tolerance using quantum dots to tune the density of self-antigen display. Adv. Funct. Mater. 27, 1700290 (2017).

    Article  MathSciNet  Google Scholar 

  66. Liang, Y., Zhang, T. & Tang, M. Toxicity of quantum dots on target organs and immune system. J. Appl. Toxicol. 42, 17–40 (2022).

    Article  Google Scholar 

  67. Tokatlian, T. et al. Innate immune recognition of glycans targets HIV nanoparticle immunogens to germinal centers. Science 363, 649–654 (2019).

    Article  Google Scholar 

  68. Read, B. J. et al. Mannose-binding lectin and complement mediate follicular localization and enhanced immunogenicity of diverse protein nanoparticle immunogens. Cell Rep. 38, 110217 (2022).

    Article  Google Scholar 

  69. Venkatesan, P. Preliminary phase 1 results from an HIV vaccine candidate trial. Lancet Microbe 2, e95 (2021).

    Article  Google Scholar 

  70. Zhang, Y.-N. et al. Nanoparticle size influences antigen retention and presentation in lymph node follicles for humoral immunity. Nano Lett. 19, 7226–7235 (2019).

    Article  Google Scholar 

  71. Veneziano, R. et al. Role of nanoscale antigen organization on B-cell activation probed using DNA origami. Nat. Nanotechnol. 15, 716–723 (2020).

    Article  Google Scholar 

  72. Xiao, P. et al. Engineering nanoscale artificial antigen-presenting cells by metabolic dendritic cell labeling to potentiate cancer immunotherapy. Nano Lett. 21, 2094–2103 (2021).

    Article  Google Scholar 

  73. Ma, L. et al. Enhanced CAR–T cell activity against solid tumors by vaccine boosting through the chimeric receptor. Science 365, 162–168 (2019).

    Article  Google Scholar 

  74. Pennock, N. D., Kedl, J. D. & Kedl, R. M. T cell vaccinology: beyond the reflection of infectious responses. TRENDS Immunol. 37, 170–180 (2016).

    Article  Google Scholar 

  75. Ols, S. et al. Route of vaccine administration alters antigen trafficking but not innate or adaptive immunity. Cell Rep. 30, 3964–3971 (2020).

    Article  Google Scholar 

  76. Golombek, S. K. et al. Tumor targeting via EPR: strategies to enhance patient responses. Adv. Drug. Deliv. Rev. 130, 17–38 (2018).

    Article  Google Scholar 

  77. Kranz, L. M. et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 534, 396–401 (2016).

    Article  Google Scholar 

  78. Beyaert, S., Machiels, J.-P. & Schmitz, S. Vaccine-based immunotherapy for head and neck cancers. Cancers 13, 6041 (2021).

    Article  Google Scholar 

  79. Sahin, U. et al. An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature 585, 107–112 (2020).

    Article  Google Scholar 

  80. Baharom, F. et al. Intravenous nanoparticle vaccination generates stem-like TCF1+ neoantigen-specific CD8+ T cells. Nat. Immunol. 52, 41–52 (2020).

    Google Scholar 

  81. Creemers, J. H. A. et al. Assessing the safety, tolerability and efficacy of PLGA-based immunomodulatory nanoparticles in patients with advanced NY-ESO-1-positive cancers: a first-in-human phase I open-label dose-escalation study protocol. BMJ Open 11, e050725 (2021).

    Article  Google Scholar 

  82. Kishimoto, T. K. et al. Improving the efficacy and safety of biologic drugs with tolerogenic nanoparticles. Nat. Nanotechnol. 11, 890–899 (2016).

    Article  Google Scholar 

  83. Sands, E. et al. Tolerogenic nanoparticles mitigate the formation of anti-drug antibodies against pegylated uricase in patients with hyperuricemia. Nat. Commun. 13, 272 (2022).

    Article  Google Scholar 

  84. Prasad, S. et al. Tolerogenic Ag-PLG nanoparticles induce tregs to suppress activated diabetogenic CD4 and CD8 T cells. J. Autoimmun. 89, 112–124 (2018).

    Article  Google Scholar 

  85. Luo, X., Miller, S. D. & Shea, L. D. Immune tolerance for autoimmune disease and cell transplantation. Annu. Rev. Biomed. Eng. 18, 181–205 (2016).

    Article  Google Scholar 

  86. Leon, M. A. et al. Soluble antigen arrays displaying mimotopes direct the response of diabetogenic T cells. ACS Chem. Biol. 14, 1436–1448 (2019).

    Article  Google Scholar 

  87. Liu, Q. et al. Use of polymeric nanoparticle platform targeting the liver to induce Treg-mediated antigen-specific immune tolerance in a pulmonary allergen sensitization model. ACS Nano 13, 4778–4794 (2019).

    Article  Google Scholar 

  88. Ishii, Y. et al. Alpha-galactosylceramide-driven immunotherapy for allergy. Front. Biosci. 13, 6214–6228 (2008).

    Article  Google Scholar 

  89. Duramad, O., Laysang, A., Li, J., Ishii, Y. & Namikawa, R. Pharmacologic expansion of donor-derived, naturally occurring CD4+ Foxp3+ regulatory T cells reduces acute graft-versus-host disease lethality without abrogating the graft-versus-leukemia effect in murine models. Biol. Blood Marrow Transplant. 17, 1154–1168 (2011).

    Article  Google Scholar 

  90. Chen, Y.-B. et al. Pharmacokinetics and safety of KRN7000 following intravenous infusion of RGI-2001 in allogeneic transplant patients. Blood 136, 15–16 (2020).

    Google Scholar 

  91. Okhrimenko, A. et al. Human memory T cells from the bone marrow are resting and maintain long-lasting systemic memory. Proc. Natl Acad. Sci. USA 111, 9229–9234 (2014).

    Article  Google Scholar 

  92. Mulder, W. J. M., Ochando, J., Joosten, L. A. B., Fayad, Z. A. & Netea, M. G. Therapeutic targeting of trained immunity. Nat. Rev. Drug Discov. 18, 553–566 (2019).

    Article  Google Scholar 

  93. Netea, M. G. et al. Trained immunity: a program of innate immune memory in health and disease. Science 352, aaf1098 (2016).

    Article  Google Scholar 

  94. Netea, M. G. & van der Meer, J. W. M. Trained immunity: an ancient way of remembering. Cell Host Microbe 21, 297–300 (2017).

    Article  Google Scholar 

  95. Priem, B. et al. Trained immunity-promoting nanobiologic therapy suppresses tumor growth and potentiates checkpoint inhibition. Cell 183, 786–801 (2020).

    Article  Google Scholar 

  96. Finck, A. V., Blanchard, T., Roselle, C. P., Golinelli, G. & June, C. H. Engineered cellular immunotherapies in cancer and beyond. Nat. Med. 28, 678–689 (2022).

    Article  Google Scholar 

  97. Ribas, A. T cells as the future of cancer therapy. Cancer Discov. 11, 798–800 (2021).

    Article  Google Scholar 

  98. Hong, M., Clubb, J. D. & Chen, Y. Y. Engineering CAR-T cells for next-generation cancer therapy. Cancer Cell 38, 473–488 (2020).

    Article  Google Scholar 

  99. Barros, L. R. C. et al. Systematic review of available CAR-T cell trials around the world. Cancers 14, 2667 (2022).

    Article  Google Scholar 

  100. National Cancer Institute. CAR T cells: engineering patients’ immune cells to treat their cancers. NCI https://www.cancer.gov/about-cancer/treatment/research/car-t-cells (2022).

  101. Larson, R. C. & Maus, M. V. Recent advances and discoveries in the mechanisms and functions of CAR T cells. Nat. Rev. Cancer 21, 145–161 (2021).

    Article  Google Scholar 

  102. Siriwon, N. et al. CAR–T cells surface-engineered with drug-encapsulated nanoparticles can ameliorate intratumoral T-cell hypofunction. Cancer Immunol. Res. 6, 812–824 (2018).

    Article  Google Scholar 

  103. Huang, B. et al. Active targeting of chemotherapy to disseminated tumors using nanoparticle-carrying T cells. Sci. Transl Med. 7, 291ra94–291ra94 (2015).

    Article  Google Scholar 

  104. Eskandari, S. K. et al. Regulatory T cells engineered with TCR signaling–responsive IL-2 nanogels suppress alloimmunity in sites of antigen encounter. Sci. Transl Med. 12, eaaw4744 (2020).

    Article  Google Scholar 

  105. Stephan, M. T., Moon, J. J., Um, S. H., Bershteyn, A. & Irvine, D. J. Therapeutic cell engineering with surface-conjugated synthetic nanoparticles. Nat. Med. 16, 1035–1041 (2010).

    Article  Google Scholar 

  106. Tang, L. et al. Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery. Nat. Biotechnol. 36, 707–716 (2018).

    Article  Google Scholar 

  107. Romee, R. et al. First-in-human phase 1 clinical study of the IL-15 superagonist complex ALT-803 to treat relapse after transplantation. Blood 131, 2515–2527 (2018).

    Article  Google Scholar 

  108. Hamilton, E. et al. 801 PRIMETM IL-15 (RPTR-147): preliminary clinical results and biomarker analysis from a first-in-human phase 1 study of IL-15 loaded peripherally-derived autologous T cell therapy in solid tumor patients. J. Immunother. Cancer 8, A850–A850 (2020).

    Google Scholar 

  109. ShieldsIV, C. W. et al. Cellular backpacks for macrophage immunotherapy. Sci. Adv. 6, eaaz6579 (2020).

    Article  Google Scholar 

  110. Champion, J. A. & Mitragotri, S. Role of target geometry in phagocytosis. Proc. Natl Acad. Sci. USA. 103, 4930–4934 (2006).

    Article  Google Scholar 

  111. Berlin, C. et al. α4β7 integrin mediates lymphocyte binding to the mucosal vascular addressin MAdCAM-1. Cell 74, 185–195 (1993).

    Article  Google Scholar 

  112. Mora, J. R. et al. Selective imprinting of gut-homing T cells by Peyer’s patch dendritic cells. Nature 424, 88–93 (2003).

    Article  Google Scholar 

  113. Cao, S., Jiang, Y., Zhang, H., Kondza, N. & Woodrow, K. A. Core–shell nanoparticles for targeted and combination antiretroviral activity in gut-homing T cells. Nanomed. Nanotechnol. Biol. Med. 14, 2143–2153 (2018).

    Article  Google Scholar 

  114. Dammes, N. et al. Conformation-sensitive targeting of lipid nanoparticles for RNA therapeutics. Nat. Nanotechnol. 16, 1030–1038 (2021).

    Article  Google Scholar 

  115. Parayath, N. N., Parikh, A. & Amiji, M. M. Repolarization of tumor-associated macrophages in a genetically engineered nonsmall cell lung cancer model by intraperitoneal administration of hyaluronic acid-based nanoparticles encapsulating microRNA-125b. Nano Lett. 18, 3571–3579 (2018).

    Article  Google Scholar 

  116. Sofias, A. M. et al. Tumor targeting by αvβ3-integrin-specific lipid nanoparticles occurs via phagocyte hitchhiking. ACS Nano 14, 7832–7846 (2020).

    Article  Google Scholar 

  117. Hou, J. et al. Accessing neuroinflammation sites: monocyte/neutrophil-mediated drug delivery for cerebral ischemia. Sci. Adv. 5, eaau8301 (2019).

    Article  Google Scholar 

  118. Tsai, S. et al. Reversal of autoimmunity by boosting memory-like autoregulatory T cells. Immunity 32, 568–580 (2010).

    Article  Google Scholar 

  119. Singha, S. et al. Peptide–MHC-based nanomedicines for autoimmunity function as T-cell receptor microclustering devices. Nat. Nanotechnol. 12, 701–710 (2017).

    Article  Google Scholar 

  120. Umeshappa, C. S. et al. Suppression of a broad spectrum of liver autoimmune pathologies by single peptide-MHC-based nanomedicines. Nat. Commun. 10, 2150 (2019).

    Article  Google Scholar 

  121. Rhodes, K. R. et al. Biodegradable cationic polymer blends for fabrication of enhanced artificial antigen presenting cells to treat melanoma. ACS Appl. Mater. Interf. 13, 7913–7923 (2021).

    Article  Google Scholar 

  122. Rhodes, K. R., Meyer, R. A., Wang, J., Tzeng, S. Y. & Green, J. J. Biomimetic tolerogenic artificial antigen presenting cells for regulatory T cell induction. Acta Biomater. 112, 136–148 (2020).

    Article  Google Scholar 

  123. Yip, A. & Webster, R. M. The market for chimeric antigen receptor T cell therapies. Nat. Rev. Drug Discov. 17, 161–162 (2018).

    Article  Google Scholar 

  124. Agarwal, S., Weidner, T., Thalheimer, F. B. & Buchholz, C. J. In vivo generated human CAR T cells eradicate tumor cells. Oncoimmunology 8, e1671761 (2019).

    Article  Google Scholar 

  125. Parayath, N. N. & Stephan, M. T. In situ programming of CAR T cells. Annu. Rev. Biomed. Eng. 23, 385–405 (2021).

    Article  Google Scholar 

  126. Nayak, S. & Herzog, R. W. Progress and prospects: immune responses to viral vectors. Gene Ther. 17, 295–304 (2010).

    Article  Google Scholar 

  127. Barnes, C., Scheideler, O. & Schaffer, D. Engineering the AAV capsid to evade immune responses. Curr. Opin. Biotech. 60, 99–103 (2019).

    Article  Google Scholar 

  128. Hinderer, C. et al. Severe toxicity in nonhuman primates and piglets following high-dose intravenous administration of an adeno-associated virus vector expressing human SMN. Hum. Gene Ther. 29, 285–298 (2018).

    Article  Google Scholar 

  129. Smith, T. T. et al. In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers. Nat. Nanotechnol. 12, 813–820 (2017).

    Article  Google Scholar 

  130. Rurik, J. G. et al. CAR T cells produced in vivo to treat cardiac injury. Science 375, 91–96 (2022).

    Article  Google Scholar 

  131. Li, W. et al. Biomimetic nanoparticles deliver mRNAs encoding costimulatory receptors and enhance T cell mediated cancer immunotherapy. Nat. Commun. 12, 7264 (2021).

    Article  Google Scholar 

  132. Billingsley, M. M. et al. Ionizable lipid nanoparticle-mediated mRNA delivery for human CAR T cell engineering. Nano Lett. 20, 1578–1589 (2020).

    Article  Google Scholar 

  133. McKinlay, C. J., Benner, N. L., Haabeth, O. A., Waymouth, R. M. & Wender, P. A. Enhanced mRNA delivery into lymphocytes enabled by lipid-varied libraries of charge-altering releasable transporters. Proc. Natl Acad. Sci. USA 115, 201805358 (2018).

    Article  Google Scholar 

  134. Agarwalla, P. et al. Bioinstructive implantable scaffolds for rapid in vivo manufacture and release of CAR-T cells. Nat. Biotechnol. 40, 1250–1258 (2022).

    Article  Google Scholar 

  135. Mora, J. R. et al. Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science 314, 1157–1160 (2006).

    Article  Google Scholar 

  136. Allie, S. R. et al. The establishment of resident memory B cells in the lung requires local antigen encounter. Nat. Immunol. 20, 97–108 (2018).

    Article  Google Scholar 

  137. Kiyono, H. & Fukuyama, S. NALT- versus PEYER’S-patch-mediated mucosal immunity. Nat. Rev. Immunol. 4, 699–710 (2004).

    Article  Google Scholar 

  138. Bowen, A., Sweeney, E. E. & Fernandes, R. Nanoparticle-based immunoengineered approaches for combating HIV. Front. Immunol. 11, 789 (2020).

    Article  Google Scholar 

  139. Li, M. et al. Mucosal vaccines: strategies and challenges. Immunol. Lett. 217, 116–125 (2019).

    Article  Google Scholar 

  140. Iwasaki, A. Exploiting mucosal immunity for antiviral vaccines. Annu. Rev. Immunol. 34, 575–608 (2016).

    Article  Google Scholar 

  141. Sockolosky, J. T. & Szoka, F. C. The neonatal Fc receptor, FcRn, as a target for drug delivery and therapy. Adv. Drug Deliv. Rev. 91, 109–124 (2015).

    Article  Google Scholar 

  142. Fieux, M. et al. FcRn as a transporter for nasal delivery of biologics: a systematic review. Int. J. Mol. Sci. 22, 6475 (2021).

    Article  Google Scholar 

  143. Hartwell, B. L. et al. Intranasal vaccination via lipid-conjugated immunogens promotes antigen persistence and transmucosal uptake to drive mucosal and systemic immunity. Sci. Transl Med. 14, eabn1413 (2022).

    Article  Google Scholar 

  144. Lee, Y. et al. Hyaluronic acid–bilirubin nanomedicine for targeted modulation of dysregulated intestinal barrier, microbiome and immune responses in colitis. Nat. Mater. 19, 118–126 (2019).

    Article  Google Scholar 

  145. Lázaro, Ide & Mooney, D. J. Obstacles and opportunities in a forward vision for cancer nanomedicine. Nat. Mater. 20, 1469–1479 (2021).

    Article  Google Scholar 

  146. Wilhelm, S. et al. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 16014 (2016).

    Article  Google Scholar 

  147. Barber, G. N. STING: infection, inflammation and cancer. Nat. Rev. Immunol. 15, 760–770 (2015).

    Article  Google Scholar 

  148. Dane, E. L. et al. STING agonist delivery by tumour-penetrating PEG-lipid nanodiscs primes robust anticancer immunity. Nat. Mater. 21, 710–720 (2022).

    Article  Google Scholar 

  149. Miller, I. C. et al. Enhanced intratumoural activity of CAR T cells engineered to produce immunomodulators under photothermal control. Nat. Biomed. Eng. 5, 1348–1359 (2021).

    Article  Google Scholar 

  150. Longmire, M., Choyke, P. L. & Kobayashi, H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine 3, 703–717 (2008).

    Article  Google Scholar 

  151. Schmid, D. et al. T cell-targeting nanoparticles focus delivery of immunotherapy to improve antitumor immunity. Nat. Commun. 8, 1747 (2017).

    Article  Google Scholar 

  152. Turk, M. J., Waters, D. J. & Low, P. S. Folate-conjugated liposomes preferentially target macrophages associated with ovarian carcinoma. Cancer Lett. 213, 165–172 (2004).

    Article  Google Scholar 

  153. Miller, M. A. et al. Tumour-associated macrophages act as a slow-release reservoir of nano-therapeutic Pt(IV) pro-drug. Nat. Commun. 6, 8692 (2015).

    Article  Google Scholar 

  154. Dai, Q. et al. Quantifying the ligand-coated nanoparticle delivery to cancer cells in solid tumors. ACS Nano 12, 8423–8435 (2018).

    Article  Google Scholar 

  155. Rodell, C. B. et al. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat. Biomed. Eng. 2, 578–588 (2018).

    Article  Google Scholar 

  156. Kulkarni, A. et al. A designer self-assembled supramolecule amplifies macrophage immune responses against aggressive cancer. Nat. Biomed. Eng. 2, 589–599 (2018).

    Article  Google Scholar 

  157. Zhang, F. et al. Genetic programming of macrophages to perform anti-tumor functions using targeted mRNA nanocarriers. Nat. Commun. 10, 3974 (2019).

    Article  Google Scholar 

  158. Gustafson, H. H., Holt-Casper, D., Grainger, D. W. & Ghandehari, H. Nanoparticle uptake: the phagocyte problem. Nano Today 10, 487–510 (2015).

    Article  Google Scholar 

  159. Chen, D. et al. NIR-II fluorescence imaging reveals bone marrow retention of small polymer nanoparticles. Nano Lett. 21, 798–805 (2021).

    Article  Google Scholar 

  160. Sorensen, A. G. et al. A “vascular normalization index” as potential mechanistic biomarker to predict survival after a single dose of cediranib in recurrent glioblastoma patients. Cancer Res. 69, 5296–5300 (2009).

    Article  Google Scholar 

  161. Dickson, P. V. et al. Bevacizumab-induced transient remodeling of the vasculature in neuroblastoma xenografts results in improved delivery and efficacy of systemically administered chemotherapy. Clin. Cancer Res. 13, 3942–3950 (2007).

    Article  Google Scholar 

  162. Willett, C. G. et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat. Med. 10, 145–147 (2004).

    Article  Google Scholar 

  163. Inai, T. et al. Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. Am. J. Pathol. 165, 35–52 (2004).

    Article  Google Scholar 

  164. Goel, S., Wong, A. H.-K. & Jain, R. K. Vascular normalization as a therapeutic strategy for malignant and nonmalignant disease. Cold Spring Harb. Perspect. Med. 2, a006486 (2012).

    Article  Google Scholar 

  165. Tong, R. T. et al. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res. 11, 3731–3736 (2004).

    Article  Google Scholar 

  166. Boucher, Y. et al. Bevacizumab improves tumor infiltration of mature dendritic cells and effector T-cells in triple-negative breast cancer patients. npj Precis. Oncol. 5, 62 (2021).

    Article  Google Scholar 

  167. Fukumura, D., Kloepper, J., Amoozgar, Z., Duda, D. G. & Jain, R. K. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nat. Rev. Clin. Oncol. 15, 325–340 (2018).

    Article  Google Scholar 

  168. Shigeta, K. et al. Regorafenib combined with PD1 blockade increases CD8 T-cell infiltration by inducing CXCL10 expression in hepatocellular carcinoma. J. Immunother. Cancer 8, e001435 (2020).

    Article  Google Scholar 

  169. Manning, E. A. et al. A vascular endothelial growth factor receptor-2 inhibitor enhances antitumor immunity through an immune-based mechanism. Clin. Cancer Res. 13, 3951–3959 (2007).

    Article  Google Scholar 

  170. Yasuda, S. et al. Simultaneous blockade of programmed death 1 and vascular endothelial growth factor receptor 2 (VEGFR2) induces synergistic anti‐tumour effect in vivo. Clin. Exp. Immunol. 172, 500–506 (2013).

    Article  Google Scholar 

  171. Li, B. et al. Vascular endothelial growth factor blockade reduces intratumoral regulatory T cells and enhances the efficacy of a GM-CSF-secreting cancer immunotherapy. Clin. Cancer Res. 12, 6808–6816 (2006).

    Article  Google Scholar 

  172. Voron, T. et al. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J. Exp. Med. 212, 139–148 (2015).

    Article  Google Scholar 

  173. Allen, E. et al. Combined antiangiogenic and anti–PD-L1 therapy stimulates tumor immunity through HEV formation. Sci. Transl Med. 9, eaak9679 (2017).

    Article  Google Scholar 

  174. Huang, Y. et al. Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proc. Natl Acad. Sci. USA 109, 17561–17566 (2012).

    Article  Google Scholar 

  175. Yang, R. K. et al. Intratumoral hu14.18-IL-2 (IC) induces local and systemic antitumor effects that involve both activated T and NK cells as well as enhanced IC retention. J. Immunol. https://doi.org/10.4049/jimmunol.1200934 (2012).

  176. Momin, N. et al. Maximizing response to intratumoral immunotherapy in mice by tuning local retention. Nat. Commun. 13, 109 (2022).

    Article  Google Scholar 

  177. Momin, N. et al. Anchoring of intratumorally administered cytokines to collagen safely potentiates systemic cancer immunotherapy. Sci. Transl Med. 11, eaaw2614 (2019).

    Article  Google Scholar 

  178. Ishihara, J. et al. Matrix-binding checkpoint immunotherapies enhance antitumor efficacy and reduce adverse events. Sci. Transl Med. 9, eaan0401 (2017).

    Article  Google Scholar 

  179. Agarwal, Y. et al. Intratumourally injected alum-tethered cytokines elicit potent and safer local and systemic anticancer immunity. Nat. Biomed. Eng. 6, 129–143 (2022).

    Article  Google Scholar 

  180. Huang, Z. N., Callmann, C. E., Cole, L. E., Wang, S. & Mirkin, C. A. Synergistic immunostimulation through the dual activation of toll-like receptor 3/9 with spherical nucleic acids. ACS Nano 15, 13329–13338 (2021).

    Article  Google Scholar 

  181. O’Day, S. et al. 423 Safety and preliminary efficacy of intratumoral cavrotolimod (AST-008), a spherical nucleic acid TLR9 agonist, in combination with pembrolizumab in patients with advanced solid tumors. Regul. Young Invest. Award. Abstr. https://doi.org/10.1136/jitc-2020-sitc2020.0423 (2020).

  182. Exicure provides interim results from ongoing phase 1b/2 clinical trial of cavrotolimod (AST-008). sec.report https://sec.report/Document/0001698530-21-000079/exhibit992pressrelease0805.htm (2021).

  183. Wang, C., Fiering, S. N. & Steinmetz, N. F. Cowpea mosaic virus promotes anti‐tumor activity and immune memory in a mouse ovarian tumor model. Adv. Ther. 2, 1900003 (2019).

    Article  Google Scholar 

  184. Lizotte, P. H. et al. In situ vaccination with cowpea mosaic virus nanoparticles suppresses metastatic cancer. Nat. Nanotechnol. 11, 295–303 (2016).

    Article  Google Scholar 

  185. Nguyen, K. G. et al. Localized interleukin-12 for cancer immunotherapy. Front. Immunol. 11, 575597 (2020).

    Article  Google Scholar 

  186. Zaharoff, D. A., Hance, K. W., Rogers, C. J., Schlom, J. & Greiner, J. W. Intratumoral immunotherapy of established solid tumors with chitosan/IL-12. J. Immunother. 33, 697–705 (2010).

    Article  Google Scholar 

  187. Mills, B. N. et al. Stereotactic body radiation and interleukin-12 combination therapy eradicates pancreatic tumors by repolarizing the immune microenvironment. Cell Rep. 29, 406–421 (2019).

    Article  Google Scholar 

  188. Park, C. G. et al. Extended release of perioperative immunotherapy prevents tumor recurrence and eliminates metastases. Sci. Transl Med. 10, eaar1916 (2018).

    Article  Google Scholar 

  189. Chen, Q. et al. In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat. Nanotechnol. 14, 89–97 (2018).

    Article  Google Scholar 

  190. Stephan, S. B. et al. Biopolymer implants enhance the efficacy of adoptive T cell therapy. Nat. Biotechnol. 33, 97–101 (2014).

    Article  Google Scholar 

  191. Hu, Q. et al. Inhibition of post-surgery tumour recurrence via a hydrogel releasing CAR-T cells and anti-PDL1-conjugated platelets. Nat. Biomed. Eng. 5, 1038–1047 (2021).

    Article  Google Scholar 

  192. Coon, M. E., Stephan, S. B., Gupta, V., Kealey, C. P. & Stephan, M. T. Nitinol thin films functionalized with CAR-T cells for the treatment of solid tumours. Nat. Biomed. Eng. 4, 195–206 (2020).

    Article  Google Scholar 

  193. Shae, D. et al. Endosomolytic polymersomes increase the activity of cyclic dinucleotide STING agonists to enhance cancer immunotherapy. Nat. Nanotechnol. 14, 269–278 (2019).

    Article  Google Scholar 

  194. Liu, Y. et al. Intrapleural nano-immunotherapy promotes innate and adaptive immune responses to enhance anti-PD-L1 therapy for malignant pleural effusion. Nat. Nanotechnol. 17, 206–216 (2022).

    Article  Google Scholar 

  195. Hewitt, S. L. et al. Durable anticancer immunity from intratumoral administration of IL-23, IL-36γ, and OX40L mRNAs. Sci. Transl Med. 11, eaat9143 (2019).

    Article  Google Scholar 

  196. Hotz, C. et al. Local delivery of mRNA-encoding cytokines promotes antitumor immunity and tumor eradication across multiple preclinical tumor models. Sci. Transl Med. 13, eabc7804 (2021).

    Article  Google Scholar 

  197. Tzeng, S. Y. et al. In situ genetic engineering of tumors for long-lasting and systemic immunotherapy. Proc. Natl Acad. Sci. USA 117, 4043–4052 (2020).

    Article  Google Scholar 

  198. Patel, M. et al. 539 Phase 1 study of mRNA-2752, a lipid nanoparticle encapsulating mRNAs encoding human OX40L/IL-23/IL-36γ, for intratumoral (ITu) injection +/− durvalumab in advanced solid tumors and lymphoma. J Immunother. Cancer 9, A569 (2021).

    Article  Google Scholar 

  199. Myerson, J. W. et al. Supramolecular arrangement of protein in nanoparticle structures predicts nanoparticle tropism for neutrophils in acute lung inflammation. Nat. Nanotechnol. 17, 86–97 (2022).

    Article  Google Scholar 

  200. Robertson, J. D., Ward, J. R., Avila-Olias, M., Battaglia, G. & Renshaw, S. A. Targeting neutrophilic inflammation using polymersome-mediated cellular delivery. J. Immunol. 198, 3596–3604 (2017).

    Article  Google Scholar 

  201. Sofias, A. M. et al. Cyclic arginine–glycine–aspartate‐decorated lipid nanoparticle targeting toward inflammatory lesions involves hitchhiking with phagocytes. Adv. Sci. 8, 2100370 (2021).

    Article  Google Scholar 

  202. Braza, M. S. et al. Inhibiting inflammation with myeloid cell-specific nanobiologics promotes organ transplant acceptance. Immunity 49, 819–828 (2018).

    Article  Google Scholar 

  203. Park, J. et al. Intravascular innate immune cells reprogrammed via intravenous nanoparticles to promote functional recovery after spinal cord injury. Proc. Natl Acad. Sci. USA 116, 14947–14954 (2019).

    Article  Google Scholar 

  204. Li, Y. et al. Immunosuppressive PLGA TGF-β1 microparticles induce polyclonal and antigen-specific regulatory T cells for local immunomodulation of allogeneic islet transplants. Front. Immunol. 12, 653088 (2021).

    Article  Google Scholar 

  205. Fisher, J. D. et al. Treg-inducing microparticles promote donor-specific tolerance in experimental vascularized composite allotransplantation. Proc. Natl Acad. Sci. USA 116, 25784–25789 (2019).

    Article  Google Scholar 

  206. Hautz, T. et al. Lymphoid neogenesis in skin of human hand, nonhuman primate, and rat vascularized composite allografts. Transpl. Int. 27, 966–976 (2014).

    Article  Google Scholar 

  207. Azzi, J. et al. Targeted delivery of immunomodulators to lymph nodes. Cell Rep. 15, 1202–1213 (2016).

    Article  Google Scholar 

  208. Bahmani, B. et al. Targeted delivery of immune therapeutics to lymph nodes prolongs cardiac allograft survival. J. Clin. Invest. 128, 4770–4786 (2018).

    Article  Google Scholar 

  209. Li, Z. et al. In vivo labeling reveals continuous trafficking of TCF-1+ T cells between tumor and lymphoid tissue. J. Exp. Med. 219, e20210749 (2022).

    Article  Google Scholar 

  210. Torcellan, T. et al. In vivo photolabeling of tumor-infiltrating cells reveals highly regulated egress of T-cell subsets from tumors. Proc. Natl Acad. Sci. USA 114, 5677–5682 (2017).

    Article  Google Scholar 

  211. Gearty, S. V. et al. An autoimmune stem-like CD8 T cell population drives type 1 diabetes. Nature 602, 156–161 (2022).

    Article  Google Scholar 

  212. Im, S. J. et al. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature 537, 417–421 (2016).

    Article  Google Scholar 

  213. Connolly, K. A. et al. A reservoir of stem-like CD8+ T cells in the tumor-draining lymph node preserves the ongoing anti-tumor immune response. Sci. Immunol. 6, eabg7836 (2021).

    Article  Google Scholar 

  214. Schenkel, J. M. et al. Conventional type I dendric cells maintain a reservoir of proliferative tumor-antigen specific TCF-1+ CD8+ T cells in tumor-draining lymph nodes. Immunity 54, 2338–2353 (2021).

    Article  Google Scholar 

  215. Siddiqui, I. et al. Intratumoral Tcf1+ PD-1+ D8+ T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. Immunity 50, 195–211 (2018).

    Article  Google Scholar 

  216. Tahtinen, S. et al. IL-1 and IL-1ra are key regulators of the inflammatory response to RNA vaccines. Nat. Immunol. 23, 532–542 (2022).

    Article  Google Scholar 

  217. Alameh, M.-G. et al. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity 54, 2877–2892 (2021).

    Article  Google Scholar 

  218. Li, C. et al. Mechanisms of innate and adaptive immunity to the Pfizer-BioNTech BNT162b2 vaccine. Nat. Immunol. 23, 543–555 (2022).

    Article  Google Scholar 

  219. Yang, X. et al. Lactate-modulated immunosuppression of myeloid-derived suppressor cells contributes to the radioresistance of pancreatic cancer. Cancer Immunol. Res. 8, 1440–1451 (2020).

    Article  Google Scholar 

  220. Certo, M., Tsai, C.-H., Pucino, V., Ho, P.-C. & Mauro, C. Lactate modulation of immune responses in inflammatory versus tumour microenvironments. Nat. Rev. Immunol. 21, 151–161 (2021).

    Article  Google Scholar 

  221. Sangsuwan, R. et al. Lactate exposure promotes immunosuppressive phenotypes in innate immune cells. Cell Mol. Bioeng. 13, 541–557 (2020).

    Article  MathSciNet  Google Scholar 

  222. Allen, R. P., Bolandparvaz, A., Ma, J. A., Manickam, V. A. & Lewis, J. S. Latent, immunosuppressive nature of poly(lactic-co-glycolic acid) microparticles. ACS Biomater. Sci. Eng. 4, 900–918 (2018).

    Article  Google Scholar 

  223. Shimabukuro, T. T., Cole, M. & Su, J. R. Reports of anaphylaxis after receipt of mRNA COVID-19 vaccines in the US—December 14, 2020-January 18, 2021. JAMA 325, 1101–1102 (2021).

    Article  Google Scholar 

  224. Szebeni, J. et al. Applying lessons learned from nanomedicines to understand rare hypersensitivity reactions to mRNA-based SARS-CoV-2 vaccines. Nat. Nanotechnol. 17, 337–346 (2022).

    Article  Google Scholar 

  225. McKinlay, C. J. et al. Charge-altering releasable transporters (CARTs) for the delivery and release of mRNA in living animals. Proc. Natl Acad. Sci. USA. 114, E448–E456 (2017).

    Article  Google Scholar 

  226. Kowalski, P. S., Rudra, A., Miao, L. & Anderson, D. G. Delivering the messenger: advances in technologies for therapeutic mRNA delivery. Mol. Ther. 27, 710–728 (2019).

    Article  Google Scholar 

  227. Kong, N. et al. Synthetic mRNA nanoparticle-mediated restoration of p53 tumor suppressor sensitizes p53-deficient cancers to mTOR inhibition. Sci. Transl Med. 11, eaaw1565 (2019).

    Article  Google Scholar 

  228. Leuschner, F. et al. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat. Biotechnol. 29, 1005–1010 (2011).

    Article  Google Scholar 

  229. Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).

    Article  Google Scholar 

  230. Hewitt, S. L. et al. Intratumoral IL12 mRNA therapy promotes TH1 transformation of the tumor microenvironment. Clin. Cancer Res. 26, 6284–6298 (2020).

    Article  Google Scholar 

  231. Youngblood, B., Hale, J. S. & Ahmed, R. T-cell memory differentiation: insights from transcriptional signatures and epigenetics. Immunology 139, 277–284 (2013).

    Article  Google Scholar 

  232. Gounari, F. & Khazaie, K. TCF-1: a maverick in T cell development and function. Nat. Immunol. 23, 671–678 (2022).

    Article  Google Scholar 

  233. Zhao, X., Shan, Q. & Xue, H.-H. TCF1 in T cell immunity: a broadened frontier. Nat. Rev. Immunol. 22, 147–157 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Marble Center for Nanomedicine, the Ragon Institute of MGH, MIT and Harvard, the NIH (awards CA247632, EB031082, U01-CA265706, AI147845, AI162307, AI161297 and CA235375 to D.J.I.) and the Mark Foundation for Cancer Research. This material is based upon work supported in part by the US Army Research Office through the Institute for Soldier Nanotechnologies at MIT, under Cooperative Agreement Number W911NF-18-2-0048. D.J.I. is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was drafted and revised by P.Y., K.N. and D.J.I.

Corresponding author

Correspondence to Darrell J. Irvine.

Ethics declarations

Competing interests

D.J.I. is an inventor on patents related to albumin hitchhiking (discussed under ‘Principles of lymph node targeting’), nanoparticle modification of T cells (discussed under ‘Backpacking’ cells’) and alum-binding cytokines (discussed under ‘Intratumoral delivery of biomaterials for immune cell targeting’). These patents have been licensed to Elicio Therapeutics, Repertoire Immune Medicines and Ankyra Therapeutics, respectively, and D.J.I. holds equity in these companies. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousefpour, P., Ni, K. & Irvine, D.J. Targeted modulation of immune cells and tissues using engineered biomaterials. Nat Rev Bioeng 1, 107–124 (2023). https://doi.org/10.1038/s44222-022-00016-2

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44222-022-00016-2

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research