Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting oxidative stress in disease: promise and limitations of antioxidant therapy

An Author Correction to this article was published on 13 July 2021

This article has been updated

Abstract

Oxidative stress is a component of many diseases, including atherosclerosis, chronic obstructive pulmonary disease, Alzheimer disease and cancer. Although numerous small molecules evaluated as antioxidants have exhibited therapeutic potential in preclinical studies, clinical trial results have been disappointing. A greater understanding of the mechanisms through which antioxidants act and where and when they are effective may provide a rational approach that leads to greater pharmacological success. Here, we review the relationships between oxidative stress, redox signalling and disease, the mechanisms through which oxidative stress can contribute to pathology, how antioxidant defences work, what limits their effectiveness and how antioxidant defences can be increased through physiological signalling, dietary components and potential pharmaceutical intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Reactive species in the extracellular space and defences by SOD or catalase mimics and NOX inhibitors.
Fig. 2: Glutathione metabolism and strategies to increase glutathione.
Fig. 3: NRF2 signalling pathway and antioxidant therapeutic approaches.

Similar content being viewed by others

Change history

References

  1. Sies, H. Oxidative Stress (ed. Sies, H.) 1–8 (Academic Press, 1985). This article introduces the concept of oxidative stress.

  2. Flohé, L. Looking back at the early stages of redox biology. Antioxidants 9, 1254 (2020). This article provides a history of oxidative stress from a current perspective.

    Article  PubMed Central  Google Scholar 

  3. Sies, H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress. Redox Biol. 11, 613–619 (2017). This article explains the central role of hydrogen peroxide in redox signalling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sies, H., Berndt, C. & Jones, D. P. Oxidative stress. Annu. Rev. Biochem. 86, 715–748 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Valko, M. et al. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39, 44–84 (2007). This article provides a review of redox signalling in disease.

    Article  CAS  PubMed  Google Scholar 

  6. Forman, H. J., Davies, K. J. & Ursini, F. How do nutritional antioxidants really work: nucleophilic tone and para-hormesis versus free radical scavenging in vivo. Free Radic. Biol. Med. 66, 24–35 (2014). This article provides a review of the mechanisms of nutritional antioxidants.

    Article  CAS  PubMed  Google Scholar 

  7. Sies, H. Strategies of antioxidant defense. Eur. J. Biochem. 215, 213–219 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Forman, H. J., Maiorino, M. & Ursini, F. Signaling functions of reactive oxygen species. Biochemistry 49, 835–842 (2010). This article explains why hydrogen peroxide is the principal redox second messenger.

    Article  CAS  PubMed  Google Scholar 

  9. Evans, J. L., Goldfine, I. D., Maddux, B. A. & Grodsky, G. M. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr. Rev. 23, 599–622 (2002). This article examines the links between oxidative stress and type 2 diabetes mellitus.

    Article  CAS  PubMed  Google Scholar 

  10. Liochev, S. I. & Fridovich, I. The role of O2.- in the production of HO·: in vitro and in vivo. Free Radic. Biol. Med. 16, 29–33 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Castro, L., Tortora, V., Mansilla, S. & Radi, R. Aconitases: non-redox iron-sulfur proteins sensitive to reactive species. Acc. Chem. Res. 52, 2609–2619 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Zhang, H. & Forman, H. J. 4-hydroxynonenal-mediated signaling and aging. Free Radic. Biol. Med. 111, 219–225 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Giuranno, L., Ient, J., De Ruysscher, D. & Vooijs, M. A. Radiation-induced lung injury (RILI). Front. Oncol. 9, 877 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Barnes, P. J. Oxidative stress-based therapeutics in COPD. Redox Biol. 33, 101544 (2020). This article examines the current state of redox-based therapy in COPD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fleckenstein, K. et al. Temporal onset of hypoxia and oxidative stress after pulmonary irradiation. Int. J. Radiat. Oncol. Biol. Phys. 68, 196–204 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rappold, P. M. et al. Paraquat neurotoxicity is mediated by the dopamine transporter and organic cation transporter-3. Proc. Natl Acad. Sci. USA 108, 20766–20771 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bus, J. S. & Gibson, J. E. Paraquat: model for oxidant-initiated toxicity. Env. Health Perspect. 55, 37–46 (1984).

    Article  CAS  Google Scholar 

  18. Glavind, J., Hartmann, S., Clemmesen, J., Jessen, K. E. & Dam, H. Studies on the role of lipoperoxides in human pathology. II. The presence of peroxidized lipids in the atherosclerotic aorta. Acta Pathol. Microbiol. Scand. 30, 1–6 (1952).

    Article  CAS  PubMed  Google Scholar 

  19. Suarna, C., Dean, R. T., May, J. & Stocker, R. Human atherosclerotic plaque contains both oxidized lipids and relatively large amounts of alpha-tocopherol and ascorbate. Arterioscler. Thromb. Vasc. Biol. 15, 1616–1624 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Salomon, R. G. et al. HNE-derived 2-pentylpyrroles are generated during oxidation of LDL, are more prevalent in blood plasma from patients with renal disease or atherosclerosis, and are present in atherosclerotic plaques. Chem. Res. Toxicol. 13, 557–564 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Gniwotta, C., Morrow, J. D., Roberts, L. J. 2nd & Kuhn, H. Prostaglandin F2-like compounds, F2-isoprostanes, are present in increased amounts in human atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol. 17, 3236–3241 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Yang, X. et al. Oxidative stress-mediated atherosclerosis: mechanisms and therapies. Front. Physiol. 8, 600 (2017). This article examines the current state of redox-based therapy in atherosclerosis.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pryor, W. A., Dooley, M. M. & Church, D. F. Human alpha-1-proteinase inhibitor is inactivated by exposure to sidestream cigarette smoke. Toxicol. Lett. 28, 65–70 (1985).

    Article  CAS  PubMed  Google Scholar 

  24. Montuschi, P. et al. Exhaled 8-isoprostane as an in vivo biomarker of lung oxidative stress in patients with COPD and healthy smokers. Am. J. Respir. Crit. Care Med. 162, 1175–1177 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Rahman, I. et al. 4-Hydroxy-2-nonenal, a specific lipid peroxidation product, is elevated in lungs of patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 166, 490–495 (2002).

    Article  PubMed  Google Scholar 

  26. Igishi, T. et al. Elevated urinary 8-hydroxydeoxyguanosine, a biomarker of oxidative stress, and lack of association with antioxidant vitamins in chronic obstructive pulmonary disease. Respirology 8, 455–460 (2003).

    Article  PubMed  Google Scholar 

  27. Psathakis, K. et al. Exhaled markers of oxidative stress in idiopathic pulmonary fibrosis. Eur. J. Clin. Invest. 36, 362–367 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Montuschi, P. et al. 8-Isoprostane as a biomarker of oxidative stress in interstitial lung diseases. Am. J. Respir. Crit. Care Med. 158, 1524–1527 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Lenz, A. G., Costabel, U. & Maier, K. L. Oxidized BAL fluid proteins in patients with interstitial lung diseases. Eur. Respir. J. 9, 307–312 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Tsubouchi, K. et al. Involvement of GPx4-regulated lipid peroxidation in idiopathic pulmonary fibrosis pathogenesis. J. Immunol. 203, 2076–2087 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Malli, F. et al. 8-Isoprostane levels in serum and bronchoalveolar lavage in idiopathic pulmonary fibrosis and sarcoidosis. Food Chem. Toxicol. 61, 160–163 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Cantin, A. M., Hubbard, R. C. & Crystal, R. G. Glutathione deficiency in the epithelial lining fluid of the lower respiratory tract in idiopathic pulmonary fibrosis. Am. Rev. Respir. Dis. 139, 370–372 (1989).

    Article  CAS  PubMed  Google Scholar 

  33. Ble-Castillo, J. L. et al. Effect of alpha-tocopherol on the metabolic control and oxidative stress in female type 2 diabetics. Biomed. Pharmacother. 59, 290–295 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Schuliga, M. et al. Mitochondrial dysfunction contributes to the senescent phenotype of IPF lung fibroblasts. J. Cell Mol. Med. 22, 5847–5861 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu, R. M. et al. Transforming growth factor beta suppresses glutamate-cysteine ligase gene expression and induces oxidative stress in a lung fibrosis model. Free Radic. Biol. Med. 53, 554–563 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kliment, C. R. & Oury, T. D. Oxidative stress, extracellular matrix targets, and idiopathic pulmonary fibrosis. Free Radic. Biol. Med. 49, 707–717 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Phan, T. H. G. et al. Emerging cellular and molecular determinants of idiopathic pulmonary fibrosis. Cell Mol. Life Sci. 78, 2031–2057 (2020).

    Article  PubMed  Google Scholar 

  38. Montezano, A. C. & Touyz, R. M. Reactive oxygen species, vascular Noxs, and hypertension: focus on translational and clinical research. Antioxid. Redox Signal. 20, 164–182 (2014). This article examines the role of NOXs in disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lacy, F., Kailasam, M. T., O’Connor, D. T., Schmid-Schonbein, G. W. & Parmer, R. J. Plasma hydrogen peroxide production in human essential hypertension: role of heredity, gender, and ethnicity. Hypertension 36, 878–884 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Redon, J. et al. Antioxidant activities and oxidative stress byproducts in human hypertension. Hypertension 41, 1096–1101 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Rodrigo, R., Bachler, J. P., Araya, J., Prat, H. & Passalacqua, W. Relationship between (Na + K)-ATPase activity, lipid peroxidation and fatty acid profile in erythrocytes of hypertensive and normotensive subjects. Mol. Cell Biochem. 303, 73–81 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Touyz, R. M. et al. Oxidative stress: a unifying paradigm in hypertension. Can. J. Cardiol. 36, 659–670 (2020).

    Article  PubMed  Google Scholar 

  43. Oguntibeju, O. O. Type 2 diabetes mellitus, oxidative stress and inflammation: examining the links. Int. J. Physiol. Pathophysiol. Pharmacol. 11, 45–63 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Girona, J. et al. Oxidized to non-oxidized lipoprotein ratios are associated with arteriosclerosis and the metabolic syndrome in diabetic patients. Nutr. Metab. Cardiovasc. Dis. 18, 380–387 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Al-Aubaidy, H. A. & Jelinek, H. F. Oxidative DNA damage and obesity in type 2 diabetes mellitus. Eur. J. Endocrinol. 164, 899–904 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Gopaul, N. K. et al. Plasma 8-epi-PGF2 alpha levels are elevated in individuals with non-insulin dependent diabetes mellitus. FEBS Lett. 368, 225–229 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. Pandey, K. B., Mishra, N. & Rizvi, S. I. Protein oxidation biomarkers in plasma of type 2 diabetic patients. Clin. Biochem. 43, 508–511 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Niwa, T., Naito, C., Mawjood, A. H. & Imai, K. Increased glutathionyl hemoglobin in diabetes mellitus and hyperlipidemia demonstrated by liquid chromatography/electrospray ionization-mass spectrometry. Clin. Chem. 46, 82–88 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Davi, G. et al. In vivo formation of 8-iso-prostaglandin f2alpha and platelet activation in diabetes mellitus: effects of improved metabolic control and vitamin E supplementation. Circulation 99, 224–229 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Nishikawa, T. & Araki, E. Impact of mitochondrial ROS production in the pathogenesis of diabetes mellitus and its complications. Antioxid. Redox Signal. 9, 343–353 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Gray, S. P. et al. NADPH oxidase 1 plays a key role in diabetes mellitus-accelerated atherosclerosis. Circulation 127, 1888–1902 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Butterfield, D. A. & Halliwell, B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat. Rev. Neurosci. 20, 148–160 (2019). This article examines the role of oxidative stress in Alzheimer disease.

    Article  CAS  PubMed  Google Scholar 

  53. Montine, T. J. et al. Increased CSF F2-isoprostane concentration in probable AD. Neurology 52, 562–565 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Pratico, D., V, M. Y. L., Trojanowski, J. Q., Rokach, J. & Fitzgerald, G. A. Increased F2-isoprostanes in Alzheimer’s disease: evidence for enhanced lipid peroxidation in vivo. FASEB J. 12, 1777–1783 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Lovell, M. A., Xie, C. & Markesbery, W. R. Acrolein is increased in Alzheimer’s disease brain and is toxic to primary hippocampal cultures. Neurobiol. Aging 22, 187–194 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Lovell, M. A., Ehmann, W. D., Mattson, M. P. & Markesbery, W. R. Elevated 4-hydroxynonenal in vertricular fluid in Alzheimer’s disease. Neurobiol. Aging 18, 457–461 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Perluigi, M. et al. Redox proteomics identification of 4-hydroxynonenal-modified brain proteins in Alzheimer’s disease: role of lipid peroxidation in Alzheimer’s disease pathogenesis. Proteom. Clin. Appl. 3, 682–693 (2009).

    Article  CAS  Google Scholar 

  58. Ansari, M. A. & Scheff, S. W. Oxidative stress in the progression of Alzheimer disease in the frontal cortex. J. Neuropathol. Exp. Neurol. 69, 155–167 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Wang, J., Xiong, S., Xie, C., Markesbery, W. R. & Lovell, M. A. Increased oxidative damage in nuclear and mitochondrial DNA in Alzheimer’s disease. J. Neurochem. 93, 953–962 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Butterfield, D. A. et al. Redox proteomics identification of oxidatively modified hippocampal proteins in mild cognitive impairment: insights into the development of Alzheimer’s disease. Neurobiol. Dis. 22, 223–232 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Butterfield, D. A., Hensley, K., Harris, M., Mattson, M. & Carney, J. β-Amyloid peptide free radical fragments initiate synaptosomal lipoperoxidation in a sequence-specific fashion: implications to Alzheimer’s disease. Biochem. Biophys. Res. Commun. 200, 710–715 (1994).

    Article  CAS  PubMed  Google Scholar 

  62. Simpson, D. S. A. & Oliver, P. L. ROS generation in microglia: understanding oxidative stress and inflammation in neurodegenerative disease. Antioxidants 9, 743 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  63. Smith, M. A., Harris, P. L., Sayre, L. M. & Perry, G. Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc. Natl Acad. Sci. USA 94, 9866–9868 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Swerdlow, R. H. et al. Cybrids in Alzheimer’s disease: a cellular model of the disease? Neurology 49, 918–925 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Hayes, J. D., Dinkova-Kostova, A. T. & Tew, K. D. Oxidative stress in cancer. Cancer Cell 38, 167–197 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Conklin, K. A. Chemotherapy-associated oxidative stress: impact on chemotherapeutic effectiveness. Integr. Cancer Ther. 3, 294–300 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Raimondi, V., Ciccarese, F. & Ciminale, V. Oncogenic pathways and the electron transport chain: a dangeROS liaison. Br. J. Cancer 122, 168–181 (2020).

    Article  PubMed  Google Scholar 

  68. Graham, K. A. et al. NADPH oxidase 4 is an oncoprotein localized to mitochondria. Cancer Biol. Ther. 10, 223–231 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jiang, W. G., Douglas-Jones, A. G. & Mansel, R. E. Aberrant expression of 5-lipoxygenase-activating protein (5-LOXAP) has prognostic and survival significance in patients with breast cancer. Prostaglandins Leukot. Essent. Fat. Acids 74, 125–134 (2006).

    Article  CAS  Google Scholar 

  70. Chan, H. P., Tran, V., Lewis, C. & Thomas, P. S. Elevated levels of oxidative stress markers in exhaled breath condensate. J. Thorac. Oncol. 4, 172–178 (2009).

    Article  PubMed  Google Scholar 

  71. Matsui, A. et al. Increased formation of oxidative DNA damage, 8-hydroxy-2′-deoxyguanosine, in human breast cancer tissue and its relationship to GSTP1 and COMT genotypes. Cancer Lett. 151, 87–95 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Ohtake, S. et al. Oxidative stress marker 8-hydroxyguanosine is more highly expressed in prostate cancer than in benign prostatic hyperplasia. Mol. Clin. Oncol. 9, 302–304 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. An, A. R. et al. Association between expression of 8-OHdG and cigarette smoking in non-small cell lung cancer. J. Pathol. Transl. Med. 53, 217–224 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Chakraborty, R. K. & Burns, B. Systemic Inflammatory Response Syndrome (StatPearls 2020).

  75. Ware, L. B., Fessel, J. P., May, A. K. & Roberts, L. J.2nd Plasma biomarkers of oxidant stress and development of organ failure in severe sepsis. Shock 36, 12–17 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Alonso de Vega, J. M., Diaz, J., Serrano, E. & Carbonell, L. F. Oxidative stress in critically ill patients with systemic inflammatory response syndrome. Crit. Care Med. 30, 1782–1786 (2002).

    Article  PubMed  Google Scholar 

  77. Bahar, I., Elay, G., Baskol, G., Sungur, M. & Donmez-Altuntas, H. Increased DNA damage and increased apoptosis and necrosis in patients with severe sepsis and septic shock. J. Crit. Care 43, 271–275 (2018).

    Article  CAS  PubMed  Google Scholar 

  78. Carpenter, C. T., Price, P. V. & Christman, B. W. Exhaled breath condensate isoprostanes are elevated in patients with acute lung injury or ARDS. Chest 114, 1653–1659 (1998).

    Article  CAS  PubMed  Google Scholar 

  79. Sittipunt, C. et al. Nitric oxide and nitrotyrosine in the lungs of patients with acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 163, 503–510 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Webber, R. J., Sweet, R. M. & Webber, D. S. Inducible nitric oxide synthase in circulating microvesicles: discovery, evolution, and evidence as a novel biomarker and the probable causative agent for sepsis. J. Appl. Lab. Med. 3, 698–711 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Joseph, L. C. et al. Inhibition of NADPH oxidase 2 (NOX2) prevents sepsis-induced cardiomyopathy by improving calcium handling and mitochondrial function. JCI Insight 2, e94248 (2017).

    Article  PubMed Central  Google Scholar 

  82. Galley, H. F., Davies, M. J. & Webster, N. R. Xanthine oxidase activity and free radical generation in patients with sepsis syndrome. Crit. Care Med. 24, 1649–1653 (1996).

    Article  CAS  PubMed  Google Scholar 

  83. Crouser, E. D., Julian, M. W., Blaho, D. V. & Pfeiffer, D. R. Endotoxin-induced mitochondrial damage correlates with impaired respiratory activity. Crit. Care Med. 30, 276–284 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Schorah, C. J. et al. Total vitamin C, ascorbic acid, and dehydroascorbic acid concentrations in plasma of critically ill patients. Am. J. Clin. Nutr. 63, 760–765 (1996).

    Article  CAS  PubMed  Google Scholar 

  85. Takeda, K. et al. Plasma lipid peroxides and alpha-tocopherol in critically ill patients. Crit. Care Med. 12, 957–959 (1984).

    Article  CAS  PubMed  Google Scholar 

  86. Lyons, J. et al. Cysteine metabolism and whole blood glutathione synthesis in septic pediatric patients. Crit. Care Med. 29, 870–877 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Granger, D. N. Role of xanthine oxidase and granulocytes in ischemia-reperfusion injury. Am. J. Physiol. 255, H1269–H1275 (1988). This article documents the sources of oxidative stress in IRI.

    CAS  PubMed  Google Scholar 

  88. Matsushima, S., Tsutsui, H. & Sadoshima, J. Physiological and pathological functions of NADPH oxidases during myocardial ischemia-reperfusion. Trends Cardiovasc. Med. 24, 202–205 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Duilio, C. et al. Neutrophils are primary source of O2 radicals during reperfusion after prolonged myocardial ischemia. Am. J. Physiol. Heart Circ. Physiol. 280, H2649–H2657 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Delanty, N. et al. 8-epi PGF2 alpha generation during coronary reperfusion. A potential quantitative marker of oxidant stress in vivo. Circulation 95, 2492–2499 (1997).

    Article  CAS  PubMed  Google Scholar 

  91. Reilly, M. P. et al. Increased formation of the isoprostanes IPF2alpha-I and 8-epi-prostaglandin F2alpha in acute coronary angioplasty: evidence for oxidant stress during coronary reperfusion in humans. Circulation 96, 3314–3320 (1997).

    Article  CAS  PubMed  Google Scholar 

  92. Seet, R. C. et al. Oxidative damage in ischemic stroke revealed using multiple biomarkers. Stroke 42, 2326–2329 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Nagayoshi, Y. et al. Urinary 8-hydroxy-2′-deoxyguanosine levels increase after reperfusion in acute myocardial infarction and may predict subsequent cardiac events. Am. J. Cardiol. 95, 514–517 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Gong, P., Stewart, D., Hu, B., Vinson, C. & Alam, J. Multiple basic-leucine zipper proteins regulate induction of the mouse heme oxygenase-1 gene by arsenite. Arch. Biochem. Biophys. 405, 265–274 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Kronke, G. et al. Expression of heme oxygenase-1 in human vascular cells is regulated by peroxisome proliferator-activated receptors. Arterioscler. Thromb. Vasc. Biol. 27, 1276–1282 (2007).

    Article  PubMed  Google Scholar 

  96. Peng, Z. et al. Inhibitor of kappaB kinase beta regulates redox homeostasis by controlling the constitutive levels of glutathione. Mol. Pharmacol. 77, 784–792 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Rojo, A. I., Salinas, M., Martin, D., Perona, R. & Cuadrado, A. Regulation of Cu/Zn-superoxide dismutase expression via the phosphatidylinositol 3 kinase/Akt pathway and nuclear factor-kappaB. J. Neurosci. 24, 7324–7334 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mulcahy, R. T. & Gipp, J. J. Identification of a putative antioxidant response element in the 5′-flanking region of the human g-glutamylcycteine synthetase heavy subunit gene. Biochem. Biophys. Res. Commun. 209, 227–233 (1995). This article describes an essential role for NRF2 in GSH biosynthesis.

    Article  CAS  PubMed  Google Scholar 

  99. Cuadrado, A. et al. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat. Rev. Drug Discov. 18, 295–317 (2019). This article provides a comprehensive review of NRF2 as a target for therapy.

    Article  CAS  PubMed  Google Scholar 

  100. Moncada, S., Palmer, R. M. J. & Higgs, E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43, 109–142 (1991). This article provides a review of the primary role of nitric oxide in physiology and disease.

    CAS  PubMed  Google Scholar 

  101. Ursini, F., Maiorino, M. & Forman, H. J. Redox homeostasis: the Golden Mean of healthy living. Redox Biol. 8, 205–215 (2016). This article examines the relationship of redox homeostasis to disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Pickering, A. M., Linder, R. A., Zhang, H., Forman, H. J. & Davies, K. J. Nrf2-dependent induction of proteasome and Pa28alphabeta regulator are required for adaptation to oxidative stress. J. Biol. Chem. 287, 10021–10031 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chowdhury, I. et al. Oxidant stress stimulates expression of the human peroxiredoxin 6 gene by a transcriptional mechanism involving an antioxidant response element. Free Radic. Biol. Med. 46, 146–153 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. Rusyn, I. et al. Expression of base excision DNA repair genes is a sensitive biomarker for in vivo detection of chemical-induced chronic oxidative stress: identification of the molecular source of radicals responsible for DNA damage by peroxisome proliferators. Cancer Res. 64, 1050–1057 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. McCord, J. M. & Fridovich, I. Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244, 6049–6055 (1969).

    Article  CAS  PubMed  Google Scholar 

  106. Batinic-Haberle, I., Reboucas, J. S. & Spasojevic, I. Superoxide dismutase mimics: chemistry, pharmacology, and therapeutic potential. Antioxid. Redox Signal. 13, 877–918 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Bonetta, R. Potential therapeutic applications of MnSODs and SOD-mimetics. Chemistry 24, 5032–5041 (2018).

    Article  CAS  PubMed  Google Scholar 

  108. Faraggi, M., Peretz, P. & Weinraub, D. Chemical properties of water-soluble porphyrins. 4. The reaction of a ‘picket-fence-like’ iron (III) complex with the superoxide oxygen couple. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 49, 951–968 (1986).

    Article  CAS  PubMed  Google Scholar 

  109. Pasternack, R. F., Banth, A., Pasternack, J. M. & Johnson, C. S. Catalysis of the disproportionation of superoxide by metalloporphyrins. J. Inorg. Biochem. 15, 261–267 (1981).

    Article  CAS  PubMed  Google Scholar 

  110. Peretz, P., Solomon, D., Weinraub, D. & Faraggi, M. Chemical properties of water-soluble porphyrins 3. The reaction of superoxide radicals with some metalloporphyrins. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 42, 449–456 (1982).

    Article  CAS  PubMed  Google Scholar 

  111. Batinić-Haberle, I. et al. Relationship among redox potentials, proton dissociation constants of pyrrolic nitrogens, and in vivo and in vitro superoxide dismutating activities of manganese(iii) and iron(iii) water-soluble porphyrins. Inorg. Chem. 38, 12 (1999).

    Article  Google Scholar 

  112. Jaramillo, M. C., Briehl, M. M., Batinic-Haberle, I. & Tome, M. E. Manganese (iii) meso-tetrakis N-ethylpyridinium-2-yl porphyrin acts as a pro-oxidant to inhibit electron transport chain proteins, modulate bioenergetics, and enhance the response to chemotherapy in lymphoma cells. Free Radic. Biol. Med. 83, 89–100 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ferrer-Sueta, G. et al. Reactions of manganese porphyrins with peroxynitrite and carbonate radical anion. J. Biol. Chem. 278, 27432–27438 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Batinic-Haberle, I., Tovmasyan, A. & Spasojevic, I. An educational overview of the chemistry, biochemistry and therapeutic aspects of Mn porphyrins—from superoxide dismutation to H2O2-driven pathways. Redox Biol. 5, 43–65 (2015). This article examines the potential use of SOD mimics in therapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Rawal, M. et al. Manganoporphyrins increase ascorbate-induced cytotoxicity by enhancing H2O2 generation. Cancer Res. 73, 5232–5241 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Batinic-Haberle, I., Spasojevic, I. & Fridovich, I. Tetrahydrobiopterin rapidly reduces the SOD mimic Mn(iii) ortho-tetrakis(N-ethylpyridinium-2-yl)porphyrin. Free Radic. Biol. Med. 37, 367–374 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Batinic-Haberle, I. et al. Design of Mn porphyrins for treating oxidative stress injuries and their redox-based regulation of cellular transcriptional activities. Amino Acids 42, 95–113 (2012).

    Article  CAS  PubMed  Google Scholar 

  118. Dorai, T. et al. Amelioration of renal ischemia-reperfusion injury with a novel protective cocktail. J. Urol. 186, 2448–2454 (2011).

    Article  CAS  PubMed  Google Scholar 

  119. Huber, W. Orgotein–(bovine Cu-Zn superoxide dismutase), an anti-inflammatory protein drug: discovery, toxicology and pharmacology. Eur. J. Rheumatol. Inflamm. 4, 173–182 (1981).

    CAS  PubMed  Google Scholar 

  120. Menander-Huber, K. B., Edsmyr, F. & Huber, W. Orgotein (superoxide dismutase): a drug for the amelioration of radiation-induced side effects. A double-blind, placebo-controlled study in patients with bladder tumours. Urol. Res. 6, 255–257 (1978).

    Article  CAS  PubMed  Google Scholar 

  121. Sanchiz, F. et al. Prevention of radioinduced cystitis by orgotein: a randomized study. Anticancer. Res. 16, 2025–2028 (1996).

    CAS  PubMed  Google Scholar 

  122. Nielsen, O. S. et al. Orgotein in radiation treatment of bladder cancer. A report on allergic reactions and lack of radioprotective effect. Acta Oncol. 26, 101–104 (1987).

    Article  CAS  PubMed  Google Scholar 

  123. Mackensen, G. B. et al. Neuroprotection from delayed postischemic administration of a metalloporphyrin catalytic antioxidant. J. Neurosci. 21, 4582–4592 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Gauter-Fleckenstein, B. et al. Comparison of two Mn porphyrin-based mimics of superoxide dismutase in pulmonary radioprotection. Free Radic. Biol. Med. 44, 982–989 (2008).

    Article  CAS  PubMed  Google Scholar 

  125. Rabbani, Z. N. et al. Antiangiogenic action of redox-modulating Mn(iii) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin, MnTE-2-PyP(5+), via suppression of oxidative stress in a mouse model of breast tumor. Free Radic. Biol. Med. 47, 992–1004 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Moeller, B. J., Cao, Y., Li, C. Y. & Dewhirst, M. W. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell 5, 429–441 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Piganelli, J. D. et al. A metalloporphyrin-based superoxide dismutase mimic inhibits adoptive transfer of autoimmune diabetes by a diabetogenic T-cell clone. Diabetes 51, 347–355 (2002).

    Article  CAS  PubMed  Google Scholar 

  128. Ganesh, D. et al. Impact of superoxide dismutase mimetic AEOL 10150 on the endothelin system of Fischer 344 rats. PLoS ONE 11, e0151810 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Benatar, M. Lost in translation: treatment trials in the SOD1 mouse and in human ALS. Neurobiol. Dis. 26, 1–13 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Aston, K. et al. Computer-aided design (CAD) of Mn(ii) complexes: superoxide dismutase mimetics with catalytic activity exceeding the native enzyme. Inorg. Chem. 40, 1779–1789 (2001).

    Article  CAS  PubMed  Google Scholar 

  131. Heer, C. D. et al. Superoxide dismutase mimetic GC4419 enhances the oxidation of pharmacological ascorbate and its anticancer effects in an H2O2-dependent manner. Antioxidants 7, 18 (2018).

    Article  PubMed Central  Google Scholar 

  132. Salvemini, D. et al. Pharmacological manipulation of the inflammatory cascade by the superoxide dismutase mimetic, M40403. Br. J. Pharmacol. 132, 815–827 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Salvemini, D. et al. Amelioration of joint disease in a rat model of collagen-induced arthritis by M40403, a superoxide dismutase mimetic. Arthritis Rheum. 44, 2909–2921 (2001).

    Article  CAS  PubMed  Google Scholar 

  134. Masini, E. et al. Protective effects of M40403, a selective superoxide dismutase mimetic, in myocardial ischaemia and reperfusion injury in vivo. Br. J. Pharmacol. 136, 905–917 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Anderson, C. M. et al. Phase 1b/2a trial of the superoxide dismutase mimetic GC4419 to reduce chemoradiotherapy-induced oral mucositis in patients with oral cavity or oropharyngeal carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 100, 427–435 (2018).

    Article  CAS  PubMed  Google Scholar 

  136. Doctrow, S. R. et al. Salen-manganese complexes: combined superoxide dismutase/catalase mimics with broad pharmacological efficacy. Adv. Pharmacol. 38, 247–269 (1997).

    Article  CAS  PubMed  Google Scholar 

  137. McDonald, M. C. et al. A superoxide dismutase mimetic with catalase activity (EUK-8) reduces the organ injury in endotoxic shock. Eur. J. Pharmacol. 466, 181–189 (2003). This article examines the advantage of having catalase activity in SOD mimics.

    Article  CAS  PubMed  Google Scholar 

  138. Xu, Y., Armstrong, S. J., Arenas, I. A., Pehowich, D. J. & Davidge, S. T. Cardioprotection by chronic estrogen or superoxide dismutase mimetic treatment in the aged female rat. Am. J. Physiol. Heart Circ. Physiol. 287, H165–H171 (2004).

    Article  CAS  PubMed  Google Scholar 

  139. van Empel, V. P. et al. EUK-8, a superoxide dismutase and catalase mimetic, reduces cardiac oxidative stress and ameliorates pressure overload-induced heart failure in the harlequin mouse mutant. J. Am. Coll. Cardiol. 48, 824–832 (2006).

    Article  PubMed  Google Scholar 

  140. Izumi, M., McDonald, M. C., Sharpe, M. A., Chatterjee, P. K. & Thiemermann, C. Superoxide dismutase mimetics with catalase activity reduce the organ injury in hemorrhagic shock. Shock 18, 230–235 (2002).

    Article  PubMed  Google Scholar 

  141. Jung, C. et al. Synthetic superoxide dismutase/catalase mimetics reduce oxidative stress and prolong survival in a mouse amyotrophic lateral sclerosis model. Neurosci. Lett. 304, 157–160 (2001).

    Article  CAS  PubMed  Google Scholar 

  142. Chatterjee, P. K. et al. EUK-134 reduces renal dysfunction and injury caused by oxidative and nitrosative stress of the kidney. Am. J. Nephrol. 24, 165–177 (2004).

    Article  CAS  PubMed  Google Scholar 

  143. Baker, K. et al. Synthetic combined superoxide dismutase/catalase mimetics are protective as a delayed treatment in a rat stroke model: a key role for reactive oxygen species in ischemic brain injury. J. Pharmacol. Exp. Ther. 284, 215–221 (1998).

    CAS  PubMed  Google Scholar 

  144. Langan, A. R., Khan, M. A., Yeung, I. W., Van Dyk, J. & Hill, R. P. Partial volume rat lung irradiation: the protective/mitigating effects of Eukarion-189, a superoxide dismutase-catalase mimetic. Radiother. Oncol. 79, 231–238 (2006).

    Article  CAS  PubMed  Google Scholar 

  145. Liu, Z. et al. Frequency modulation of synchronized Ca2+ spikes in cultured hippocampal networks through G-protein-coupled receptors. J. Neurosci. 23, 4156–4163 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Himori, K. et al. Superoxide dismutase/catalase mimetic EUK-134 prevents diaphragm muscle weakness in monocrotalin-induced pulmonary hypertension. PLoS ONE 12, e0169146 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Zhang, H. J., Doctrow, S. R., Oberley, L. W. & Kregel, K. C. Chronic antioxidant enzyme mimetic treatment differentially modulates hyperthermia-induced liver HSP70 expression with aging. J. Appl. Physiol. 100, 1385–1391 (2006).

    Article  CAS  PubMed  Google Scholar 

  148. Day, B. J. Catalase and glutathione peroxidase mimics. Biochem. Pharmacol. 77, 285–296 (2009).

    Article  CAS  PubMed  Google Scholar 

  149. Sies, H. Ebselen, a selenoorganic compound as glutathione peroxidase mimic. Free. Radic. Biol. Med. 14, 313–323 (1993).

    Article  CAS  PubMed  Google Scholar 

  150. Nakamura, Y. et al. Ebselen, a glutathione peroxidase mimetic seleno-organic compound, as a multifunctional antioxidant. Implication for inflammation-associated carcinogenesis. J. Biol. Chem. 277, 2687–2694 (2002).

    Article  CAS  PubMed  Google Scholar 

  151. Kil, J., Pierce, C., Tran, H., Gu, R. & Lynch, E. D. Ebselen treatment reduces noise induced hearing loss via the mimicry and induction of glutathione peroxidase. Hear. Res. 226, 44–51 (2007).

    Article  CAS  PubMed  Google Scholar 

  152. Garland, M. et al. The clinical drug ebselen attenuates inflammation and promotes microbiome recovery in mice after antibiotic treatment for CDI. Cell Rep. Med. 1, 100005 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Singh, N. et al. Effect of the putative lithium mimetic ebselen on brain myo-inositol, sleep, and emotional processing in humans. Neuropsychopharmacology 41, 1768–1778 (2016).

    Article  CAS  PubMed  Google Scholar 

  154. Ogawa, A. et al. Ebselen in acute middle cerebral artery occlusion: a placebo-controlled, double-blind clinical trial. Cerebrovasc. Dis. 9, 112–118 (1999).

    Article  CAS  PubMed  Google Scholar 

  155. Saito, I. et al. Neuroprotective effect of an antioxidant, ebselen, in patients with delayed neurological deficits after aneurysmal subarachnoid hemorrhage. Neurosurgery 42, 269–277; discussion 277–278 (1998).

    Article  CAS  PubMed  Google Scholar 

  156. Yamaguchi, T. et al. Ebselen in acute ischemic stroke: a placebo-controlled, double-blind clinical trial. Stroke 29, 12–17 (1998).

    Article  CAS  PubMed  Google Scholar 

  157. d’Alessio, P., Moutet, M., Coudrier, E., Darquenne, S. & Chaudiere, J. ICAM-1 and VCAM-1 expression induced by TNF-alpha are inhibited by a glutathione peroxidase mimic. Free Radic. Biol. Med. 24, 979–987 (1998).

    Article  PubMed  Google Scholar 

  158. Castagne, V. & Clarke, P. G. Neuroprotective effects of a new glutathione peroxidase mimetic on neurons of the chick embryo’s retina. J. Neurosci. Res. 59, 497–503 (2000).

    Article  CAS  PubMed  Google Scholar 

  159. Blum, S. et al. Haptoglobin genotype determines myocardial infarct size in diabetic mice. J. Am. Coll. Cardiol. 49, 82–87 (2007).

    Article  CAS  PubMed  Google Scholar 

  160. Puntarulo, S. & Cederbaum, A. I. Comparison of the ability of ferric complexes to catalyze microsomal chemiluminescence, lipid peroxidation, and hydroxyl radical generation. Arch. Biochem. Biophys. 264, 482–491 (1988).

    Article  CAS  PubMed  Google Scholar 

  161. Brittenham, G. M. et al. Efficacy of deferoxamine in preventing complications of iron overload in patients with thalassemia major. N. Engl. J. Med. 331, 567–573 (1994).

    Article  CAS  PubMed  Google Scholar 

  162. Raftos, J. E., Whillier, S., Chapman, B. E. & Kuchel, P. W. Kinetics of uptake and deacetylation of N-acetylcysteine by human erythrocytes. Int. J. Biochem. Cell Biol. 39, 1698–1706 (2007).

    Article  CAS  PubMed  Google Scholar 

  163. Rushworth, G. F. & Megson, I. L. Existing and potential therapeutic uses for N-acetylcysteine: the need for conversion to intracellular glutathione for antioxidant benefits. Pharmacol. Ther. 141, 150–159 (2014).

    Article  CAS  PubMed  Google Scholar 

  164. Smilkstein, M. J., Knapp, G. L., Kulig, K. W. & Rumack, B. H. Efficacy of oral N-acetylcysteine in the treatment of acetaminophen overdose. Analysis of the national multicenter study (1976 to 1985). N. Engl. J. Med. 319, 1557–1562 (1988).

    Article  CAS  PubMed  Google Scholar 

  165. Conrad, C. et al. Long-term treatment with oral N-acetylcysteine: affects lung function but not sputum inflammation in cystic fibrosis subjects. A phase II randomized placebo-controlled trial. J. Cyst. Fibros. 14, 219–227 (2015).

    Article  CAS  PubMed  Google Scholar 

  166. Xu, R., Tao, A., Bai, Y., Deng, Y. & Chen, G. Effectiveness of N-acetylcysteine for the prevention of contrast-induced nephropathy: a systematic review and meta-analysis of randomized controlled trials. J. Am. Heart Assoc. 5, e003968 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Wendel, A. & Cikryt, P. The level and half-life of glutathione in human plasma. FEBS Lett. 120, 209–211 (1980).

    Article  CAS  PubMed  Google Scholar 

  168. Anderson, M. E. & Meister, A. Glutathione monoesters. Anal. Biochem. 183, 16–20 (1989).

    Article  CAS  PubMed  Google Scholar 

  169. Levy, E. J., Anderson, M. E. & Meister, A. Transport of glutathione diethyl ester into human cells. Proc. Natl Acad. Sci. USA 90, 9171–9175 (1993). This article demonstrates that glutathione diethyl ester is highly effective as a delivery agent for GSH in human cells to decrease oxidative stress.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Puri, R. N. & Meister, A. Transport of glutathione, as gamma-glutamylcysteinylglycyl ester, into liver and kidney. Proc. Natl Acad. Sci. USA 80, 5258–5260 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Wellner, V. P., Anderson, M. E., Puri, R. N., Jensen, G. L. & Meister, A. Radioprotection by glutathione ester: transport of glutathione ester into human lymphoid cells and fibroblasts. Proc. Natl Acad. Sci. USA 81, 4732–4735 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Tsan, M. F., White, J. E. & Rosano, C. L. Modulation of endothelial GSH concentrations: effect of exogenous GSH and GSH monoethyl ester. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 66, 1029–1034 (1989).

    CAS  Google Scholar 

  173. Grattagliano, I., Vendemiale, G. & Lauterburg, B. H. Reperfusion injury of the liver: role of mitochondria and protection by glutathione ester. J. Surg. Res. 86, 2–8 (1999).

    Article  CAS  PubMed  Google Scholar 

  174. Anderson, M. F., Nilsson, M., Eriksson, P. S. & Sims, N. R. Glutathione monoethyl ester provides neuroprotection in a rat model of stroke. Neurosci. Lett. 354, 163–165 (2004).

    Article  CAS  PubMed  Google Scholar 

  175. Chen, T. S., Richie, J. P., Nagasawa, H. T. & Lang, C. A. Glutathione monoethyl ester protects against glutathione deficiencies due to aging and acetaminophen in mice. Mech. Ageing Dev. 120, 127–139 (2000).

    Article  CAS  PubMed  Google Scholar 

  176. Anderson, M. E., Powrie, F., Puri, R. N. & Meister, A. Glutathione monoethyl ester: preparation, uptake by tissues, and conversion to glutathione. Arch. Biochem. Biophys. 239, 538–548 (1985).

    Article  CAS  PubMed  Google Scholar 

  177. Zeevalk, G. D., Manzino, L., Sonsalla, P. K. & Bernard, L. P. Characterization of intracellular elevation of glutathione (GSH) with glutathione monoethyl ester and GSH in brain and neuronal cultures: relevance to Parkinson’s disease. Exp. Neurol. 203, 512–520 (2007).

    Article  CAS  PubMed  Google Scholar 

  178. Howden, R. Nrf2 and cardiovascular defense. Oxid. Med. Cell Longev. 2013, 104308 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Gan, L. & Johnson, J. A. Oxidative damage and the Nrf2-ARE pathway in neurodegenerative diseases. Biochim. Biophys. Acta 1842, 1208–1218 (2014).

    Article  CAS  PubMed  Google Scholar 

  180. Boutten, A., Goven, D., Artaud-Macari, E. & Bonay, M. Protective role of Nrf2 in the lungs against oxidative airway diseases. Med. Sci. 27, 966–972 (2011).

    Google Scholar 

  181. McMahon, M., Thomas, N., Itoh, K., Yamamoto, M. & Hayes, J. D. Dimerization of substrate adaptors can facilitate Cullin-mediated ubiquitylation of proteins by a “tethering” mechanism: a two-site interaction model for the Nrf2-Keap1 complex. J. Biol. Chem. 281, 24756–24768 (2006).

    Article  CAS  PubMed  Google Scholar 

  182. Seo, H. Y. et al. Kahweol activates the Nrf2/HO-1 pathway by decreasing Keap1 expression independently of p62 and autophagy pathways. PLoS ONE 15, e0240478 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Lee, D. H. et al. The hypertension drug, verapamil, activates Nrf2 by promoting p62-dependent autophagic Keap1 degradation and prevents acetaminophen-induced cytotoxicity. BMB Rep. 50, 91–96 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Li, J. et al. Green tea extract provides extensive Nrf2-independent protection against lipid accumulation and NFkappaB pro-inflammatory responses during nonalcoholic steatohepatitis in mice fed a high-fat diet. Mol. Nutr. Food Res. 60, 858–870 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Pandurangan, A. K., Saadatdoust, Z., Esa, N. M., Hamzah, H. & Ismail, A. Dietary cocoa protects against colitis-associated cancer by activating the Nrf2/Keap1 pathway. Biofactors 41, 1–14 (2015).

    Article  CAS  PubMed  Google Scholar 

  186. Yagishita, Y., Fahey, J. W., Dinkova-Kostova, A. T. & Kensler, T. W. Broccoli or sulforaphane: is it the source or dose that matters? Molecules 24, 3593 (2019). This article evaluates the current knowledge regarding bioavailability and efficacy of glucoraphanin and sulforaphane in terms of dose and route of administration.

    Article  PubMed Central  Google Scholar 

  187. Robledinos-Anton, N., Fernandez-Gines, R., Manda, G. & Cuadrado, A. Activators and inhibitors of NRF2: a review of their potential for clinical development. Oxid. Med. Cell Longev. 2019, 9372182 (2019). This article reviewed electrophilic and non-electrophilic NRF2 activators in clinical trials for various chronic diseases including cancer.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Kwon, J. S. et al. Sulforaphane inhibits restenosis by suppressing inflammation and the proliferation of vascular smooth muscle cells. Atherosclerosis 225, 41–49 (2012).

    Article  CAS  PubMed  Google Scholar 

  189. Shimizu, K. et al. Anti-inflammatory action of curcumin and its use in the treatment of lifestyle-related diseases. Eur. Cardiol. 14, 117–122 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  190. de Sa Coutinho, D., Pacheco, M. T., Frozza, R. L. & Bernardi, A. Anti-inflammatory effects of resveratrol: mechanistic insights. Int. J. Mol. Sci. 19, 1812 (2018).

    Article  PubMed Central  Google Scholar 

  191. Jiang, Z. Y., Lu, M. C. & You, Q. D. Discovery and development of Kelch-like ECH-associated protein 1. Nuclear factor erythroid 2-related factor 2 (KEAP1:NRF2) protein-protein interaction inhibitors: achievements, challenges, and future directions. J. Med. Chem. 59, 10837–10858 (2016).

    Article  CAS  PubMed  Google Scholar 

  192. Satoh, T. & Lipton, S. Recent advances in understanding NRF2 as a druggable target: development of pro-electrophilic and non-covalent NRF2 activators to overcome systemic side effects of electrophilic drugs like dimethyl fumarate. F1000Res 6, 2138 (2017). This article evaluates NRF2 activators designed to avoid the systemic side effects caused by electrophilic activators.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Couch, R. D. et al. Studies on the reactivity of CDDO, a promising new chemopreventive and chemotherapeutic agent: implications for a molecular mechanism of action. Bioorg. Med. Chem. Lett. 15, 2215–2219 (2005). This article demonstrates that conjugation of electrophilic cyanoenone compounds and KEAP1 is selective and reversable.

    Article  CAS  PubMed  Google Scholar 

  194. Kostov, R. V. et al. Pharmacokinetics and pharmacodynamics of orally administered acetylenic tricyclic bis(cyanoenone), a highly potent Nrf2 activator with a reversible covalent mode of action. Biochem. Biophys. Res. Commun. 465, 402–407 (2015). This article demonstrates that oral administration of acetylenic tricyclic bis(cyanoenone), a NRF2 activator, has a reversible covalent mode of action in various tissues in C57BL/6 mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Dinkova-Kostova, A. T. et al. An exceptionally potent inducer of cytoprotective enzymes: elucidation of the structural features that determine inducer potency and reactivity with Keap1. J. Biol. Chem. 285, 33747–33755 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Sedlak, T. W. et al. Sulforaphane augments glutathione and influences brain metabolites in human subjects: a clinical pilot study. Mol. Neuropsychiatry 3, 214–222 (2018).

    PubMed  PubMed Central  Google Scholar 

  197. Wise, R. A. et al. Lack of effect of oral sulforaphane administration on Nrf2 expression in COPD: a randomized, double-blind, placebo controlled trial. PLoS ONE 11, e0163716 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Greaney, A. J., Maier, N. K., Leppla, S. H. & Moayeri, M. Sulforaphane inhibits multiple inflammasomes through an Nrf2-independent mechanism. J. Leukoc. Biol. 99, 189–199 (2016).

    Article  CAS  PubMed  Google Scholar 

  199. Roy, S. K., Srivastava, R. K. & Shankar, S. Inhibition of PI3K/AKT and MAPK/ERK pathways causes activation of FOXO transcription factor, leading to cell cycle arrest and apoptosis in pancreatic cancer. J. Mol. Signal. 5, 10 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Satoh, H., Moriguchi, T., Takai, J., Ebina, M. & Yamamoto, M. Nrf2 prevents initiation but accelerates progression through the Kras signaling pathway during lung carcinogenesis. Cancer Res. 73, 4158–4168 (2013). This article demonstrates that NRF2-deficient mice exhibited an increase in tumour foci after urethane induction but a reduction in tumours with more malignant characteristics.

    Article  CAS  PubMed  Google Scholar 

  201. Wiel, C. et al. BACH1 stabilization by antioxidants stimulates lung cancer metastasis. Cell 178, 330–345 e322 (2019). This article demonstrates that long-term supplementation with N-acetylcysteine and vitamin E promoted KRAS-driven lung cancer metastasis, and NRF2 inhibitor BACH1 stimulated glycolysis-dependent lung cancer metastasis in a mouse model.

    Article  CAS  PubMed  Google Scholar 

  202. Tao, S., Rojo de la Vega, M., Chapman, E., Ooi, A. & Zhang, D. D. The effects of NRF2 modulation on the initiation and progression of chemically and genetically induced lung cancer. Mol. Carcinog. 57, 182–192 (2018). This article demonstrates that sulforaphane prevented the initiation of vinyl carbamate-induced lung cancer in mouse models but promoted the progression of pre-existing tumours.

    Article  CAS  PubMed  Google Scholar 

  203. Shibata, T. et al. Genetic alteration of Keap1 confers constitutive Nrf2 activation and resistance to chemotherapy in gallbladder cancer. Gastroenterology 135, 1358–1368 (2008).

    Article  CAS  PubMed  Google Scholar 

  204. Homma, S. et al. Nrf2 enhances cell proliferation and resistance to anticancer drugs in human lung cancer. Clin. Cancer Res. 15, 3423–3432 (2009).

    Article  CAS  PubMed  Google Scholar 

  205. Jiang, T. et al. High levels of Nrf2 determine chemoresistance in type II endometrial cancer. Cancer Res. 70, 5486–5496 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Roh, J. L., Kim, E. H., Jang, H. & Shin, D. Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis. Redox Biol. 11, 254–262 (2017).

    Article  CAS  PubMed  Google Scholar 

  207. Sporn, M. B. & Liby, K. T. NRF2 and cancer: the good, the bad and the importance of context. Nat. Rev. Cancer 12, 564–571 (2012).

    Article  CAS  PubMed  Google Scholar 

  208. Milkovic, L., Zarkovic, N. & Saso, L. Controversy about pharmacological modulation of Nrf2 for cancer therapy. Redox Biol. 12, 727–732 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Wu, S., Lu, H. & Bai, Y. Nrf2 in cancers: a double-edged sword. Cancer Med. 8, 2252–2267 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Massart, C. et al. Diphenyleneiodonium, an inhibitor of NOXes and DUOXes, is also an iodide-specific transporter. FEBS Open Bio. 4, 55–59 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Augsburger, F. et al. Pharmacological characterization of the seven human NOX isoforms and their inhibitors. Redox Biol. 26, 101272 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Teixeira, G. et al. Therapeutic potential of NADPH oxidase 1/4 inhibitors. Br. J. Pharmacol. 174, 1647–1669 (2017).

    Article  CAS  PubMed  Google Scholar 

  213. Cifuentes-Pagano, M. E., Meijles, D. N. & Pagano, P. J. Nox inhibitors & therapies: rational design of peptidic and small molecule inhibitors. Curr. Pharm. Des. 21, 6023–6035 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Nishikawa, T. et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404, 787–790 (2000). This article demonstrates that prevention of mitochondrial superoxide production blocked oxidative stress and signal transduction.

    Article  CAS  PubMed  Google Scholar 

  215. Detaille, D., Pasdois, P., Semont, A., Dos Santos, P. & Diolez, P. An old medicine as a new drug to prevent mitochondrial complex I from producing oxygen radicals. PLoS ONE 14, e0216385 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Craven, R. SOD mimetics to the rescue. Nat. Rev. Neurosci. 2, 858–858 (2001).

    Article  CAS  Google Scholar 

  217. Pavon, N., Correa, F., Buelna-Chontal, M., Hernandez-Esquivel, L. & Chavez, E. Ebselen induces mitochondrial permeability transition because of its interaction with adenine nucleotide translocase. Life Sci. 139, 108–113 (2015).

    Article  CAS  PubMed  Google Scholar 

  218. Murphy, M. P. Targeting lipophilic cations to mitochondria. Biochim. Biophys. Acta 1777, 1028–1031 (2008).

    Article  CAS  PubMed  Google Scholar 

  219. Li, Y. & Schellhorn, H. E. New developments and novel therapeutic perspectives for vitamin C. J. Nutr. 137, 2171–2184 (2007).

    Article  CAS  PubMed  Google Scholar 

  220. Frei, B., England, L. & Ames, B. N. Ascorbate is an outstanding antioxidant in human blood plasma. Proc. Natl Acad. Sci. USA 86, 6377–6381 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Buettner, G. R. The pecking order of free radicals and antioxidants: lipid peroxidation, α-tocopherol, and ascorbate. Arch. Biochem. Biophys. 300, 535–543 (1993).

    Article  CAS  PubMed  Google Scholar 

  222. Bruno, R. S. et al. Faster plasma vitamin E disappearance in smokers is normalized by vitamin C supplementation. Free Radic. Biol. Med. 40, 689–697 (2006).

    Article  CAS  PubMed  Google Scholar 

  223. Hill, K. E. et al. Combined deficiency of vitamins E and C causes paralysis and death in guinea pigs. Am. J. Clin. Nutr. 77, 1484–1488 (2003).

    Article  CAS  PubMed  Google Scholar 

  224. Traber, M. G. & Atkinson, J. Vitamin E, antioxidant and nothing more. Free Radic. Biol. Med. 43, 4–15 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Maxfield, L. & Crane, J. S. Vitamin C Deficiency. StatPearls [online] https://www.ncbi.nlm.nih.gov/books/NBK493187/ (updated 2 Jul 2020).

  226. Traber, M. G. Vitamin E inadequacy in humans: causes and consequences. Adv. Nutr. 5, 503–514 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Fang, Y. Z., Yang, S. & Wu, G. Free radicals, antioxidants, and nutrition. Nutrition 18, 872–879 (2002).

    Article  CAS  PubMed  Google Scholar 

  228. Sayin, V. I. et al. Antioxidants accelerate lung cancer progression in mice. Sci. Transl Med. 6, 221ra215 (2014). This article demonstrates that N-acetylcysteine and vitamin E markedly increased tumour progression and reduced survival in mouse models of lung cancer.

    Article  Google Scholar 

  229. Le Gal, K. et al. Antioxidants can increase melanoma metastasis in mice. Sci. Transl Med. 7, 308re308 (2015).

    Google Scholar 

  230. Zou, Z. V. et al. Antioxidants promote intestinal tumor progression in mice. Antioxidants 10, 241 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Kaul, N. & Forman, H. J. Activation of NF kappa B by the respiratory burst of macrophages. Free Radic. Biol. Med. 21, 401–405 (1996). This is probably the first article to demonstrate stimulation of cell signalling by endogenous generation of H2O2 through activation of NOX.

    Article  CAS  PubMed  Google Scholar 

  232. Lambeth, J. D. NOX enzymes and the biology of reactive oxygen. Nat. Rev. Immunol. 4, 181–189 (2004). This article reviews the NOX family of enzymes.

    Article  CAS  PubMed  Google Scholar 

  233. Forman, H. J., Ursini, F. & Maiorino, M. An overview of mechanisms of redox signaling. J. Mol. Cell. Cardiol. 73, 2–9 (2014).

    Article  CAS  PubMed  Google Scholar 

  234. Marshall, P. J., Kulmacz, R. J. & Lands, W. E. M. in Hydroperoxides, Free Radicals and Prostaglandin Synthesis (eds Bors, W., Saran, M. & Tait, D) 299–304 (Walter de Gruyter, 1984).

  235. Premasekharan, G. et al. Iron-mediated lipid peroxidation and lipid raft disruption in low-dose silica-induced macrophage cytokine production. Free Radic. Biol. Med. 51, 1184–1194 (2011).

    Article  CAS  PubMed  Google Scholar 

  236. Monick, M. M. et al. A phosphatidylcholine-specific phospholipase C regulates activation of p42/44 mitogen-activated protein kinases in lipopolysaccharide- stimulated human alveolar macrophages. J. Immunol. 162, 3005–3012 (1999).

    Article  CAS  PubMed  Google Scholar 

  237. Huie, R. E. & Padmaja, S. The reaction of NO with superoxide. Free Radic. Res. Commun. 18, 195–199 (1993).

    Article  CAS  PubMed  Google Scholar 

  238. Buettner, G. R., Ng, C. F., Wang, M., Rodgers, V. G. & Schafer, F. Q. A new paradigm: manganese superoxide dismutase influences the production of H2O2 in cells and thereby their biological state. Free Radic. Biol. Med. 41, 1338–1350 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Farnsworth, C. C., Stone, W. L. & Dratz, E. A. Effects of vitamin E and selenium deficiency on the fatty acid composition of rat retinal tissues. Biochim. Biophys. Acta 552, 281–293 (1979).

    Article  CAS  PubMed  Google Scholar 

  240. Smith, R. A. et al. Mitochondria-targeted antioxidants in the treatment of disease. Ann. NY Acad. Sci. 1147, 105–111 (2008).

    Article  CAS  PubMed  Google Scholar 

  241. Zhang, H., Davies, K. J. & Forman, H. J. Oxidative stress response and Nrf2 signaling in aging. Free Radic. Biol. Med. 88, 314–336 (2015). This article reviews the evidence that NRF2 activation declines with ageing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Zhang, H., Zhou, L., Davies, K. J. A. & Forman, H. J. Silencing Bach1 alters aging-related changes in the expression of Nrf2-regulated genes in primary human bronchial epithelial cells. Arch. Biochem. Biophys. 672, 108074 (2019). This article demonstrates that inhibition of BACH1 partially reversed the decline of NRF2 activation in ageing.

    Article  CAS  PubMed  Google Scholar 

  243. Surh, Y. J., Kundu, J. K., Na, H. K. & Lee, J. S. Redox-sensitive transcription factors as prime targets for chemoprevention with anti-inflammatory and antioxidative phytochemicals. J. Nutr. 135, 2993S–3001S (2005). This article describes how NRF2 and other transcription factors are targets for protective phytochemicals.

    Article  CAS  PubMed  Google Scholar 

  244. Ota, K., Brydun, A., Itoh-Nakadai, A., Sun, J. & Igarashi, K. Bach1 deficiency and accompanying overexpression of heme oxygenase-1 do not influence aging or tumorigenesis in mice. Oxid. Med. Cell Longev. 2014, 757901 (2014). This article demonstrates the effects of Bach1 knockout on the transcriptome, p53−/− induced tumorigenesis and oxidative damage in a mouse model.

    Article  PubMed  PubMed Central  Google Scholar 

  245. Sharpley, A. L. et al. A phase 2a randomised, double-blind, placebo-controlled, parallel-group, add-on clinical trial of ebselen (SPI-1005) as a novel treatment for mania or hypomania. Psychopharmacology 237, 3773–3782 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Masaki, C. et al. Effects of the potential lithium-mimetic, ebselen, on impulsivity and emotional processing. Psychopharmacology 233, 2655–2661 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Bowler, R. P. et al. A catalytic antioxidant (AEOL 10150) attenuates expression of inflammatory genes in stroke. Free Radic. Biol. Med. 33, 1141–1152 (2002).

    Article  CAS  PubMed  Google Scholar 

  248. Rabbani, Z. N. et al. Long-term administration of a small molecular weight catalytic metalloporphyrin antioxidant, AEOL 10150, protects lungs from radiation-induced injury. Int. J. Radiat. Oncol. Biol. Phys. 67, 573–580 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Bianca, R. et al. Superoxide dismutase mimetic with catalase activity, EUK-134, attenuates the multiple organ injury and dysfunction caused by endotoxin in the rat. Med. Sci. Monit. 8, BR1–BR7 (2002).

    PubMed  Google Scholar 

  250. Liu, H. et al. Biomarker exploration in human peripheral blood mononuclear cells for monitoring sulforaphane treatment responses in autism spectrum disorder. Sci. Rep. 10, 5822 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Singh, K. et al. Sulforaphane treatment of autism spectrum disorder (ASD). Proc. Natl Acad. Sci. USA 111, 15550–15555 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Ungvari, Z. et al. Resveratrol confers endothelial protection via activation of the antioxidant transcription factor Nrf2. Am. J. Physiol. Heart Circ. Physiol. 299, H18–H24 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Tanigawa, S., Fujii, M. & Hou, D. X. Action of Nrf2 and Keap1 in ARE-mediated NQO1 expression by quercetin. Free. Radic. Biol. Med. 42, 1690–1703 (2007).

    Article  CAS  PubMed  Google Scholar 

  254. Balogun, E. et al. Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element. Biochem. J. 371, 887–895 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Pergola, P. E. et al. Bardoxolone methyl and kidney function in CKD with type 2 diabetes. N. Engl. J. Med. 365, 327–336 (2011).

    Article  CAS  PubMed  Google Scholar 

  256. Cleasby, A. et al. Structure of the BTB domain of Keap1 and its interaction with the triterpenoid antagonist CDDO. PLoS ONE 9, e98896 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  257. Dayalan Naidu, S. et al. C151 in KEAP1 is the main cysteine sensor for the cyanoenone class of NRF2 activators, irrespective of molecular size or shape. Sci. Rep. 8, 8037 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  258. Lynch, D. R. et al. Safety, pharmacodynamics, and potential benefit of omaveloxolone in Friedreich ataxia. Ann. Clin. Transl. Neurol. 6, 15–26 (2019).

    Article  CAS  PubMed  Google Scholar 

  259. Madsen, K. L. et al. Safety and efficacy of omaveloxolone in patients with mitochondrial myopathy: MOTOR trial. Neurology 94, e687–e698 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Probst, B. L. et al. RTA 408, a novel synthetic triterpenoid with broad anticancer and anti-inflammatory activity. PLoS ONE 10, e0122942 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  261. Reisman, S. A., Lee, C. Y., Meyer, C. J., Proksch, J. W. & Ward, K. W. Topical application of the synthetic triterpenoid RTA 408 activates Nrf2 and induces cytoprotective genes in rat skin. Arch. Dermatol. Res. 306, 447–454 (2014).

    Article  CAS  PubMed  Google Scholar 

  262. Fox, R. J. et al. Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N. Engl. J. Med. 367, 1087–1097 (2012).

    Article  CAS  PubMed  Google Scholar 

  263. Gold, R. et al. Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N. Engl. J. Med. 367, 1098–1107 (2012).

    Article  CAS  PubMed  Google Scholar 

  264. Brennan, M. S. et al. Dimethyl fumarate and monoethyl fumarate exhibit differential effects on KEAP1, NRF2 activation, and glutathione depletion in vitro. PLoS ONE 10, e0120254 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  265. Ramos-Gomez, M. et al. Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription factor-deficient mice. Proc. Natl Acad. Sci. USA 98, 3410–3415 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Kansanen, E. et al. Nrf2-dependent and -independent responses to nitro-fatty acids in human endothelial cells: identification of heat shock response as the major pathway activated by nitro-oleic acid. J. Biol. Chem. 284, 33233–33241 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Seo, J. Y. et al. Andrographolide activates Keap1/Nrf2/ARE/HO-1 pathway in HT22 cells and suppresses microglial activation by Abeta42 through Nrf2-related inflammatory response. Mediators Inflamm. 2017, 5906189 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  268. Okada, K. et al. Ursodeoxycholic acid stimulates Nrf2-mediated hepatocellular transport, detoxification, and antioxidative stress systems in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 295, G735–G747 (2008).

    Article  CAS  PubMed  Google Scholar 

  269. Huang, H. C., Nguyen, T. & Pickett, C. B. Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription. J. Biol. Chem. 277, 42769–42774 (2002).

    Article  CAS  PubMed  Google Scholar 

  270. Chen, W. et al. Direct interaction between Nrf2 and p21(Cip1/WAF1) upregulates the Nrf2-mediated antioxidant response. Mol. Cell 34, 663–673 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Gorrini, C. et al. BRCA1 interacts with Nrf2 to regulate antioxidant signaling and cell survival. J. Exp. Med. 210, 1529–1544 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Shan, Y., Lambrecht, R. W., Donohue, S. E. & Bonkovsky, H. L. Role of Bach1 and Nrf2 in up-regulation of the heme oxygenase-1 gene by cobalt protoporphyrin. FASEB J. 20, 2651–2653 (2006).

    Article  CAS  PubMed  Google Scholar 

  273. Chapple, S. J. et al. Bach1 differentially regulates distinct Nrf2-dependent genes in human venous and coronary artery endothelial cells adapted to physiological oxygen levels. Free Radic. Biol. Med. 92, 152–162 (2016).

    Article  CAS  PubMed  Google Scholar 

  274. Zhang, X. et al. Bach1: function, regulation, and involvement in disease. Oxid. Med. Cell Longev. 2018, 1347969 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  275. Chen, F., Haigh, S., Barman, S. & Fulton, D. J. From form to function: the role of Nox4 in the cardiovascular system. Front. Physiol. 3, 412 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Halliwell, B. & Gutteridge, J. M. C. Free Radicals in Biology and Medicine (Clarendon Press, 1989).

  277. Boveris, A., Cadenas, E. & Stoppani, A. O. M. Role of ubiquinone in the mitochondrial generation of hydrogen peroxide. Biochem. J. 156, 435–435 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Babior, B. M., Kipnes, R. S. & Curnutte, J. T. The production by leukocytes of superoxide, a potential bactericidal agent. J. Clin. Invest. 52, 741–741 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Nisimoto, Y., Diebold, B. A., Cosentino-Gomes, D. & Lambeth, J. D. Nox4: a hydrogen peroxide-generating oxygen sensor. Biochemistry 53, 5111–5120 (2014).

    Article  CAS  PubMed  Google Scholar 

  280. Koppenol, W. H. The centennial of the Fenton reaction. Free Radic. Biol. Med. 15, 645–651 (1993).

    Article  CAS  PubMed  Google Scholar 

  281. Pattison, D. I., Davies, M. J. & Hawkins, C. L. Reactions and reactivity of myeloperoxidase-derived oxidants: differential biological effects of hypochlorous and hypothiocyanous acids. Free Radic. Res. 46, 975–995 (2012).

    Article  CAS  PubMed  Google Scholar 

  282. Davies, K. J. A. Adaptive homeostasis. Mol. Asp. Med. 49, 1–7 (2016). This article describes adaptive homeostasis, the endogenous defence that antioxidant therapies are intended to mimic.

    Article  Google Scholar 

  283. Moi, P., Chan, K., Asunis, I., Cao, A. & Kan, Y. W. Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proc. Natl Acad. Sci. USA 91, 9926–9930 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Venugopal, R. & Jaiswal, A. K. Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD(P)H:quinone oxidoreductase1 gene. J. Clin. Invest. 93, 14960–14965 (1996).

    CAS  Google Scholar 

  285. Mann, G. E. & Forman, H. J. Introduction to special issue on ‘Nrf2 regulated redox signaling and metabolism in physiology and medicine’. Free Radic. Biol. Med. 88, 91–92 (2015). This article introduces an important group of reviews on NRF2 signalling.

    Article  CAS  PubMed  Google Scholar 

  286. Ushida, Y. & Talalay, P. Sulforaphane accelerates acetaldehyde metabolism by inducing aldehyde dehydrogenases: relevance to ethanol intolerance. Alcohol Alcohol. 48, 526–534 (2013).

    Article  CAS  PubMed  Google Scholar 

  287. Kobayashi, E. H. et al. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat. Commun. 7, 11624 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Ma, Q. Role of nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol. 53, 401–426 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Thimmulappa, R. K. et al. Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis. J. Clin. Invest. 116, 984–995 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Kobayashi, A. et al. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol. Cell. Biol. 24, 7130–7139 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Chowdhry, S. et al. Nrf2 is controlled by two distinct beta-TrCP recognition motifs in its Neh6 domain, one of which can be modulated by GSK-3 activity. Oncogene 32, 3765–3781 (2013).

    Article  CAS  PubMed  Google Scholar 

  292. Komatsu, M. et al. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat. Cell Biol. 12, 213–223 (2010). This article demonstrates that overproduction of p62 or a deficiency in autophagy competed with NRF2–KEAP1 interaction and activated NRF2.

    Article  CAS  PubMed  Google Scholar 

  293. Sun, J. et al. Heme regulates the dynamic exchange of Bach1 and NF-E2-related factors in the Maf transcription factor network. Proc. Natl Acad. Sci. USA 101, 1461–1466 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Warnatz, H. J. et al. The BTB and CNC homology 1 (BACH1) target genes are involved in the oxidative stress response and in control of the cell cycle. J. Biol. Chem. 286, 23521–23532 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Reichard, J. F., Motz, G. T. & Puga, A. Heme oxygenase-1 induction by NRF2 requires inactivation of the transcriptional repressor BACH1. Nucleic Acids Res. 35, 7074–7086 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank their many colleagues with whom conversations and collaborations concerning antioxidants have occurred over decades. The authors’ work in this area was supported by several past NIH grants and currently by P01 AG055367.

Author information

Authors and Affiliations

Authors

Contributions

Both authors were involved in researching data, discussion of content, writing the article and reviewing/editing the manuscript before submission.

Corresponding author

Correspondence to Henry Jay Forman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Oxidative stress

Imbalance between generation of oxidants and the ability to prevent oxidative damage favouring the latter process.

Redox signalling

Signal transduction in which oxidants act as second messengers.

Antioxidant defence

Prevention or repair of oxidative damage.

Antioxidant enzymes

Strictly, enzymes that remove oxidants; broadly, enzymes that contribute to the prevention or repair of oxidative damage. The broader definition is used in this Review.

NRF2 transcription factor

Nuclear factor E2-related factor 2, which coordinates both the baseline and stress-inducible activation of a great many antioxidant enzymes.

Antioxidant therapy

Treatment with agents that enhance antioxidant defence.

Pneumonitis

Inflammation of the lungs caused by irritation of lung tissue, disease, infection, radiation therapy or allergy.

Ischaemia–reperfusion

Cessation followed by restoration of blood flow.

Autophagy

A mechanism through which unnecessary or damaged cellular components are degraded.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forman, H.J., Zhang, H. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat Rev Drug Discov 20, 689–709 (2021). https://doi.org/10.1038/s41573-021-00233-1

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41573-021-00233-1

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research