Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

APOE4 accelerates advanced-stage vascular and neurodegenerative disorder in old Alzheimer’s mice via cyclophilin A independently of amyloid-β

An Author Correction to this article was published on 29 June 2021

This article has been updated

Abstract

Apolipoprotein E4 (APOE4), the main susceptibility gene for Alzheimer’s disease (AD), leads to vascular dysfunction, amyloid-β pathology, neurodegeneration and dementia. How these different pathologies contribute to advanced-stage AD remains unclear. Using aged APOE knock-in mice crossed with 5xFAD mice, we show that, compared to APOE3, APOE4 accelerates blood–brain barrier (BBB) breakdown, loss of cerebral blood flow, neuronal loss and behavioral deficits independently of amyloid-β. BBB breakdown was associated with activation of the cyclophilin A-matrix metalloproteinase-9 BBB-degrading pathway in pericytes. Suppression of this pathway improved BBB integrity and prevented further neuronal loss and behavioral deficits in APOE4;5FAD mice while having no effect on amyloid-β pathology. Thus, APOE4 accelerates advanced-stage BBB breakdown and neurodegeneration in Alzheimer’s mice via the cyclophilin A pathway in pericytes independently of amyloid-β, which has implication for the pathogenesis and treatment of vascular and neurodegenerative disorder in AD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Blood–brain barrier breakdown in old APOE4 and APOE4;5xFAD mice.
Fig. 2: Cerebral blood flow reductions in old APOE4 and APOE4;5xFAD mice.
Fig. 3: Increased levels of cyclophilin A and matrix metalloproteinase-9 in pericytes in old APOE4 and APOE4;5xFAD mice correlate with the loss of tight junction proteins.
Fig. 4: Aβ pathology in old APOE3;5xFAD and APOE4;5xFAD mice and Aβ-independent vascular changes.
Fig. 5: Neurodegenerative changes in old APOE4 and APOE4;5xFAD mice correlate with BBB breakdown but not with Aβ pathology.
Fig. 6: Behavioral deficits in old APOE4 and APOE4;5xFAD mice correlate with vascular dysfunction but not with Aβ pathology.
Fig. 7: Debio-025 inhibits the CypA-MMP9 pathway in pericytes and improves BBB integrity in APOE4;5xFAD mice.
Fig. 8: Debio-025 prevents further loss of neurons and improves cognitive function in APOE4;5xFAD mice without affecting Aβ42 or Aβ40 levels in the brain.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon request. We also provided a complete data source (Excel sheets for data panels of Figs. 1–8 and Extended Data Figs. 1–4) with corresponding statistical analysis.

Change history

References

  1. Yamazaki, Y., Zhao, N., Caulfield, T. R., Liu, C. C. & Bu, G. Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nat. Rev. Neurol. 15, 501–518 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Halliday, M. R. et al. Accelerated pericyte degeneration and blood–brain barrier breakdown in apolipoprotein E4 carriers with Alzheimer’s disease. J. Cereb. Blood Flow Metab. 36, 216–227 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bell, R. D. et al. Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature 485, 512–516 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Armulik, A. et al. Pericytes regulate the blood–brain barrier. Nature 468, 557–561 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Bell, R. D. et al. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68, 409–427 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nikolakopoulou, A. M. et al. Pericyte loss leads to circulatory failure and pleiotrophin depletion causing neuron loss. Nat. Neurosci. 22, 1089–1098 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Thambisetty, M., Beason-Held, L., An, Y., Kraut, M. A. & Resnick, S. M. APOE epsilon4 genotype and longitudinal changes in cerebral blood flow in normal aging. Arch. Neurol. 67, 93–98 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Michels, L. et al. Arterial spin labeling imaging reveals widespread and Aβ-independent reductions in cerebral blood flow in elderly apolipoprotein epsilon-4 carriers. J. Cereb. Blood Flow Metab. 36, 581–595 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Reiman, E. M. et al. Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer’s dementia. Proc. Natl Acad. Sci. USA 101, 284–289 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Koizumi, K. et al. Apoepsilon4 disrupts neurovascular regulation and undermines white matter integrity and cognitive function. Nat. Commun. 9, 3816 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mahley, R. W. & Huang, Y. Apolipoprotein E sets the stage: response to injury triggers neuropathology. Neuron 76, 871–885 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shi, Y. et al. ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature 549, 523–527 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Deane, R. et al. apoE isoform-specific disruption of amyloid β peptide clearance from mouse brain. J. Clin. Invest. 118, 4002–4013 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Huynh, T. V., Davis, A. A., Ulrich, J. D. & Holtzman, D. M. Apolipoprotein E and Alzheimer’s disease: the influence of apolipoprotein E on amyloid-β and other amyloidogenic proteins. J. Lipid Res. 58, 824–836 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Holtzman, D. M. et al. Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer’s disease. Proc. Natl Acad. Sci. USA 97, 2892–2897 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hudry, E. et al. Gene transfer of human Apoe isoforms results in differential modulation of amyloid deposition and neurotoxicity in mouse brain. Sci. Transl. Med. 5, 212ra161 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Montagne, A. et al. APOE4 leads to blood–brain barrier dysfunction predicting cognitive decline. Nature 581, 71–76 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wardlaw, J. M. et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol 12, 822–838 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kapasi, A., DeCarli, C. & Schneider, J. A. Impact of multiple pathologies on the threshold for clinically overt dementia. Acta Neuropathol. 134, 171–186 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Iturria-Medina, Y. et al. Early role of vascular dysregulation on late-onset Alzheimer’s disease based on multifactorial data-driven analysis. Nat. Commun. 7, 11934 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sweeney, M. D. et al. Vascular dysfunction: the disregarded partner of Alzheimer’s disease. Alzheimers Dement. 15, 158–167 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Iadecola, C. The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron 96, 17–42 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Montagne, A. et al. Blood–brain barrier breakdown in the aging human hippocampus. Neuron 85, 296–302 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. van de Haar, H. J. et al. Neurovascular unit impairment in early Alzheimer’s disease measured with magnetic resonance imaging. Neurobiol. Aging 45, 190–196 (2016).

    Article  PubMed  Google Scholar 

  25. van de Haar, H. J. et al. Blood–Brain barrier leakage in patients with early Alzheimer disease. Radiology 281, 527–535 (2016).

    Article  PubMed  Google Scholar 

  26. Nation, D. A. et al. Blood–brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat. Med. 25, 270–276 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jack, C. R. Jr. et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 14, 535–562 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sullivan, P. M. et al. Targeted replacement of the mouse apolipoprotein E gene with the common human APOE3 allele enhances diet-induced hypercholesterolemia and atherosclerosis. J. Biol. Chem. 272, 17972–17980 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Oakley, H. et al. Intraneuronal β-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J. Neurosci. 26, 10129–10140 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Youmans, K. L. et al. APOE4-specific changes in Aβ accumulation in a new transgenic mouse model of Alzheimer disease. J. Biol. Chem. 287, 41774–41786 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nishitsuji, K., Hosono, T., Nakamura, T., Bu, G. & Michikawa, M. Apolipoprotein E regulates the integrity of tight junctions in an isoform-dependent manner in an in vitro blood–brain barrier model. J. Biol. Chem. 286, 17536–17542 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Alata, W., Ye, Y., St-Amour, I., Vandal, M. & Calon, F. Human apolipoprotein E varepsilon4 expression impairs cerebral vascularization and blood–brain barrier function in mice. J. Cereb. Blood Flow Metab. 35, 86–94 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Cacciottolo, M. et al. The APOE4 allele shows opposite sex bias in microbleeds and Alzheimer’s disease of humans and mice. Neurobiol. Aging 37, 47–57 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Kook, S. Y. et al. Aβ(1)(-)(4)(2)-RAGE interaction disrupts tight junctions of the blood–brain barrier via Ca(2)(+)-calcineurin signaling. J. Neurosci. 32, 8845–8854 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Giannoni, P. et al. Cerebrovascular pathology during the progression of experimental Alzheimer’s disease. Neurobiol. Dis. 88, 107–117 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Park, J. C. et al. Annexin A1 restores Aβ1-42 -induced blood–brain barrier disruption through the inhibition of RhoA-ROCK signaling pathway. Aging Cell 16, 149–161 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Lazic, D. et al. 3K3A-activated protein C blocks amyloidogenic BACE1 pathway and improves functional outcome in mice. J. Exp. Med. 216, 279–293 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Eguchi, K. et al. Whole-brain low-intensity pulsed ultrasound therapy markedly improves cognitive dysfunctions in mouse models of dementia: crucial roles of endothelial nitric oxide synthase. Brain Stimul. 11, 959–973 (2018).

    Article  PubMed  Google Scholar 

  39. Neuman, K. M. et al. Evidence for Alzheimer’s disease-linked synapse loss and compensation in mouse and human hippocampal CA1 pyramidal neurons. Brain Struct. Funct. 220, 3143–3165 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Balu, D. et al. The role of APOE in transgenic mouse models of AD. Neurosci. Lett. 707, 134285 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Montagne, A. et al. Pericyte degeneration causes white matter dysfunction in the mouse central nervous system. Nat. Med. 24, 326–337 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Thomas, R. et al. Epidermal growth factor prevents APOE4 and amyloid-β-induced cognitive and cerebrovascular deficits in female mice. Acta Neuropathol. Commun. 4, 111 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sagare, A. P. et al. Pericyte loss influences Alzheimer-like neurodegeneration in mice. Nat. Commun. 4, 2932 (2013).

    Article  PubMed  Google Scholar 

  44. Park, L. et al. Innate immunity receptor CD36 promotes cerebral amyloid angiopathy. Proc. Natl Acad. Sci. USA 110, 3089–3094 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Park, L. et al. Age-dependent neurovascular dysfunction and damage in a mouse model of cerebral amyloid angiopathy. Stroke 45, 1815–1821 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stanciu, C., Trifan, A., Muzica, C. & Sfarti, C. Efficacy and safety of alisporivir for the treatment of hepatitis C infection. Expert Opin. Pharmacother. 20, 379–384 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Softic, L. et al. Inhibition of SARS-CoV-2 infection by the cyclophilin inhibitor alisporivir (Debio 025). Antimicrob. Agents Chemother. 64, e00876–20 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Millay, D. P. et al. Genetic and pharmacologic inhibition of mitochondrial-dependent necrosis attenuates muscular dystrophy. Nat. Med. 14, 442–447 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tiepolo, T. et al. The cyclophilin inhibitor Debio 025 normalizes mitochondrial function, muscle apoptosis and ultrastructural defects in Col6a1−/− myopathic mice. Br. J. Pharmacol. 157, 1045–1052 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nikolakopoulou, A. M. et al. Endothelial LRP1 protects against neurodegeneration by blocking cyclophilin A. J. Exp. Med. 218, e20202207 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tai, L. M. et al. EFAD transgenic mice as a human APOE relevant preclinical model of Alzheimer’s disease. J. Lipid Res. 58, 1733–1755 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Eimer, W. A. & Vassar, R. Neuron loss in the 5XFAD mouse model of Alzheimer’s disease correlates with intraneuronal Aβ42 accumulation and caspase-3 activation. Mol. Neurodegener. 8, 2 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Senatorov, V. V. Jr. et al. Blood–brain barrier dysfunction in aging induces hyperactivation of TGFβ signaling and chronic yet reversible neural dysfunction. Sci. Transl. Med. 11, eaaw8283 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Andreone, B. J. et al. Blood–brain barrier permeability is regulated by lipid transport-dependent suppression of caveolae-mediated transcytosis. Neuron 94, 581–594 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Deane, R. et al. LRP/amyloid β-peptide interaction mediates differential brain efflux of Aβ isoforms. Neuron 43, 333–344 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Shibata, M. et al. Clearance of Alzheimer’s amyloid-ss(1-40) peptide from brain by LDL receptor-related protein-1 at the blood–brain barrier. J. Clin. Invest. 106, 1489–1499 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Donahue, J. E. et al. RAGE, LRP-1, and amyloid-β protein in Alzheimer’s disease. Acta Neuropathol. 112, 405–415 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Zhao, Z. et al. Central role for PICALM in amyloid-β blood–brain barrier transcytosis and clearance. Nat. Neurosci. 18, 978–987 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Winkler, E. A. et al. GLUT1 reductions exacerbate Alzheimer’s disease vasculo-neuronal dysfunction and degeneration. Nat. Neurosci. 18, 521–530 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jaeger, L. B. et al. Testing the neurovascular hypothesis of Alzheimer’s disease: LRP-1 antisense reduces blood–brain barrier clearance, increases brain levels of amyloid-β protein, and impairs cognition. J. Alzheimers Dis. 17, 553–570 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Barnes, S. R. et al. ROCKETSHIP: a flexible and modular software tool for the planning, processing and analysis of dynamic MRI studies. BMC Med. Imaging 15, 19 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Barnes, S. R. et al. Optimal acquisition and modeling parameters for accurate assessment of low Ktrans blood–brain barrier permeability using dynamic contrast-enhanced MRI. Magn. Reson. Med. 75, 1967–1977 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Ostergaard, L., Weisskoff, R. M., Chesler, D. A., Gyldensted, C. & Rosen, B. R. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: mathematical approach and statistical analysis. Magn. Reson. Med. 36, 715–725 (1996).

    Article  CAS  PubMed  Google Scholar 

  64. Wu, O. et al. Tracer arrival timing-insensitive technique for estimating flow in MR perfusion-weighted imaging using singular value decomposition with a block-circulant deconvolution matrix. Magn. Reson. Med. 50, 164–174 (2003).

    Article  PubMed  Google Scholar 

  65. Nikolakopoulou, A. M., Zhao, Z., Montagne, A. & Zlokovic, B. V. Regional early and progressive loss of brain pericytes but not vascular smooth muscle cells in adult mice with disrupted platelet-derived growth factor receptor-β signaling. PLoS ONE 12, e0176225 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work of B.V.Z. is supported by the National Institutes of Health grant nos. R01NS034467, R01AG023084, R01AG039452 and 1R01NS100459, in addition to Cure Alzheimer’s Fund and the Foundation Leducq Transatlantic Network of Excellence for the Study of Perivascular Spaces in Small Vessel Disease reference no. 16 CVD 05. We thank V. Li for technical assistance with some experiments.

Author information

Authors and Affiliations

Authors

Contributions

A.M., A.M.N., M.T.H., A.P.S. and B.V.Z. designed the research study and analyzed and interpreted the data. A.M. and M.T.H. performed MRI scans and MRI data analyses. M.S. helped with MRI data analyses. A.M.N., M.T.H. and A.P.S. performed brain tissue assays. A.P.S. performed amyloid assays. E.J.L., D.L. and S.V.R. performed behavioral tests. E.Z., A.G. and C.-J.H. performed tissue collection. A.M., S.R.B. and J.P. developed our in-house DSC-MRI program. M.J.L. provided human APOE mice crossed with 5xFAD line. M.J.L. and R.E.J. provided critical reading of the manuscript. A.M. contributed to manuscript writing and B.V.Z. supervised all data analysis and interpretation and wrote the manuscript.

Corresponding author

Correspondence to Berislav V. Zlokovic.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Aging thanks Jan Klohs, and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Additional characterization of blood-brain barrier breakdown in old APOE4 and APOE4;5xFAD male and female mice.

Blood-brain barrier (BBB) permeability Ktrans values in the cortex (Ctx) and hippocampus (Hipp) in male and female E3 (n = 12, 6 ♂ and 6 ♀; blue empty circles), E4 (n = 14, 7 ♂ and 7 ♀; blue filled circles), E3+FAD (n = 13, 8 ♂ and 5 ♀; red empty circles), and E4+FAD (n = 16, 11 ♂ and 5 ♀; red filled circles) mice generated from dynamic contrast-enhanced magnetic resonance scans. Mice (both genders) were 18–24-month old. Data are presented as truncated violin plots; continuous line, median; dotted line, interquartile range. Significance by one-way ANOVA followed by the Tukey post hoc test; ns, non-significant.

Source data

Extended Data Fig. 2 Additional characterization of cerebral blood flow reductions in old APOE4 and APOE4;5xFAD male and female mice.

Cerebral blood flow (CBF) values in the cortex (Ctx) and hippocampus (Hipp) in male and female E3 (n = 12, 6 ♂ and 6 ♀; blue empty circles), E4 (n = 14, 7 ♂ and 7 ♀; blue filled circles), E3+FAD (n = 13, 8 ♂ and 5 ♀; red empty circles), and E4+FAD (n = 16, 11 ♂ and 5 ♀; red filled circles) mice generated from dynamic susceptibility-contrast magnetic resonance scans. Mice (both genders) were 18–24-month old. Data are presented as truncated violin plots; continuous line, median; dotted line, interquartile range. Significance by one-way ANOVA followed by the Tukey post hoc test; ns, non-significant.

Source data

Extended Data Fig. 3 Additional characterization of Aβ pathology in old APOE3;5xFAD and APOE4;5xFAD male and female mice and Aβ-independent vascular changes.

a Aβ40 levels in the Ctx and Hipp in E3+FAD (n = 14) and E4+FAD (n = 17) mice. b, Aβ40 levels in the Ctx and Hipp in male and female E3+FAD (n = 13–14, 8–9 ♂ and 5 ♀) and E4+FAD (n = 17, 12 ♂ and 5 ♀) mice. Data are presented as truncated violin plots; continuous line, median; dotted line, interquartile range. c-f, Lack of correlation between the blood-brain barrier (BBB) permeability Ktrans values and Aβ40 levels in the Ctx and Hipp (c,d) and regional cerebral blood flow (CBF) values and Aβ40 levels in the Ctx and Hipp (e,f). Mice (both genders) were 18–24-month old (n = 28 individual points from both groups). In a, significance by unpaired two-tailed Student t-tests. In b, significance by one-way ANOVA followed by the Tukey post hoc test. In c-f, significance by two-tailed simple linear regression; r, Pearson correlation; ns, non-significant.

Source data

Extended Data Fig. 4 Effects of Debio-025 relative to vehicle on neuron counts, neuritic density and behavior in APOE4;5xFAD and APOE3;5xFAD mice (red circles, data taken from Fig. 8) compared to the littermate controls without 5XFAD transgenes (blue circles).

a–d, Quantification of NeuN+-neurons (a,b) and SMI312+-neuritic density (c,d) in the Ctx and Hipp in E3 (blue empty circles) and E4 (blue filled circles) untreated littermate controls without 5xFAD transgenes compared to age-matched E3+FAD (red empty circles) and E4+FAD (red filled circles) mice treated with vehicle or Debio-025; In a-d, n = 5 mice per group except in a. n = 4 in for E3 littermate controls without 5XFAD transgenes. e,f, Novel object location (NOL; e) and novel object recognition (NOR; f) in E3 (n = 8, blue empty circles) and E4 (n = 8, blue filled circles) untreated littermate controls without 5XFAD transgenes compared to age-matched E3+FAD vehicle-treated (n = 8; red empty circles), E3+FAD Debio-025-treated (n = 9; red empty circles), E4+FAD vehicle-treated (n = 7; red filled circles), and E4+FAD Debio-025-treated (n = 8; red filled circles) mice. Mice (both genders) were 10–12-month-old. In all graphs, data for E3+FAD and E4+FAD animals are the same as in Fig. 8 (red circles empty and filled); new data used for comparison are from their respective untreated littermate controls without 5XFAD transgenes (blue circles empty and filled). All data are presented as violin plots; continuous line, median; dotted line, interquartile range. Significance by one-way ANOVA followed by the Tukey post hoc test.

Source data

Supplementary information

Source data

Source Data Fig. 1

Statistical Source Data for Fig. 1.

Source Data Fig. 2

Statistical Source Data for Fig. 2.

Source Data Fig. 3

Statistical Source Data for Fig. 3.

Source Data Fig. 4

Statistical Source Data for Fig. 4.

Source Data Fig. 5

Statistical Source Data for Fig. 5.

Source Data Fig. 6

Statistical Source Data for Fig. 6.

Source Data Fig. 7

Statistical Source Data for Fig. 7.

Source Data Fig. 8

Statistical Source Data for Fig. 8.

Source Data Extended Data Fig. 1

Statistical Source Data for Extended Data Fig. 1.

Source Data Extended Data Fig. 2

Statistical Source Data for Extended Data Fig. 2.

Source Data Extended Data Fig. 3

Statistical Source Data for Extended Data Fig. 3.

Source Data Extended Data Fig. 4

Statistical Source Data for Extended Data Fig. 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montagne, A., Nikolakopoulou, A.M., Huuskonen, M.T. et al. APOE4 accelerates advanced-stage vascular and neurodegenerative disorder in old Alzheimer’s mice via cyclophilin A independently of amyloid-β. Nat Aging 1, 506–520 (2021). https://doi.org/10.1038/s43587-021-00073-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43587-021-00073-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing